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Non-perturbative structure of string theory

String theories have solitons extended objects

 Dp-branes
Extended in p + 1 directions (p spatial + time)

-Defined as hypersurfaces where strings end

-Obtained by quantizing the string with fixed ends 
along hyperplanes (Dirichlet boundary conditions).

3.3 Multiple Branes: A World of Glue

Consider two parallel Dp-branes. An open string now has

Figure 18:

options. It could either end on the same brane, or stretch be-
tween the two branes. Let’s consider the string that stretches

between the two. It obeys

XI(0, τ) = cI and XI(π, τ) = dI

where cI and dI are the positions of the two branes. In terms of
the mode expansion, this requires

XI = cI +
(dI − cI)σ

π
+ oscillator modes

The classical constraints then read

∂+X · ∂+X = α′ 2p2 +
|&d − &c|2

4π2
+ oscillator modes = 0

which means the classical mass-shell condition is

M2 =
|&d − &c|2

(2πα′)2
+ oscillator modes

The extra term has an obvious interpretation: it is the mass of a classical string
stretched between the two branes. The quantization of this string proceeds as be-

fore. After we include the normal ordering constant, the ground state of this string is
only tachyonic if |&d − &c|2 < 4π2α′. Or in other words, the ground state is tachyonic if

the branes approach to a sub-stringy distance.

There is an obvious generalization of this to the case of N parallel branes. Each end

point of the string has N possible places on which to end. We can label each end point
with a number m, n = 1, . . . , N which tell us which brane it ends on. This label is
sometimes referred to as a Chan-Paton factor.

Consider now the situation where all branes lie at the same position in spacetime.
Each end point can lie on one of N different branes, giving N2 possibilities in total.

Each of these strings has the mass spectrum of an open string, meaning that there are
now N2 different particles of each type. It’s natural to arrange the associated fields to

sit inside N × N Hermitian matrices. We then have the open string tachyon Tm
n and

the massless fields

(φI)m
n , (Aa)

m
n (3.7)

Here the components of the matrix tell us which string the field came from. Diagonal
components arise from strings which have both ends on the same brane.
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Charged under the antisymmetric tensor fields

Aµ1···µp+1
→

∫
Mp+1

Aµ1···µp+1
dx

µ1
· · · dx

µp+1

Mp+1 → worldvolume of the Dp-brane



SDp = −TDp

∫
d

p+1
x [· · · ]

TDp → tension of the Dp-brane TDp =
1

(2π)p gs l
p+1
s

The D-branes are dynamical objects

Action

TDp ∼ g−1
s → non-perturbative objects

Excitations of a D-brane

-Deformation of shape and rigid motion

Parametrized by 9 − p coordinates → φi (i = 1, · · · , 9 − p)

They are scalar fields on the worldvolume



SDBI = −TDp

∫

dp+1x
√

−det(gµν + 2πl2sFµν)

gµν = ηµν + (2πl2s)
2 ∂µφi ∂νφi

Expanding in powers of Fµν and φ

g2

Y M = 2(2π)p−2 lp−3

s gs

SDBI = −

1

g2

Y M

(

1

4
FµνFµν

+
1

2
∂µφi ∂νφi

+ · · ·

)

Aµ

-Internal excitations 

Dirac-Born-Infeld action

The endpoint of the string is a charge that 
sources a gauge field on the worldvolume

gauge+scalars+(fermions)

YM coupling

In flat space



Figure 4.5: Stack of D-branes.

on the D-brane. Recall that in the case of closed strings we started with a fixed spacetime
and discovered, after quantization, that the close string spectrum corresponds to dynamical
fluctuations of the spacetime. An analogous situation holds for open strings on a D-brane.
Suppose we start with a Dp-brane extending in the xµ = (x0, x1, . . . , xp) directions, with
transverse directions labelled as yi = (xp+1, . . . , x9). Then, after quantization, one obtains
an open string spectrum which can be identified with fluctuations of the D-brane.

More explicitly, the open string spectrum consists of a finite number of massless modes and
an infinite tower of massive modes with masses of order ms = 1/!s. For a single Dp-brane,
the massless spectrum consists of an Abelian gauge field Aµ(x), µ = 0, 1, . . . , p, 9− p scalar
fields φi(x), i = 1, . . . , 9 − p, and their superpartners. Since these fields are supported on
the D-brane, they depend only on the xµ coordinates along the worldvolume, but not on
the transverse coordinates. The 9 − p scalar excitations φi describe fluctuations of the D-
brane in the transverse directions yi, including deformations of the brane’s shape and linear
motions. They are the exact parallel of familiar collective coordinates for a domain wall or
a cosmic string in a quantum field theory, and can be understood as the Goldstone bosons
associated to the subset of translational symmetries spontaneously broken by the brane. The
presence of a U(1) gauge field Aµ(x) as part of collective excitations lies at the origin of many
fascinating properties of D-branes, which (as we will discuss below) ultimately lead to the
gauge/string duality. Although this gauge field is less familiar in the context of quantum field
theory solitons (see e.g. [284–286]), it can nevertheless be understood as a Goldstone mode
associated to large gauge transformations spontaneously broken by the brane [287–289].

