Higgs Searches at the LHC

Cibrán Santamarina Universidade de Santiago de Compostela

THE HIGGS MECHANISM

2

THE HIGGS MECHANISM: GAUGE BOSON AND FERMION MASSES

Requires a massive scalar field \Rightarrow the Higgs Boson Higgs Mass $(v\sqrt{\lambda})$ is a free parameter and must be determined by experiment

More than mass

The scalar field is needed to keep unitarity (at tree level) and renormalizability Either a Higgs or something else is needed.

Other Possible Scenarios (1)

Charged Higgs

Minimal Supersymmetric Standard Model.

Supersymmetry eliminates Gauge Hierarchy Problem, yields GUT-Scale unification of couplings and provides a dark matter candidate. Needs two Higgs doublets

The Minimal Supersymmetric Standard Model does not completely solve the Hierarchy problem the NMSSM is a extension leading to a different Charged Higgs scenario.

Third IDPASC School 25-1-2013

Other Possible Scenarios (2)

INVISIBLE HIGGS SCENARIO

New weakly interacting massive particles could easily saturate Higgs decay width (e.g., LSP Neutralinos with RPC: $H \rightarrow \chi^0 \chi^0$)

e.g., light Higgs: small decay width to fermions

$$\frac{H}{f} = \frac{f}{r_{\rm H}} < 17 \text{ MeV if } M_{\rm H} < 150 \text{ GeV}$$

$$\approx \frac{m_{\rm f}^2}{v^2} ; \qquad v = 175 \text{ GeV}$$

Invisible decays! Producing lots of Higgs and missing them all!

Other Possible Scenarios (3)

- Higgs as a composite resonance (technicolor or compositeness models).

- Extra dimensions.
- Little Higgs (need of at least one new particle to stabilize the Higgs mass)
- NO HIGGS scenarios:
 - The Chiral Lagrangian Model (an old friend of the High Energy Group in Santiago). Leads to High Mass WZ resonances.
 - Higgsless models.

The Large Hadron Collider

- At CERN: 4 main experiments
- **Proton beam:** 3.5-4.0 TeV.
- **Design & construction:** 20 years.
- **Price:** €3600 millions.
- Placement: 27 km tunnel 3.8 m wide100 m depth.
- Luminosity: 7.7x10³³cm⁻²s⁻¹
- Bunch crossing: 50 ns
- Protons per bunch: ~10¹¹
- Beam radius: 16.7 μm

Overall view of the LHC experiments.

CMS Point 5 LHC - B

LHC - B

ALICE Point 2

ALICE

Quiz

- The LHC dipoles are colder than outer space.
- What is the temperature of the outer space?

Proton at LHC

-Protons made of quarks and gluons

- At LHC energies 9 gluons per quark!!
- Proton is a gluon ball

SM LHC Higgs production

SM LHC Higgs historical

- When did the search for Higgs started?
- Not really feasible before W and Z discovery in 1983.
- Real search started at LEP in 1989:
 - Associated production.
 - Alef, first paper in 1989. Exclusion: 32 MeV/c² to 15 GeV/c² at 95% C.L.
 - Combination of 1994.
- 1990s:
 - Need for larger energies: LEP2 (electron), Superconducting Super Collider or LHC (hadrons).
- 1995s: CDF and D0 at Tevatrón: quark top, with large mass of 175 GeV.
 - This mass implied the possibility of seeing the Higgs at Tevatron.
- LEP 2: increased center of mass energy up to 206 GeV:
 - Enough to find a $Z \rightarrow Z^*H$ up to 115 GeV/c².
 - Finished in 2000.
 - Best limit m_H>114.1 GeV.

SM LHC Higgs historical (2)

-Tevatron. Combo of analysis.

-H->WW decays in higher mass searches.

-LEP and EW constraints.

