Thesis

New Maps of the Dark Side: Euclid and beyond

Details

  • Call:

    IDPASC Portugal - PHD Programme 2019

  • Academic Year:

    2019 / 2020

  • Domains:

    Cosmology | Astrophysics

  • Supervisor:

    Carlos Martins

  • Co-Supervisor:

  • Institution:

    Universidade do Porto

  • Host Institution:

    CAUP / IA-Porto

  • Abstract:

    The growing amount of observational evidence for the recent acceleration of the universe unambiguously demonstrates that canonical theories of cosmology and particle physics are incomplete—if not incorrect—and that new physics is out there, waiting to be discovered. The most fundamental task for the next generation of astrophysical facilities is therefore to search for, identify and ultimately characterise this new physics. The acceleration is seemingly due to a dark component whose low-redshift gravitational behaviour is very similar to that of a cosmological constant. However, currently available data provides very little information about the high-redshift behaviour of this dark sector or its interactions with the rest of the degrees of freedom in the model. It is becoming increasing clear that tackling the dark energy enigma will entail significantly extending the redshift range where its behaviour can be accurately mapped. A new generation of ESA and ESO facilities, such as Euclid, the ELT, and the SKA have dark energy characterization as a key science driver, and in addition to significantly increasing the range and sensitivity of current observational probes will allow for entirely new tests. The goal of this thesis will be to carry out a systematic exploration of the landscape of physically viable dark energy paradigms and provide optimal discriminating observational tests. The work will initially focus on Euclid (whose launch is fast approaching) and will gradually broaden to explore synergies and probe combination with the SKA and relevant ELT-HIRES instruments.