Another striking new feature of D-branes, which has no parallel in field theory, is the
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Multiple branes realize non-abelian gauge symmetry

N paralell coincident branes realize U(N) YM

Aµ, φi
→ adjoints of U(N)

The U(1) can be decoupled

stack of N Dp-branes SU(N) gauge theory in p + 1 dimensions!

The  non-abelian nature comes from strings 
stretched  between different branes

D-brane 1 D-brane 2

Figure 4.6: Strings stretching between two D-branes.

appearance of a non-Abelian gauge theory when multiple D-branes become close to one
another [290]. In addition to the degrees of freedom pertaining to each D-brane, now there are
new sectors corresponding to open strings stretched between different branes. For example,
consider two parallel branes separated from each other by a distance r, as shown in Fig. 4.6.
Now there are four types of open strings, depending on which brane their endpoints lie on.
The strings with both endpoints on the same brane give rise, as before, to two massless gauge
vectors, which can be denoted by (Aµ)11 and (Aµ)22, where the upper (lower) numeric index
labels the brane on which the string starts (ends). Open strings stretching between different
branes give rise to two additional vector fields (Aµ)12 and (Aµ)21, which have a mass given
by the tension of the string times the distance between the branes, i.e. m = r/2πα′. These
become massless when the branes lie on top of each other, r = 0. In this case there are four
massless vector fields altogether, (Aµ)ab with a, b = 1, 2, which precisely correspond to the
gauge fields of a non-Abelian U(2) gauge group. Similarly, one finds that the 9− p massless
scalar fields also become 2× 2 matrices (φi)ab, which transform in the adjoint representation
of the U(2) gauge group. In the general case of Nc parallel coinciding branes one finds a U(Nc)
multiplet of non-Abelian gauge fields with 9 − p scalar fields in the adjoint representation
of U(Nc). The low-energy dynamics of these modes can be determined by integrating out
the massive open string modes, and it turns out to be governed by a non-Abelian gauge
theory [290]. To be more specific, let us consider Nc D3-branes in type IIB theory. The
massless spectrum consists of a gauge field Aµ, six scalar fields φi, i = 1, . . . , 6 and four Weyl
fermions, all of which are in the adjoint representation of U(Nc) and can be written as Nc×Nc

matrices. At the two-derivative level the low-energy effective action for these modes turns out
to be precisely [290] the N = 4 super-Yang-Mills theory with gauge group U(Nc) in (3+1)
dimensions [291, 292] (for reviews see e.g. [263, 293]), the bosonic part of whose Lagrangian
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 N  D3-branes

-3 + 1 dimensional worldvolume

-plus fermionic partners

-10 − 4 = 6 scalars

-SU(N) gauge field } N = 4, SU(N) SYM in 4d

Exact CFT

YM coupling → g
2

Y M
= 4πgs

The D-branes provide a completely new perspective on gauge theories

brane engineeringGeometric insight on gauge dynamics

One can move the branes, 
put then in different spaces, ..

dualities, less SUSY, 
different field content &vacua,..



S =
1

16πG

∫
d10x

√

−g R + · · ·

graviton

-The dependence on gs → compare amplitudes in string theory and gravity

-The dependence of G on ls follows from dimensional analysis

String theory is a gravity theory any matter distorts the spacetime

The distorsion is governed by the action

16πG = (2π)7 g2
s
l8
s

10d Newton constant

∼ g
2

s

∼ G

string theory gravity



ds2
≈ (1+2ϕ)

(

−dt2+dx2
1 + · · · dx2

p

)

+
(

1−
2(p + 1)

D − p − 3
ϕ

) (

dx2
p+1 + · · · dx2

D−1

)

ϕ ∼

GM

rD−p−3
dT = D − 1 − p

D-branes are solutions of Einstein equations

Linearized metric for a point-like object in D spacetime dimensions

ds2
≈ −(1 + 2ϕ) dt2 +

(

1 −

2

D − 3
ϕ

) (

dx2

1 + · · · dx2

D−1

)

ϕ ∼

GM

rD−3

D − 3 = dT − 2

M → mass

Newtonian potential

Linearized metric for an object extended along p spatial dimensions



H = 1 +
L4

r4

ds
2 = H

−

1

2

(

− dt
2 + dx

2

1 + dx
2

2 + dx
2

3

)

+ H
1

2 (dr
2 + r

2
dΩ2

5

)

dΩ2
5 → line element of S5

H(r) → warp factor

dr2 + r2dΩ2
5 → flat metric of R6

L4
= 4πgsNl4

s

ϕ = −

1

4

L4

r4

G ∼ g2
s
l8
s

L
4
∼ GM

M ∼ N TD3 ∼

N

gsl4s

GM ∼ g2
s
l8
s

N

gsl4s
∼ Ngsl

4
s

Gravity solution for a stack of N D3-branes in 10d

The value of L can be found at linearized level



Figure 4.8: Excitations of the system in the closed string description.

six spatial dimensions.5 Note that in the last step in eqn. (4.24) we have used the fact that
G ∝ g2s!