- Direct searches.
 - LEP: M_H>114.1 GeV
 - Tevatron: |M_H-166|>10 GeV
- Indirect constraints from precision EW measurements.
 - M_H= 96⁺³¹₋₂₄ GeV, M_H<169 GeV at 95% CL (standard fit)
 - M_H= 120⁺¹²₋₅ GeV ,M_H<143 GeV at 95% CL (including direct searches)

Detecting the Higgs

SM LHC Higgs decays

-Coupling to leptons:

$$\Gamma(h \to l^+ l^-) = \frac{G_F M_l^2}{4\sqrt{2}\pi} M_h \beta_l^3 \qquad \beta_l \equiv \sqrt{1 - 4M_l^2/M_h^2}$$

-Coupling to quarks:

$$\Gamma(h \to q\bar{q}) = \frac{3G_F}{4\sqrt{2}\pi} M_q^2 M_h \beta_q^3 \left(1 + 5.67 \frac{\alpha_s}{\pi} + \dots\right)$$

-Coupling to vector bosons:

$$\begin{split} \Gamma(h \to W^+ W^-) &= \quad \frac{G_F M_h^3}{8\pi\sqrt{2}} \sqrt{1 - r_W} (1 - r_W + \frac{3}{4} r_W^2) \\ \Gamma(h \to ZZ) &= \quad \frac{G_F M_h^3}{16\pi\sqrt{2}} \sqrt{1 - r_Z} (1 - r_Z + \frac{3}{4} r_Z^2), \quad r_V \equiv 4M_V^2 / M_h^2 \end{split}$$

-Coupling to vector bosons with one off-shell (very important), to gg and to gZ also possible.

SM LHC Higgs decays

-SM Higgs coupling proportional to the lepton mass.

-Also proportional to the vector boson mass (stronger coupling).

-Coupling to gluons and photons through triangle b, t or W loops.

-Light Higgs, the most complex scenario. -Intermediate and heavy mass Higgs, easy due to golden channels like:

$$H \to \gamma \gamma$$
$$H \to ZZ^* \to 4 I \ (4\mu/4e)$$

$$H \to WW^* \to 4| (2\nu - 2\mu/2e)$$

Third IDPASC School 25-1-2013

Cibrán Santamarina 19 Universidade de Santiago de Compostela

ATLAS and CMS

CMS is 30% heavier than the Eiffel Tour

Third IDPASC School 25-1-2013

Proton Runs 2010-12 Not currently active

Highest luminosity = $7.73 \cdot 10^{33}$ cm⁻²s⁻¹

Total Collisions = $1.80 \cdot 10^{15} = 1\,800\,000\,000\,000\,000$

Recorded luminosity = 27.03 fb^{-1}

Quiz

- Assuming they exist.
- How many SM Higgs has the LHC produced in ATLAS and CMS?

Quiz

- Assuming they exist.
- How many SM Higgs has the LHC produced in ATLAS and CMS?

17 pb x 25 fb⁻¹ = 17 x 25000 = 425000

Approximate!! (the x-section is not the same at 7 and 8 TeV)

$H \rightarrow \gamma \gamma$

- Tiny branching fraction (10⁻⁴)
- Simple and rare signature:
 - isolated high p_t photons
 - mass narrow peak
- Di-photon mass resolution: excellent performance of EM calorimeter.
 - In situ calibration from $\pi^0 \rightarrow \gamma\gamma$, $E_{e'}$ p_e , $Z \rightarrow e^-e^+$
- Resolution given by:

 $m_{\gamma\gamma}^2 = 2 E_1 E_2 (1 - \cos \alpha)$ α = opening angle of the two photons

 Pile-up: big enemy of resolution

- ATLAS advantage:
 - Calorimeter fine first sampling allows pointing to primary vertex.
- CMS advantage:

Events / 1 GeV

Events / (0.5 GeV/c²

- Resolution not affected by pile-up.
- Energy Scale optimized with MC. •

0.05

0.04 0.035 0.03

0.025

0.02

0.045 n

ш

EM calorimeters at the LHC

·· ALICE EMCAL

C. Lippmann - 2010

Quiz

- The largest inelastic process in the LHC is di-jet production.
- Jets contain numerous π^0 .
- What is, with 98.8% BR, the main decay mode of this particle?

