

Chiara Nociforo

GSI Helmholtzzentrum für Schwerionenforschung Darmstadt - Germany

IDPASC School - Siena - 2013 Oct 4-6

Introduction of in-flight production of rare isotope beams (RIBs) production, selection and separation method GSI facilities: FRS VS Super-FRS

Particle identification of relativistic ions standard PID detectors

new requirements & developments

Unique experiments

About 6000 nuclides are bound, only about half of them have been observed. Most of the unobserved nuclides are neutron-rich.

http://www-win.gsi.de/charms/euro2000.htm

Basic method: selection

Separation method momentum-loss-achromat

Because the fragments have approximately the same velocity they will loose different momenta in the degrader depending on their atomic number Z and will exit with different magnetic rigidity.

The final position and angle do not depend on momentum.

J.P. Dufour et al. *NIM A* 248 (1986) 267 K.-H. Schmidt et al. *NIM A* 260 (1987) 287

Wedge shaped disc and double-shaped wedge machined with μm precision

Discovery of 60 new isotopes

Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS

J. Kurcewicz^{a,*}, F. Farinon^{a,b,1}, H. Geissel^{a,b}, S. Pietri^a, C. Nociforo^a, A. Prochazka^{a,b}, H. Weick^a, J.S. Winfield^a, A. Estradé^{a,c}, P.R.P. Allegro^d, A. Bail^e, G. Bélier^e, J. Benlliure^f, G. Benzoni^g, M. Bunce^h, M. Bowry^h, R. Caballero-Folchⁱ, I. Dillmann^{a,b}, A. Evdokimov^{a,b}, J. Gerl^a, A. Gottardo^j, E. Gregor^a, R. Janik^k, A. Kelić-Heil^a, R. Knöbel^a, T. Kubo¹, Yu.A. Litvinov^{a,m}, E. Merchan^{a,n}, I. Mukha^a, F. Naqvi^{a,o}, M. Pfützner^{a,p}, M. Pomorski^p, Zs. Podolyák^h, P.H. Regan^h, B. Riese^{a,b}, M.V. Ricciardi^a, C. Scheidenberger^{a,b}, B. Sitar^k, P. Spiller^a, J. Stadlmann^a, P. Strmen^k, B. Sun^{b,q}, I. Szarka^k, J. Taïeb^e, S. Terashima^{a,1}, J.J. Valiente-Dobón^j, M. Winkler^a, Ph. Woods^r

- T_{1/2} long enough to survive for 300 ns ToF
- measured production cross sections down up to 1 pb

J. Kurcewicz et al., PLB 717 (2012) 371

Superallowed Gamow–Teller decay of the doubly magic nucleus $^{100}\mathrm{Sn}$

C. B. Hinke¹, M. Böhmer¹, P. Boutachkov², T. Faestermann¹, H. Geissel², J. Gerl², R. Gernhäuser¹, M. Górska², A. Gottardo³, H. Grawe², J. L. Grębosz⁴, R. Krücken^{1,5}, N. Kurz², Z. Liu⁶, L. Maier¹, F. Nowacki⁷, S. Pietri², Zs. Podolyák⁸, K. Sieja⁷, K. Steiger¹, K. Straub¹, H. Weick², H.-J. Wollersheim², P. J. Woods⁶, N. Al-Dahan⁸, N. Alkhomashi⁸, A. Ataç⁹, A. Blazhev¹⁰, N. F. Braun¹⁰, I. T. Čeliković¹¹, T. Davinson⁶, I. Dillmann², C. Domingo-Pardo¹², P. C. Doornenbal¹³, G. de France¹⁴, G. F. Farrelly⁸, F. Farinon², N. Goel², T. C. Habermann², R. Hoischen², R. Janik¹⁵, M. Karny¹⁶, A. Kaşkaş⁹, I. M. Kojouharov², Th. Kröll¹⁷, Y. Litvinov², S. Myalski⁴, F. Nebel¹, S. Nishimura¹³, C. Nociforo², J. Nyberg¹⁸, A. R. Parikh¹⁹, A. Procházka², P. H. Regan⁸, C. Rigollet²⁰, H. Schaffner², C. Scheidenberger², S. Schwertel¹, P.-A. Söderström¹³, S. J. Steer⁸, A. Stolz²¹ & P. Strmeň¹⁵ Be + ¹²⁴Xe @ 1 GeV/u

 \leq 1 ¹⁰⁰Sn/hour !