8
s and M ∝ NcTD3 ∝ Nc/gs!4s — see (4.15) and (4.19).

The parameter R can thus be considered as the length scale characteristic of the range
of the gravitational effects of Nc D3-branes. These effects are weak for r " R, but become
strong for r # R. In the latter limit, we may neglect the ‘1’ in eqn. (4.23), in which case the
metric (4.21) reduces to

ds2 = ds2AdS5
+R2dΩ2

5 , (4.25)

where

ds2AdS5
=

r2

R2

(
−dt2 + dx21 + dx22 + dx23

)
+

R2

r2
dr2 (4.26)

is the metric (4.10) of five-dimensional anti-de Sitter spacetime written in terms of r = R2/z.
We thus see that in the strong gravity region the ten-dimensional metric factorizes into
AdS5 × S5.

We conclude that the geometry sourced by the D3-branes takes the form displayed in
Fig. 4.8: far away from the branes the spacetime is flat, ten-dimensional Minkowski space,
whereas close to the branes a ‘throat’ geometry of the form AdS5 × S5 develops. The size
of the throat is set by the length-scale R, given by (4.23). As we will see, the spacetime
geometry (4.21) can be considered as providing an alternative description of the D3-branes.

5Recall that a massive object of mass M in D spatial dimensions generates a gravitational potential
GM/rD−2 at a distance r from its position.
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L

H ≈

L4

r4

D3-brane geometry → asymptotically 10d Minkowski with a infinite throat

near-horizon metric in the throat low-energy limit

r =

L

z
change variables as

ds
2 =

r2

L2
(−dt

2 + dx
2

1 + dx
2

2 + dx
2

3) +
L2

r2
dr

2 + L
2
dΩ2

5

near-horizon geometry → AdS5 × S5 with radius L

ds
2 =

L2

z2
(−dt

2 + dx
2

1 + dx
2

2 + dx
2

3 + dz
2) + L

2
dΩ2

5



(

L

ls

)4

= N g2

Y M

N = 4 SU(N) SYM theory equivalent to string theory in AdS5 × S5

Maldacena conjecture

Relation of parameters

λ = N g2

Y M
‘t Hooft coupling l2

s

L2
=

1
√

λ

G = l8P =
π4

2
g4

Y M l8s

(

lp

L

)8

=
π4

2N2

The dual  theory is classical gravity if:
lp

L
<< 1 → no quantum gravity corrections

ls
L

<< 1 → no stringy corrections

Equivalent to N >> 1 and λ >> 1 planar strongly coupled SYM



Checks of the correspondence Symmetries on both sides

Conformal symmetry

N = 4 SYM is a CFT with an exact vanishing β-function

AdS5 has the 4d conformal group SO(2, 4) as isometry group

(t, !x) → λ(t, !x) z → λzdilatations

Supersymmetry

N = 4 SYM is maximally supersymmetric

32 fermionic supercharges → QA
α , Q̄A

α̇ , A = 1 · · · , 4

QA
→ rotated with SU(4) → R-symmetry group QA

α → 4 Q̄A
α̇ → 4̄

It has six scalars φ1, · · ·φ6 → fundamental rep. 6 of SO(6) ≈ SU(4)



AdS5 × S5 is maximally supersymmetric

32 Killing spinors → supercharges of N = 4 SYM

rotational symmetry of S5 → SO(6) → R-symmetry of N = 4 SYM

directions along S5
→ scalar fields on SYM

Relations of scales
d → proper distance on the bulk dY M → distance on the Minkowski coordinates

d =

L

z
dY M

E =

z

L
EY Mrelation of energies

UV in field theory (EY M → ∞) → near-boundary region z → 0

Field theory IR ( EY M → 0) → near-horizon region z → ∞



z = 0

z = z0

UV

IR

z = 0

UV

IR

CFT → excitations at arbitrary low energies

geometry with bottomless throat

non-conformal theory → minimal scale geometry ends smoothly at some z0

Confining theories with a mass gap m

z0 ∼
1

m

Finite temperature theories with temperature T

z0 ∼
1

T



φ(z, xµ) =

∫
ddk

(2π)d
eik·x fk(z)

zd+1 ∂z

(

z1−d ∂zfk

)