Quiz

- The largest inelastic process in the LHC is di-jet production.
- Jets contain numerous π^0 .
- What is, with 98.8% BR, the main decay mode of this particle?

$$\pi^0 \rightarrow \gamma \gamma$$

- σ x BR ~ 50 fb (m_H ~ 126 GeV)
- Expected ~170 signal events on 6300 background.
- Background:
 - Continuous
 - Prompt QCD photons
 - Fake jets (typically 1 jet out of some thousand fakes a photon)
- Selection:
 - high p_{T} for γ candidates.
 - Photon ID:
 - categories based on η_{v} and conversion probability.
 - Isolation (corrected for pileup contamination)
 - EM cluster shape: to reject $\pi^0 \rightarrow \gamma \gamma$
 - Electron veto:
 - No associated track.

Third IDPASC School 25-1-2013

35

Average interactions per bunch crossing

$H \rightarrow \gamma\gamma \text{ candidates}$

Third IDPASC School

25-1-2013

$H \rightarrow \gamma \gamma$

- The analysis is sub-divided into mutually exclusive categories with different mass resolutions and signalto-background ratios.
- Depends on the calorimeter region the photons are pointing into.
- The existence of converted photons.
- The photon p_T .
- The possibility of additional jets.
 - Sensitivity to VBF production.
- ATLAS: rectangular cuts.
- CMS: multi-variate methods.

	Event		SM I	Background						
categories		Events	ggH	VBF	VH	ttH	$\sigma_{\rm eff}$ (GeV)	FWHM/2.35 (GeV)	$m_{\gamma\gamma} = 125 { m GeV}$ (events/GeV)	
0	T	BDT 0	3.2	61%	17%	19%	3%	1.21	1.14	3.3 ± 0.4
2	1 fb	BDT 1	16.3	88%	6%	6%	-	1.26	1.08	37.5 ± 1.3
	5	BDT 2	21.5	92%	4%	4%	-	1.59	1.32	74.8 ± 1.9
-	leV,	BDT 3	32.8	92%	4%	4%	-	2.47	2.07	193.6 ± 3.0
–	2	Dijet tag	2.9	27%	72%	1%	-	1.73	1.37	1.7 ± 0.2
	-	BDT 0	6.1	68%	12%	16%	4%	1.38	1.23	7.4 ± 0.6
()	-e	BDT 1	21.0	87%	6%	6%	1%	1.53	1.31	54.7 ± 1.5
~	5.31	BDT 2	30.2	92%	4%	4%	-	1.94	1.55	115.2 ± 2.3
2	>	BDT 3	40.0	92%	4%	4%	-	2.86	2.35	256.5 ± 3.4
0	3Te	Dijet tight	2.6	23%	77%	-	-	2.06	1.57	1.3 ± 0.2
-		Dijet loose	3.0	53%	45%	2%	-	1.95	1.48	3.7 ± 0.4

\sqrt{s}	8 TeV										
Category	N _D	NS	$gg \rightarrow H[\%]$	VBF [%]	WH [%]	ZH [%]	ttH [%]	FWHM [GeV]			
Unconv. central, low p_{Tt}	6797	32	93	4.2	1.4	0.9	0.2	3.45			
Unconv. central, high p_{Tt}	319	4.7	76	15.2	3.9	2.9	1.7	3.22			
Unconv. rest, low p_{Tt}	26802	69	93	4.2	1.7	1.1	0.2	3.75			
Unconv. rest, high p_{Tt}	1538	9.7	76	15.1	4.5	3.3	1.2	3.59			
Conv. central, low p_{Tt}	4480	21	93	4.2	1.4	0.9	0.2	3.86			
Conv. central, high p_{Tt}	199	3.1	77	14.5	4.1	2.8	1.7	3.51			
Conv. rest, low p_{Tt}	24107	60	93	4.1	1.7	1.1	0.2	4.32			
Conv. rest, high p_{Tt}	1324	8.3	75	15.1	4.9	3.4	1.3	4.00			
Conv. transition	10891	28	90	5.6	2.3	1.5	0.3	5.57			
High Mass two-jet	345	7.6	31	68.2	0.3	0.2	0.1	3.65			
Low Mass two-jet	477	4.7	60	5.1	20.7	12.1	1.6	3.45			
One-lepton	151	2.0	3.2	0.4	62.5	15.8	18.0	3.85			
All categories (inclusive)	77430	249	88	7.4	2.8	1.6	0.5	3.87			

