

Introduction to AdS/CFT

Alfonso V. Ramallo Univ. Santiago Third IDPASC School Lecture 1 January 21-February 2, 2012

Main result: a duality relating QFT and gravity

CFT: conformal field theory

AdS: anti-de Sitter space

AdS/CFT is also known as:

Holographic duality

Gauge/gravity correspondence

In the spirit of condensed matter physics :

At strong coupling new weakly-coupled degrees of freedom emerge dynamically

New feature:

The emergent fields live in a space with one extra dimension \longrightarrow holography

The extra dimension is related to the energy scale

The duality was obtained in the context of string theory

It has applications in:

- Strong coupling dynamics of gauge theories (QCD, integrability in QFT, electroweak symmetry breaking and LHC physics, string phenomenology,...)
- Condensed matter physics (holographic superconductors, quantum phase transitions, cold atoms, topological insulators,...)
- Black hole physics and quantum gravity
- Entanglement and quantum information theory
- Relativistic hydrodynamics

0 0 0

Here, we will concentrate on some concrete topics

Motivation from the renormalization group

Non-gravitational field theory for a lattice with lattice spacing a

$$H = \sum_{x,i} J_i(x) \mathcal{O}^i(x) \qquad \qquad x \to \text{ sites in the lattice} \\ i \to \text{ operators}$$

 $J_i(x) \to$ coupling constant (source) for the operator $\mathcal{O}^i(x)$

Kadanoff-Wilson Renormalization group

- \rightarrow Coarse grain the lattice by increasing the lattice spacing
- \rightarrow Replace multiple sites by a single site with the average value of the lattice variables

The couplings $J_i(x) \rightarrow$ change with the different steps:

$$J_i(x,a) \to J_i(x,2a) \to J_i(x,4a) \to \cdots$$

The couplings are scale-dependent

$$ightarrow J_i(x,u)$$
 $u
ightarrow ext{length}$ scale at which we probe the system $u = (a, 2a, 4a, \cdots)$

Coupling flow

 $J_i(x)$

$$u\frac{\partial}{\partial u} J_i(x,u) = \beta_i \Big(J_j(x,u), u \Big)$$

Weak coupling $\longrightarrow \beta_i$ determined from perturbation theory

Strong coupling picture: \longrightarrow Think of u as an extra dimension

The multiple layers of lattices build up a new higher dimensional lattice Regard the sources as fields in a space with one extra dimension

 $J_i(x, u) = \phi_i(x, r) \rightarrow \text{governed by some action}$

AdS/CFT proposal:

The dynamics of the sources $\phi_i(x, r)$ in the bulk is determined by gravity (i.e. some metric)

It is a geometrization of the quantum dynamics encoded by the renormalization group

The sources must have the same tensor structure as the dual operators

$$\phi_i \mathcal{O}^i$$
 is a scalar

-scalar field $\phi \to \text{dual}$ to a scalar operator \mathcal{O}

-vector field $A_{\mu} \rightarrow$ dual to a current J^{μ}

-spin-two field $g_{\mu\nu} \rightarrow$ dual to the energy-momentum tensor $T^{\mu\nu}$

Microscopic coupling in the UV — field of the gravity theory at the boundary

The field theory lives at the boundary of the higher dimensional space

Matching of the degrees of freedom

They are measured by the entropy

QFT side:

The entropy is extensive

 $R_d \rightarrow d$ -dimensional region

 $S_{QFT} \propto \operatorname{Vol}(R_d) \rightarrow \operatorname{proportional}$ to the volume in d dimensions

Gravity side: The entropy in gravity is subextensive!

Bekenstein-Hawking formula:

$$S_{BH} = \frac{A_H}{4G_N}$$
 $G_N \to \text{Newton constant}$ maximal entropy

Entropy in a volume \leq entropy of a black hole inside the volume

 $R_{d+1} \rightarrow \text{region in } (d+1)\text{-dimensions} \qquad R_d = \partial R_{d+1}$

 $S_{GR}(R_{d+1}) \propto \operatorname{Area}(R_d) \propto \operatorname{Vol}(R_d)$

Geometry at a fixed point \implies vanishing β function \implies CFT

Poincare invariant metric

$$ds^{2} = \Omega^{2}(z) \left(-dt^{2} + d\vec{x}^{2} + dz^{2}\right) \qquad \qquad \vec{x} = (x^{1}, \cdots, x^{d-1})$$
$$z \to \text{extra dimension}$$

Scale transformation

$$(t, \vec{x}) \to \lambda(t, \vec{x}) \qquad z \to \lambda z \qquad \lambda \to \text{constant}$$

$$ds^2$$
 invariant $\longrightarrow \quad \Omega(z) \to \lambda^{-1} \,\Omega(z) \longrightarrow \quad \Omega(z) = \frac{L}{z}$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left(-dt^{2} + d\vec{x}^{2} + dz^{2} \right)$$
 AdS boundary $\rightarrow z = 0$
UV of the QFT

