QCD phenomenology based on chiral effective models in the presence of external magnetic fields: from hot matter to compact stars
Details
-
Call:
IDPASC Portugal - PHD Programme 2014
-
Academic Year:
2014 /2015
-
Domain:
Theoretical Particle Physics
-
Supervisor:
Constança Providência
-
Co-Supervisor:
Pedro Costa
-
Institution:
Universidade de Coimbra
-
Host Institution:
Center for Computational Physics (CFC)
-
Abstract:
This project will focus on fundamental phenomena that are the reason of the existence of our world as it stands today: it relies on peculiar properties of nuclei and ultimately the dynamics of quarks and gluons in the Quantum Chromodynamics (QCD) at the microscopic level. The project aims at investigating the behavior of strongly interacting matter at finite temperature and chemical potential in a strong magnetic background. The investigation of QCD phase diagram under extreme conditions and the influence of strong magnetic fields, is a very recent and active field of both theoretical [1-3] and experimental studies [4]. Understanding matter under extremely intense magnetic fields is one of the most interesting topics in modern physics due to its relevance for studies involving compact objects like magnetars [5], measurements in heavy ion collisions at very high energies [6,7] or the first phases of the Universe [8]. We will consider the influence of the magnetic field on the deconfinement and on the chiral symmetry breaking, which are two of the most important features of QCD, and on the behavior of the light scalar and pseudoscalar mesons. This investigation has important implications in: 1 - Heavy ion collisions programs; 2 - Astrophysics, namely in the understanding of the interior of compact stellar objects such as neutron stars (a place of the Universe where dense QCD matter is realized and from which observations can extract information about the properties of QCD); 3 - Anchoring our empirical understanding of the origin of matter in the Universe to a more fundamental level. The PhD candidate will be integrated in the CFC-Coimbra in an international team (with collaborations in France and Brazil) which has a long and vast experience dealing with the study of the phase diagram from several points of view (from lattice QCD (LQCD) calculations to building and use of effective models [9] for the study of the strong interaction and compact stars [10]). [1] M. Ferreira, P. Costa, D. P. Menezes, C. Providência, N. N. Scoccola, Phys. Rev. D 89, 016002 (2014). [2] P. Costa, M. Ferreira, H. Hansen, D. P. Menezes, C. Providência, Phys. Rev. D 89, 056013 (2014). [3] M. Ferreira, P. Costa , O. Lourenço, T. Frederico, C. Providência, Phys. Rev. D 89, 116011 (2014). [4] R. C. Duncan and C. Thompson, Astrophys. J. 392 , L9 (1992); C. Kouveliotou et al., Nature 393 , 235 (1998). [5] V. Voronyuk, et al, Phys.Rev. C 83, 054911 (2011). [6] V. Skokov, A. Y. Illarionov, and V. Toneev, Int. J. Mod. Phys. A 24 , 5925 (2009); V. Voronyuk, V. Toneev, W. Cassing, E. Bratkovskaya, V. Konchakovski, and S. Voloshin, Phys. Rev. C 83 , 054911 (2011). [7] D. E. Kharzeev, L. D. McLerran and H. J. Warringa, Nucl. Phys. A 803 , 227 (2008). [8] T. Vachaspati, Phys. Lett. B 265 , 258 (1991); K. Enqvist and P. Olesen, Phys. Lett. B 319 , 178 (1993). [9] P. Costa, O. Oliveira and P. J. Silva, Phys. Lett. B 695, 454 (2011). [10] D. P. Menezes, M. B. Pinto, L. B. Castro, P. Costa, C. Providência, Phys. Rev. C 89, 055207 (2014).