Dec 2012

ATLAS

$\begin{array}{c} \textbf{Significance} \\ \textbf{of H} \rightarrow \gamma\gamma \end{array}$

- The p-value is the probability that a background-only scenario produces a fluctuation that reproduces the data.
- The 2011-2012 (up to July) ATLAS and CMS data produce a clear evidence of a decay into two photons: 6.1 σ and 4.1 σ.
- With the look elsewhere effect these significances reduce to 5.6 and 3.2 σ.
- This mode is enough to claim for a discovery (in ATLAS ☺).

Cibrán Santamarina

Universidade de Santiago de Compostela

32

Third IDPASC School 25-1-2013

More on $H \rightarrow \gamma \gamma$

"as we know, **there are known knowns**; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns -- the ones we don't know we don't know"

- The known-knowns:
- ATLAS and CMS both measure an excess of events to SM:
 - Latest ATLAS: 1.80 ± 0.30 (stat)
 +0.21 (syst) +0.20 (theory) x the SM prediction.
- We have a mass measurement (ATLAS):
- 126.6 ± 0.3 (stat) ± 0.7 (syst) GeV
- And we have a spin study:
 - This mode excludes spin-1 states.
 - Minimal graviton-like spin-2 state is discarded by ATLAS.

D. Rumsfeld

$H \rightarrow ZZ^*$

- One off-shell Z.
- Lepton decay of Z required.
- SM predicts tiny rate at ~125 GeV.
- Golden mode at higher mass.
- Mass: fully reconstructed events should cluster in a (narrow) peak:
 - Pure: S/B~1.
- 4 leptons:
 - High p_T .
 - m₁₂ within Z mass range.
 - High m₃₄ mass.
- Backgrounds:
 - ZZ*: irreducible
 - low-mass m_H < 2m_Z:
 - Zbb, Z+jets, tt with 2 leptons from b-jets or q-jets \rightarrow l.
 - Suppressed: isolation and impact parameter cuts on softest leptons.

 $H \rightarrow ZZ \rightarrow e^+e^-e^+e^ H \to ZZ \to \mu^+ \mu^- \mu^+ \mu^ H \rightarrow ZZ \rightarrow \mu^+ \mu^- e^+ e^-$

Third IDPASC School 25-1-2013

μ detectors

- Chambers measuring muon tracks
 with high spatial precision. MDTs
- Triggering chambers with accurate time-resolution. RPCs and CSCs.
- ATLAS: Magnetic field provided by three toroidal magnets.
- CMS: Solenoidal field with yoke return.

I⁺I⁻ reco performance

Crucial experimental aspects:

- High lepton reconstruction and identification efficiency down to lowest p_T
- Good lepton energy/ momentum resolution
- Good control of reducible backgrounds (Zbb, Z+jets, tt) in low-mass region.
- Recovery of radiated photons.

Cibrán Santamarina 38 Universidade de Santiago de Compostela

$H \rightarrow ZZ^*$ candidates

39

$H \rightarrow ZZ^*$ results

ATLAS

•4.6 fb⁻¹ \sqrt{s} =7 TeV and 13.0 fb⁻¹ \sqrt{s} =8 TeV. •Maximum combined signal with p0 value of 0.0021% (4.1 σ) at m_H =123.5 GeV. •Fitted m_H=123.5±0.9(stat)±0.3(syst) GeV. •9.9 ± 1.3 observed events.