Line element of AdS_{d+1}

Geometric interpretation of AdS

Consider

- Flat (d+2)-Minkowski spacetime with two times - Coordinates $(y^{-1}, y^0, y^1, \cdots y^d)$

Metric
$$\longrightarrow ds^2 = -(dy^{-1})^2 - (dy^0)^2 + \sum_{i=1}^d (dy^i)^2 \equiv \eta_{MN} dy^M dy^N$$

 $AdS_{d+1} \longrightarrow$ Hyperboloid of radius L

$$\blacktriangleright$$
 $\eta_{MN}y^My^N$ =

$$y^M y^N = -L^2$$

New coordinates

$$u = y^{-1} + y^{d} \qquad v = y^{-1} - y^{d}$$
$$x^{\alpha} = \frac{y^{\alpha}}{u} L = \frac{y^{\alpha}}{y^{-1} + y^{d}} L \qquad \alpha = 0, \cdots, d - 1$$

Hyperboloid eq.
$$\longrightarrow -uv + \frac{u^2}{L^2}x^2 = -L^2$$

Induced metric on the hyperboloid $\longrightarrow z = \frac{L^2}{u} \longrightarrow ds^2 = \frac{L^2}{z^2} [dz^2 + \eta_{\alpha\beta} dx^{\alpha} dx^{\beta}]$ AdS_{d+1} The AdS metric is a solution of the equation of motion of a gravity action of the type:

$$I = \frac{1}{16\pi G_N} \int d^{d+1}x \sqrt{-g} \left[-2\Lambda + R + c_2 R^2 + c_3 R^3 + \cdots \right]$$
$$G_N \to \text{Newton constant} \qquad \Lambda \to \text{cosmological constant}$$
$$g = \det(g_{\mu\nu}) \qquad R = g^{\mu\nu} R_{\mu\nu} \to \text{scalar curvature} \sim \partial \partial g$$

 $c_2 = c_3 = \cdots = 0 \rightarrow \text{Einstein-Hilbert action of GR}$

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -\Lambda g_{\mu\nu} \implies R = g^{\mu\nu} R_{\mu\nu} = 2 \frac{d+1}{d-1} \Lambda \implies R_{\mu\nu} = \frac{2}{d-1} \Lambda g_{\mu\nu}$$

For AdS_{d+1} with radius L

$$R_{\mu\nu} = -\frac{d}{L^2} g_{\mu\nu} \qquad \Lambda = -\frac{d(d-1)}{2L^2}$$

Einstein space with negative cosmological constant

Counting the degrees of freedom (again)

Put the system in a box of size R with lattice spacing ϵ

$$N_{dof}^{QFT} = \left(\frac{R}{\epsilon}\right)^{d-1} c_{QFT}$$

 $c_{QFT} \rightarrow \text{central charge} \implies \# \text{dof per cell}$ In SU(N) YM $\rightarrow c_{SU(N)} \sim N^2$

Gravity side

Area of the AdS

boundary

QFT side

$$A_{\partial} = \int_{\mathbb{R}^{d-1}, z=\epsilon} d^{d-1} x \sqrt{g} = \left(\frac{L}{\epsilon}\right)^{d-1} \int_{\mathbb{R}^{d-1}} d^{d-1} x \implies A_{\partial} = \left(\frac{RL}{\epsilon}\right)^{d-1}$$
$$\int_{\mathbb{R}^{d-1}} d^{d-1} x = R^{d-1}$$

Planck length and mass

 $G_N = (l_P)^{d-1} = \frac{1}{(M_P)^{d-1}}$

From the entropy formula \implies

$$N_{dof}^{AdS} = \frac{1}{4} \left(\frac{R}{\epsilon}\right)^{d-1} \left(\frac{L}{l_P}\right)^{d-1}$$

$$\left(\frac{L}{l_P}\right)^{d-1} \sim c_{QFT}$$

classical gravity in AdS $\sim \left(\frac{L}{l_P}\right)^{d-1} >> 1$

large # dof per unit volume

Historical origin — Description of hadronic resonances of high spin (60's)

Basic objects extended along some characteristic distance l_s

The rotational degree of freedom gives rise to high spins and Regge trajectories

In modern language a meson is a quark-antiquark pair joined by a string

 $x^{\mu} \rightarrow$ parametrizes the space in which the point particle is moving

 $\tau \rightarrow$ world-line coordinate

Action
$$\longrightarrow$$
 $S = -m \int ds = -m \int_{\tau_0}^{\tau_1} d\tau \sqrt{-\eta_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}}$