− k2 z2 fk − m2 L2 fk = 0

Scalar field in AdSd+1

ds
2 =

L2

z2
[dz

2 + δµν dx
µ

dx
ν ]Euclidean metric

S = −

1

2

∫

dd+1x
√

g
[

gMN ∂Mφ ∂Nφ + m2 φ2
]

action

1
√

g
∂M

(

√

g gMN∂N φ
)

− m2 φ = 0eom

zd+1 ∂z

(

z1−d ∂zφ
)

+ z2 δµν ∂µ∂ν φ − m2 L2 φ = 0

Momentum space



fk ∼ zβ β(β − d) − m2 L2 = 0

β =
d

2
±

√

d2

4
+ m2 L2

fk(z) ≈ A(k) zd−∆ + B(k) z∆
∆ =

d

2
+ ν ν =

√

d2

4
+ m2 L2

near the boundary z = 0

Two solutions for β

Then

In position space

φ(z, x) ≈ A(x) zd−∆ + B(x) z∆

Breitenlohner-Freedman (BF) bound∆ is real if m
2 ≥ −

(

d

2L

)2



The term z
d−∆ dominantes as z → 0

φ(z = ε, x) ≈ εd−∆ A(x)

ϕ(x) = lim
z→0

z∆−d φ(z, x)

divergent if m
2

> 0

Define the QFT source as finite

Boundary action Sbdy ∼
∫

ddx
√

γε φ(ε, x)O(ε, x)

γε =

(

L

ε

)2d

Sbdy ∼ Ld

∫
ddx ϕ(x) ε−∆

O(ε, x)

O(ε, x) = ε
∆
O(x)

z = 0 → z = ε is a scale transformation in the QFT

Sbdy finite if

∆ =
d

2
+

√

(

d

2

)2

+ m2 L2

∆ → mass scaling dimension

of the dual operator O



Inner product for solutions of the KG equation

(φ1, φ2) = −i

∫
Σt

dz ddx
√

−g gtt (φ∗

1 ∂t φ2 − φ2 ∂t φ∗

1) Σt → constant-t slice

Leading modes A(x)zd−∆ Non-normalizable if m2L2 ≥ −d
2

4
+ 1

Subleading modes B(x)z∆ Normalizable

Elements of the Hilbert space of the boundary theory

Sources of the boundary theory



Reduction on the S5

φ(x,Ω) =
∑

l

φl(x) Yl(Ω)

x → coordinates of AdS5

Ω → coordinates of S5

Yl(Ω) → spherical harmonics on S5

S =
1

16πG5

∫

d
5
x

[

Lgrav + Lmatter

]

Lgrav =
√
−g

[

R +
12

L2

]

1

16πG

∫
d5x d5

Ω
√
−g10 R10 →

L5Ω5

16πG

∫
d5x

√
−g5 R5

cSY M =
1

4

L3

G5

=
N2

2π

φ → field in AdS5 × S5

Reduced action

Relation of Newton constants

SYM central charge

G5 =
G

L5Ω5

=
G

π3L5
=

π

2N2
L

3



∇
2φ = 0 ∇

2
= ∇

2

AdS5
+ ∇

2

S5

∇
2
S5 Yl(Ω) = −

C
(5)
l

L2
Yl(Ω)

l = 0, 1, 2, · · ·

∆ = 2 +
√

4 + (mL)2

φ → massless scalar field in AdS5 × S5

eom

Eigenvalues of the laplacian on S5

C
(5)
l

= l(l + 4)

Eom of the reduced AdS5 fields φl

m
2

l =
l(l + 4)

L2
∇

2

AdS5
φl = m2

l φl

mass spectra 
after the reduction

scaling dimensions ∆ = 2 +
√

4 + l(l + 4)

∆ = l + 4



Field/operator dictionary

Scalar operator with dimension 4

Singlet under SO(6)

massless case l = 0 ∆ = 4

O = Tr
[

Fµν F
µν

]

glueball operator

massive case l != 0 ∆ = 4 + l

Transform as a symmetric tensor of SO(6) with l indices

dim[φ]=1

φ(i1,··· ,il) → traceless symmetric product of l scalar fields

Oi1,··· ,il
= Tr

[

φ(i1,··· ,il)Fµν Fµν
] glueball dressed 

with scalars

dim[∂]=dim[A]=1

The matching can be extended to all modes of 10d SUGRA on AdS5 × S5



Other fields

∆ =
d

2
+

√

(d − 2p

2

)2

+ m2L2

(∆ − p)(∆ + p − d) = m2L2∆ → largest root of →

Antisymmetric fields with p indices → Aµ1···µp

∆ =
d

2
+ |m|

spin 1

2
field