CMS

•5.1 fb⁻¹ \sqrt{s} =7 TeV and 12.2 fb⁻¹ \sqrt{s} = 8 TeV. •Significance 4.5 σ at 126.2 GeV. •Fitted m_H=126.2±0.6(stat)±0.2(syst) GeV

		Signal (<i>m_H</i> =	=125 GeV)	$ZZ^{(*)}$	Z + jets, $t\bar{t}$	Observed	
2	$\sqrt{s} = 8$ TeV and $\sqrt{s} = 7$ TeV						
AS 20	4μ	4.0 =	± 0.5	2.03 ± 0.09	0.36 ± 0.09	8	
	$2\mu 2e$	1.7 =	± 0.2	0.70 ± 0.05	1.21 ± 0.18	2	
E S	2e2µ	2.4 ±	± 0.3	1.02 ± 0.05	0.30 ± 0.07	4	
	4e	1.8 ±	± 0.3	0.94 ± 0.09	1.72 ± 0.23	4	
	total	9.9 =	± 1.3	4.7 ± 0.3	3.6 ± 0.3	18	
		~	~		~		
	Chan	nel	4e	4μ	2e2µ	4ℓ	
MS Nov 12	ZZ background		4.7 ± 0.6	9.6 ±1.0	12.5 ± 1.4	26.8 ± 1.8	
	Z+X		$3.4^{+3.0}_{-2.3}$	$1.6^{+1.2}_{-0.9}$	$5.6^{+5.4}_{-3.6}$	$10.6^{+5.3}_{-4.4}$	
	All backgrounds		$8.0^{+3.1}_{-2.3}$	$11.2^{+1.6}_{-1.4}$	$18.1\substack{+5.6\-3.8}$	$37.3^{+6.6}_{-4.7}$	
	$m_{H} = 125 \text{GeV}$		2.4 ± 0.4	4.6 ± 0.5	5.9 ±0.7	12.9 ±0.9	

 $2.7\ \pm 0.4$

12

 5.1 ± 0.6

16

Third IDPASC School 25-1-2013

 $m_H = 126 \, \text{GeV}$

Observed

20 CM

 14.4 ± 1.1

47

 6.6 ± 0.8

19

Quiz

Quiz

$$m_z = 91.1876 \text{ GeV}$$

2 x $m_z = 182.3752 \text{ GeV}$ $\Gamma_z = 2.4952 \text{ GeV}$

More $H \rightarrow ZZ^*$ results

- CMS has searched for $Z \rightarrow \tau \tau$ modes.
 - No candidates found.

Channel	$2\ell 2\tau$	
ZZ background	19.0 ± 2.3	
Z+ X	$20.4\pm\!\!6.2$	
All background expected	$39.4 \pm \! 6.6$	
$m_H = 125 \text{ GeV}$	_	
$m_H = 126 \text{ GeV}$	-	
$m_H = 200 \text{ GeV}$	5.6 ± 0.6	
$m_H = 350 \text{ GeV}$	5.7 ± 0.6	
$m_H = 500 \text{ GeV}$	2.8 ± 0.3	
$m_H = 800 \text{ GeV}$	0.3 ± 0.1	
Observed	45	

$H \rightarrow ZZ^*$ spin-parity

- Measured in lepton angular distributions:
 - $\theta_1(\theta_2)$: angle between negative lepton and $Z_1(Z_2)$ flight direction (Z rest frame).
 - Φ: angle between decay planes of 4 leptons in rest frame.
 - Φ_1 : angle between decay plane of leading lepton pair and plane defined by Z_1 vector in 4lepton rest frame and positive direction of parton axis.
 - θ^{*}: production angle of the Z₁ defined in the four lepton rest frame.
- Mutli Variate anlysis.
- ATLAS:
 - (0⁺) SM spin and parity remain the favored hypothesis.
 - 0^{-} , 2_{m}^{+} and 2^{-} hypotheses excluded at (BDT): 98.9%, 84% and 97.1%.
- CMS:
 - SM hypothesis 0+ consistent with the observation.
 - Assuming observed boson has spin zero:
 - Data disfavor pseudoscalar hypothesis 0⁻ with a CLs value of 2.4%.
 - Fraction of a CP-violating contribution: $f_{a3} = 0.00+0.31$. Consistent with SM expectation.