Nambu-Goto action

$$S_{NG} = -T \int dA$$
 $T = \frac{1}{2\pi l_s^2}$ $l_s \to \text{string length}$

Worldsheet coordinates ξ^{α} $\alpha = 0, 1$ $(\xi^0, \xi^1) = (\tau, \sigma)$

Embedding: $\Sigma \to \mathcal{M}$ with $\xi^a \to X^\mu(\xi^a)$

Induced metric $\longrightarrow \hat{G}_{\alpha\beta} \equiv G_{\mu\nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \longrightarrow$

$$S_{NG} = -T \int \sqrt{-\det \hat{G}_{\alpha\beta}} d^2\xi$$

The classical eom's for the relativistic string can be solved in general for different boundary conditions (Neumann and Dirichlet)

It opens Pandora's box!!

mass gap $\sim 1/l_s$

-Oscillation modes can be interpreted as particles

-Spectrum with infinite tower of particles with growing masses and spins

Consistency requires:

-Supersymmetry (symmetry between bosons and fermions)

If not there are tachyons in the spectrum (particles with $m^2 < 0$)

-The number of spacetime dimensions must be D=10

The extra dimensions should be regarded as defining a configuration space (as the phase space in classical mechanics)

Massless modes of the open string

Contains massless particles of spin one with the couplings needed to have gauge symmetry — gauge bosons (fotons, gluons, ...)

Massless modes of the closed string

It contains a particle of spin 2 and zero mass which can be interpreted as the graviton (the quantum of gravity)

Moreover

Quantum consistency implies Einstein equations in 10d plus corrections:

$$R_{\mu\nu} + \dots = 0$$

String theory is a theory of quantum gravity!!

Thus $l_s \sim l_P$ (and not of the order of the hadronic scale ~ 1 fm)

Elementary strings with zero thickness were born for the wrong purpose

String interactions

Allow strings to join and split

It is like thickening a QFT vertex

Triple vertex

 $g_s \rightarrow \text{string coupling}$

A topological expansion!! \longrightarrow $\mathcal{A} = \sum_{h=0}^{\infty} g_s^{2h-2} F_h(\alpha')$

Topological expansion of gauge theories

$$U(N)$$
 Yang-Mills theory $\longrightarrow \mathcal{L} = -\frac{1}{g^2} \operatorname{Tr} \left[F_{\mu\nu} F^{\mu\nu} \right]$

 $F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + [A_{\mu}, A_{\nu}] \longrightarrow A_{\mu} \to N \times N \text{ matrix } \longrightarrow A^{a}_{\mu, b}$

Rewrite
$$\mathcal{L} \longrightarrow \mathcal{L} = -\frac{N}{\lambda} \operatorname{Tr}[F_{\mu\nu}F^{\mu\nu}] \longrightarrow \lambda = g^2 N \to \text{'t Hooft coupling}$$

't Hooft topological expansion \rightarrow in powers of N at fixed λ

double line notation

index loop \rightarrow color sum \rightarrow N

- The color lines form the perimeter of an oriented polygon (a face)
- Polygons join at a common edge

Every vacuum graph is associated to a triangulated 2d surface

Diagram D with

- $E \rightarrow$ number of propagators (edges) connecting two vertices
- $V \rightarrow$ number of vertices
- $F \rightarrow$ number of index loops (faces)

$$D \sim \left(\frac{\lambda}{N}\right)^E \left(\frac{N}{\lambda}\right)^V N^F = N^{F-E+V} \lambda^{E-V}$$

Power of $N \longrightarrow F - E + V = \chi \longrightarrow$ Euler characteristic (topological invariant)

$$\chi = 2 - 2h \longrightarrow h \rightarrow \text{genus} \rightarrow \text{number of handles}$$

Planar diagrams $\rightarrow h = 0 \rightarrow$ triangulate a sphere $\sim N^2$

Non-planar diagrams $\rightarrow h \ge 1 \rightarrow h$ -torus $\sim N^{2-2h}$

Examples

Planar diagrams are dominant for large N and go like $N^2 \lambda^n$

Connected vacuum-to-vacuum amplitude

$$\log Z = \sum_{h=0}^{\infty} N^{2-2h} \sum_{l=0}^{\infty} c_{l,h} \lambda^{l} = \sum_{h=0}^{\infty} N^{2-2h} f_{h}(\lambda)$$

 $f_h(\lambda) \to \text{sum of diagrams that can be drawn in a surface of genus } h$

Similar to the perturbative expansion of string theory with

$$g_s \sim \frac{1}{N}$$

Heuristically: gauge theory diagrams triangulate the worldsheet of an effective string

The AdS/CFT correspondence is a concrete realization of this connection for $N, \lambda \to \infty$ (planar and strongly coupled)