• measured $T_{1/2}$, β -decay end-point energy, GT strength, the largest so far measured in allowed nuclear β -decay, establishing the 'superallowed' nature of this pure spin-flip 100Sn (0⁺) $\rightarrow 100$ In (1⁺($\pi g_{9/2}$ ⁻¹, $\nu g_{7/2}$)) transition

C. Nociforo, IDPASC School - H. Grawe, K. Langanke and G. Martínez-Pinedo *Rep. Prog. Phys.* 70 No 9 (September 2007) 1525

FAIR: Facility for Antiproton and Ion Research

 $B\rho = 100 \text{ Tm}$: 29 GeV protons for pbar production; 2.716 GeV/u ²³⁸U²⁸⁺

 $B\rho = 300 \text{ Tm}$: 34 GeV/u ²³⁸U⁹²⁺ for heavy ion collisions

Time structure: pulsed (50-90ns) quasi DC (SIS-300)

NUSTAR facility at FAIR

Primary Beams

- 5.10^{11 238}U²⁸⁺/s @1.5-2 GeV/u
- factor **100-1000** in intensity over present

Secondary Beams

- Broad range of radioactive beams up to 1.5 - 2 GeV/u
- up to factor **10 000** in intensity over present

Available intensities determine the type/detail of studies that can be performed

Layout and design parameter of the Super-FRS

Comparison FRS - Super-FRS

		Bρ _{max}	∆p/p	$\Delta \theta / \theta$, $\Delta \phi / \phi$	Resolving Power
	Super-FRS	20 Tm	±2.5 %	±40, ±20 mr	1500 (40πmm mr)
-	FRS	18 Tm	±1%	±7.5, ±7.5 mr	1500 (20πmm mr)

Comparison FRS – Super-FRS Transmission gain

Fragmentation

2-stage separation e.g. ¹⁰⁰Sn

- Strong reduction of contaminants
- Optimization of fragment rate
- Main separator used for secondary reaction studies

Advantages of high-energy RIBs

- Thick production target very exotic RIBs
- Pure incoming RIBs incident on secondary target
- Fully stripped reaction products after secondary target
- Strong kinematical forward focusing of reaction products
- High luminosity thick reaction target

Increasing intensity of radioactive beams

requires new developments in detecting system & electronics

- Clean full isotope identification on event-by-event basis (PID)
 - \rightarrow momentum tagging $\Delta x \sim 1$ mm
 - \rightarrow ToF measurements \triangle ToF \sim 100ps (FWHM) A > 150

Isotope identification

C. Nociforo, IDPASC School – Siena – 2013 Oct 4-6

Dipole gaps: 170 mm

The energy loss for a charged (z) particle crossing a medium (Z, A) dx is:

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} L(\beta) \qquad (*)$$

where $K/A = 4\pi N_A r_e^2 m_e c^2 = 0.307075 \ MeV g^{-1} cm^2$,

Т

with m_e and r_e the electron mass and classical radius, N_A is the Avogadro´s number.

he parameter
$$L(\beta) = L_0(\beta) + \sum_{i} \Delta L_i$$

where $L_0(\beta) = ln\left(\frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2}\right) - \beta^2 - \frac{\delta(\beta\gamma)}{2}$
with $\gamma = \frac{E_{kin} + m_0 c^2}{m_0 c^2}$ and $\beta = \sqrt{1 - 1/\gamma^2}$
Neglecting $\sum \Delta L_i$ (*) is the Bethe-Bloch equation.

with T_{max} the maximum kinetic energy transferred to a free electron in a single collision, I the mean excitation energy and δ the density correction.

At non-relativistic energies the ionization energy loss has $1/\beta^2$ energy dependence, whereas at relativistic energies the energy loss is slightly growing. It has a minimum at a certain energy; a particle with this energy is called a 'minimum ionizing particle' (MIP). The Bethe-Bloch formula describes quite precisely the energy losses of projectile *z*=1, however it fails applied to heavy ions at both low and high energies. Therefore, further corrections $\sum \Delta L_i$ must be applied.

Lindhard-Sørensen (LS) correction takes into account a finite nuclear size.

At E_{kin} > 500 MeV/u the expression derived for point-like ions is valid:

$$\Delta L_{LS} = \sum_{k=1}^{\infty} \left[\frac{k}{\eta^2} \frac{k-1}{2k-1} \sin^2(\delta_k - \delta_{k-1}) + \frac{k}{\eta^2} \frac{k+1}{2k+1} \sin^2(\delta_{-k} - \delta_{-k} - 1) + \frac{k}{4k^2-1} \frac{1}{\gamma^2 k^2 + \eta^2} - \frac{1}{k} \right] + \frac{\beta^2}{2}$$

where $\eta = \alpha z/\beta$, with α the fine structure constant, δ_k the relativistic Coulomb phase shift and ka parameter used in the summation over the partial waves.

Stopping power in Al degrader

The LS correction gives perfect agreement with the experimental data for bare projectiles. At lower energies the heavy ions are no longer completely stripped. Therefore, z is replaced by the effective charge

where v_0 is the Bohr velocity.