Third IDPASC School 25-1-2013

Cibrán Santamarina 44 Universidade de Santiago de Compostela

Other Modes

$H \rightarrow W^*W \rightarrow 2I2v$

- In principle: most sensitive channel over ~ 125-180 GeV (σ ~ 200 fb).
- Challenging: 2v:
 - No mass peak \rightarrow "counting channel".
 - Importance of systematic effects.
- 2 isolated opposite-sign leptons, large E_T^{miss}.
- Analysis on jet multiplicities (0, 1, 2-jet bins).
- Backgr: WW, top, Z+jets, W+jets.
 - $m_{\parallel} \neq m_Z$, b-jet veto, ...
 - Topological cuts against "irreducible" WW background:
 - $p_{T||}, m_{||}, \Delta \phi_{||}$ (smaller for scalar Higgs), m_T (II, E_T^{miss})

 $H \to WW \to e^{\mp} \nu_e \mu^{\pm} \nu_\mu$ $H \to WW \to e^- \bar{\nu}_e e^+ \nu_e$ $H \to WW \to \mu^- \bar{\nu}_\mu \mu^+ \nu_\mu$

Why is t-tbar an important background to $H \rightarrow W^*W$?

Why is t-tbar an important background to $H \rightarrow W^*W$?

Missing Transverse Energy

- Two proton beams collide.
- Transverse component of energy=0.
- Conserved after collision.
- The balance needs taking into account jets from the proton fragmentation (underlying event)

Missing **Transverse** Energy

- The fluctuation produced by the UE superimposes to pile-up.
- Example: I know the total height of the people in the audience.
- One person leaves and I can measure each person's height with gaussian shaped 5 cm sigma distribution.
- If there were 2 people in the ٠ audience: 5 cm error.
- If there were 30: 27.4 cm error.
- There are ways to improve that (remove pile-up) but there is always an effect.
- Resolution in jet reconstruction: key point.
- For that a good hadronic calorimeter is needed.

Events / 2.0 GeV

8

6

4

2

Cibrán Santamarina 50 Universidade de Santiago de Compostela

Hadronic Calorimeter

- Detects hadrons.
- ATLAS barrel & CMS: Metal energyabsorbing material interleaved with scintillating tiles that sample energy deposit.
- ATLAS end-cup: Liquid Argon.

Third IDPASC School 25-1-2013

Cibrán Santamarina 52 Universidade de Santiago de Compostela

More $H \rightarrow WW^*$ results

- ATLAS at m_H=125 GeV:
 - p0=4×10⁻³→2.6 σ
 - $\sigma(pp \rightarrow H) \cdot B(H \rightarrow WW) =$
 - $7.0^{+1.7}_{-1.6}$ (stat) $^{+1.7}_{-1.6}$ (syst theor) $^{+1.3}_{-1.3}$ (syst exp) ± 0.3 (lumi) pb
- CMS
 - Significance of 3.1 σ (4.1 expected at SM).
 - No other significant deviations observed:
 - upper limits on Higgs production relative to SM derived.
 - SM Higgs boson excluded in the mass range 128–600 GeV at 95% CL.

m_H [GeV]

Third IDPASC School 25-1-2013

Cibrán Santamarina 53 Universidade de Santiago de Compostela

$H \rightarrow bb$

Jet

CMS

CMS Experiment at LHC, CERN Data recorded: Mon Jun 27 02:59:42 2011 CEST

Run/Event: 167807 / 149404739 Lumi section: 134 Drbit/Crossing: 35103256 / 2259

Jet

First B Jet Candida

T = 153.78 GeV/

ned Secondary Vertex Tagger : 0.9

Muon 0 pT = 161.78 GeV/

- Largest BR for m_H<130 GeV
- Tests specific production & decay couplings to fermions.
- Caveat: $\sigma_{bb}(QCD) \sim 10^7 \sigma x BR(H \rightarrow bb)$
- Searched in associated production.
 - Need a high p_T lepton to trigger and suppress background.
 - 5 categories (depending on W/Z final state)
 - Zvv, Zμμ, Zee, Wμv, Wev
- Jet Energy Scale and b-tagging cornerstones.
- Multi variate analysis.

3)

 $M_{b\bar{b}} = 128 \, \text{GeV}$

Combined Secondary Vertex Tagger : 0.99

ZH->μμbb candidate

 $p_{T}(\tilde{b}\bar{b}) = 181 \,\text{GeV}$

Second B Jet Cand

Jets

- Quarks-gluons: hadronize producing a Jet.
- **Jet** = collimated spray of high energy hadrons.
- Jet reconstruction aims at reproducing the parton 4momentum.
 - THEORY: "define" the jet.
 - EXPERIMENT: measure the jet.
- Experimental jets are reconstructed from calorimeter objects (clusters).
- Features in a jet finding algorithm:
 - Infrared safety: insensitive to soft radiation.
 - Collinear safety: insensitive to collinear radiation.

Anti-k_T Jets

- List of calorimeter *clusters*, (4vectors) defined by: E, p, n.
- Calculate:
 - For each cluster i: $d_i = p_{T,i}^{2lpha}$
 - For each pair (*i,j*) $d_{ij} = \min(p_{T,i}^{2\alpha}, p_{T,j}^{2\alpha}) \frac{\Delta \eta^2 + \Delta \phi^2}{D^2}$ of clusters: (*D* is a parameter)

15 10

- Find minimum of d_i and d_{ii} : d_{min}
- p [GeV] If d_{min} is a d_{ii} , merge clusters *i* and *j. Add result to the cluster* list.
- If *d_{min}* is a *d_i: i* not "mergeable": *i* is a jet.
- Repeat until: list of clusters empty=all jets found.

If $\alpha = 1 \ k_T$ if $\alpha = 0$ Cambridge-Aachen, if α =-1 anti-k_T.

JES and b-tagging

- Not all energy in jets is reconstructed: neutrals, leakage.
- The calculated energy is multiplied by a factor: jet energy scale (JES).
- JES depends on:
 - η and E of the jet.
 - parton nature (g-u,d,s-c-b)
 - ...
- Working out you JES is crucial for your analysis:
 - Material/detector studies.
 - Particle flow.
 - Data driven calculations.
- Particles with b-quarks flight ~1cm distance.
- Detecting a displaced vertex in a jet: b-tagging.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

b jet efficiency

10⁻⁴

Jet

$H \rightarrow bb$ results

ATLAS:

- Dataset: 4.7 fb⁻¹ at $\sqrt{s} = 7$ TeV and 13.0 fb⁻¹ at $\sqrt{s} = 8$ TeV
- 16 different categories depending on:
 - number of leptons.
 - number of jets
 - p_{τ} of the vector boson candidate.
- No significant excess observed.
- For $m_H = 125$ GeV: observed (expected) upper limit on production x-section x BR is 1.8 (1.9) times SM prediction for the combined datasets.

CMS:

- Dataset: 5.0 fb⁻¹ at \sqrt{s} = 7 TeV and 12.1 fb⁻¹ at \sqrt{s} = 8 TeV.
- BDT selection.

25-1-2013

- Upper limits at 95% CL vary from 1.0 to 4.2 times the SM x-section in the mass range 110-135 GeV. I
- At m_H =125 GeV the observed (expected) limit is 2.5 (1.2).
- Excess of events observed above the expected background with local significance of 2.2 σ , consistent with expectation for SM Higgs.

$H \rightarrow \tau \tau$

- High σxBR at low mass
- Sensitive to all production modes
- Probes coupling to leptons
- Enhanced σ x BR in MSSM
- Challenging large backgrounds:
 - DY→tt
 - W+Jets
 - QCD
- Relies on missing transverse energy.
- Assumes collinear approximation: daughters aligned with original τ

2008 simulation

τ reconstruction

- *t*'s decay to hadrons and a neutrino 65% of the time.
- Rest 45% leptonic.
- Isolation of the T daughters (lepton or T-jet) required.
- Hadronic T: •

 π^0

- Number of tracks: 1 (49.5%), 3 (15.2%) and very seldom 5 (0.1%) charged particles _
- Lifetime: The T lifetime (cT=87µm) and low mass (m,=1.78 Gev) _ produce sizeable decay length. The decay path allows for the reconstruction of the decay vertex

400

200

op_p

20

Invariant mass.

π

Multivariate discriminator.

 π^+

Efficiency w.r.t. Medium BDT 0.8 ATLAS Preliminary 0.6 Data 2012, L dt = 2.8 fb⁻¹ tau20 medium1 0.4 - L1 0.2 - L1+L2 L1+L2+EF 양 10 20 30 40 50 60 70 80 90 100 Offline τ p, [GeV] Events/556eV 1000 800 After medium BDT ID ATLAS Preliminary _ dt L = 1.8 fb^{-1} s = 7 TeV Data Early 2011 $Z \rightarrow \tau \tau$ $W \rightarrow \mu \nu$ Multijet 600F $Z \rightarrow \mu \mu$ $W \rightarrow \tau v$

→ττ (fake)

m_{vis}(τ,μ) [GeV]

EXPERIMENT

ē, μ̄, d

60

40

$H \rightarrow \tau \tau$ results

CMS:

- 17 fb-1 7 and 8 TeV data.
- 5 final states considered:
 - μ Th+X, eTh+X, e μ +X, ThTh+X, and μµ+Χ.

95%

- Final result combined with W/Z associated production Higgs search. W/Z leptonic decay.
- Upper limits on the production SM x-section determined (110 GeV<m_H<145 GeV).
- At m_H =125 GeV exclusion limits of 1.63 öbserved (1.00 expected) at 95% CL.

ATLAS:

- $H \rightarrow \tau I \tau I$, $H \rightarrow \tau I \tau h a d a n d H \rightarrow$ thadthad
- 4.6 fb-1 @ 7 TeV and 13.0 fb-1 @ 8 TeV
- m_H=125 GeV observed (expected upper limit at 95% CL: 1.9 (1.2) $X\sigma_{SM}$.
- For this mass: observed (expected) deviation from background-only local: 1.1 (1.7) σ.

All Together

ATLAS Summary

- A combination of all channels to make a best determination of the mass.
- The signal strength is also used to determine the Standard-Model likeness of the signal. $\mu = 0$ corresponds to the background-only hypothesis and $\mu = 1$ corresponds to the SM Higgs boson signal.
- Two main decay modes give tension (2.7 sigma) in the mass result.

$$m_H = 125.2 \pm 0.7 \text{ GeV} = 125.2 \pm 0.3 \text{ (stat)} \pm 0.6 \text{ (sys)} \text{ GeV}$$

$$\Delta \hat{m}_H = \hat{m}_H^{\gamma\gamma} - \hat{m}_H^{4\ell} = 3.0^{+1.1}_{-1.0} \text{ GeV} = 3.0 \pm 0.8 \text{ (stat)}^{+0.7}_{-0.6} \text{ (sys) GeV}$$

Third IDPASC School 25-1-2013

Signal strength (μ)

CMS Summary

- Significance of boson is 6.9σ .
- $m_{H} = 125.8 \pm 0.4$ (stat) ± 0.4 (syst) GeV.
- The event yields of different decay modes and production mechanisms: consistent with the SM Higgs boson.
- Consistency of the couplings of the boson the with SM Higgs tested without significant deviations.
- Assuming J=0 the data disfavour the pseudo-scalar hypothesis 0⁻ with a CLs value of 2.4%.

CMS Summary

 Beautiful plots on production and decay couplings.

The End

Is this boson a SM lonesome cowboy?

 $\textbf{Higgs} \rightarrow \textbf{ZZ} \rightarrow \textbf{2e+2}\mu$

 $\textbf{Higgs} \rightarrow \textbf{ZZ} \rightarrow \textbf{2e+2}\mu$

Channels for Light Higgs

- Experimental data show a preference for a light Higgs $M_H \sim 116 \text{ GeV/c}^2$.
- -There the situation is quite messy.
- -The largest cross section channel: $H \rightarrow bb$
- -Overwhelmed by the huge multi-jet cross section.

The Standard Model in CMS

ATLAS Trigger

ATLAS TRIGGER: 3 LEVELS

- L1 custom built electronics
- L1 decision and positions of particle/jet candidates transmitted to the HLT.
- L2 and EF constitute the HLT.
- HLT software analysis of event fragments by dedicated algorithms in PC farms.

TOROID

The outer toroidal magnetic field is produced by eight very large air-core superconducting barrel loops and two end-caps. 26 m long and 20 m in diameter, and it stores 1.6 gigajoules of energy. Its magnetic field is not uniform.

