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Quantum Physics  of 
strongly correlated 
many- body systems

Main result: a duality relating QFT and gravity

Classical dynamics of 
black holes in one 
higher dimension

AdS/CFT is also known as:

complicated simple

AdS: anti-de Sitter spaceCFT: conformal field theory

Holographic duality

Gauge/gravity correspondence



In the spirit of condensed matter physics :

At strong coupling new weakly-coupled 
degrees of freedom emerge dynamically

New feature: 

The emergent fields live in a space with 
one extra dimension holography

The extra dimension is 
related to the energy scale

The duality was obtained in the context of string theory



It has applications in:

Strong coupling dynamics of gauge theories (QCD, integrability in QFT, 
electroweak symmetry breaking and LHC physics, string phenomenology,...)

Condensed matter physics (holographic superconductors, quantum phase 
transitions, cold atoms, topological insulators,...) 

Black hole physics and quantum gravity

Entanglement and quantum information theory

Relativistic hydrodynamics

Here, we will concentrate on some concrete topics



Motivation from the renormalization group
Non-gravitational field theory for a lattice with lattice spacing a

H =
∑

x,i

Ji(x) O
i(x)

x → sites in the lattice

i → operators

Ji(x) → coupling constant (source) for the operator Oi(x)

Kadanoff-Wilson Renormalization group

→ Coarse grain the lattice by increasing the lattice spacing

→ Replace multiple sites by a single site with the average

value of the lattice variables



The couplings Ji(x) → change with the different steps:

Ji(x, a) → Ji(x, 2a) → Ji(x, 4a) → · · ·



The couplings are scale-dependent

Ji(x) → Ji(x, u) u → length scale at which we probe the system

u = (a, 2a, 4a, · · · )

Coupling flow

u
∂

∂u
Ji(x, u) = βi

(

Jj(x, u), u
)

Weak coupling βi determined from perturbation theory

Strong coupling picture: Think of u as an extra dimension

The multiple layers of lattices build up a new higher dimensional lattice
Regard the sources as fields in a space with one extra dimension

Ji(x, u) = φi(x, r) → governed by some action



AdS/CFT proposal:

It is a geometrization of the quantum dynamics encoded
 by the renormalization group

is determined by gravity (i.e. some metric)

The dynamics of the sources φi(x, r) in the bulk

The sources must have the same tensor structure as the dual operators 

φi O
i is a scalar

-scalar field φ → dual to a scalar operator O

-vector field Aµ → dual to a current Jµ

-spin-two field gµν → dual to the energy-momentum tensor Tµν



Microscopic coupling in the UV  field of the gravity theory at the boundary

The field theory lives at the boundary of the higher dimensional space



Matching of the degrees of freedom

QFT side:

They are measured by the entropy

The entropy is extensive

Rd → d-dimensional region

SQFT ∝ Vol(Rd) → proportional to the volume in d dimensions

Gravity side:

Bekenstein-Hawking formula:

Rd+1 → region in (d + 1)-dimensions Rd = ∂Rd+1

SGR(Rd+1) ∝ Area(Rd) ∝ Vol(Rd)

The entropy in gravity is subextensive!

Entropy in a volume ≤ entropy of a black hole inside the volume

SBH =
AH

4GN

GN → Newton constant maximal entropy



ds
2 = Ω2(z) (−dt

2 + d!x
2 + dz

2)
z → extra dimension

!x = (x1, · · · , xd−1)

(t, !x) → λ(t, !x) z → λz λ → constant

ds
2 =

L2

z2
(−dt

2 + d!x
2 + dz

2)

Line element of AdSd+1

Geometry at a fixed point vanishing β function CFT

Poincare invariant metric 

Scale transformation

Ω(z) → λ
−1 Ω(z) Ω(z) =

L

z
ds2 invariant

AdS boundary → z = 0

UV of the QFT



Geometric interpretation of AdS

−uv +
u2

L2
x

2
= −L

2

Consider

AdSd+1 Hyperboloid of radius L ηMNyMyN
= −L2

New coordinates

Metric

Hyperboloid eq.

z =

L2

u
ds2 =

L2

z2
[dz2 + ηαβ dxα dxβ ]Induced metric on

the hyperboloid

u = y
−1

+ y
d

v = y
−1

− y
d

xα
=

yα

u
L =

yα

y−1 + yd
L α = 0, · · · , d − 1

ds2
= −du dv +

d−1∑

α,β=0

ηαβ dyα dyβ

- Flat (d + 2)-Minkowski spacetime with two times

- Coordinates (y−1
, y

0
, y

1
, · · · y

d)

ds2 = −(dy−1)2 − (dy0)2 +
d∑

i=1

(dyi)2 ≡ ηMNdyMdyN

AdSd+1



The AdS metric is a solution of the equation of motion of a gravity action of the type:

I =
1

16πGN

∫

dd+1x
√

−g
[

− 2Λ + R + c2R
2 + c3R

3 + · · · ]

GN → Newton constant

g = det(gµν) R = gµνRµν → scalar curvature ∼ ∂∂g

Λ → cosmological constant

c2 = c3 = · · · = 0 → Einstein-Hilbert action of GR

For AdSd+1 with radius L

Rµν −

1

2
gµν R = −Λgµν

Rµν =
2

d − 1
Λ gµνR = gµνRµν = 2

d + 1

d − 1
Λ

Rµν = −

d

L2
gµν Λ = −

d(d − 1)

2L2

Einstein space with negative 
cosmological constant



Counting the degrees of freedom (again)

N
QFT
dof =

(

R

ε

)d−1

cQFT
In SU(N) YM → cSU(N) ∼ N2

cQFT → central charge

A∂ =

∫

Rd−1, z=ε

dd−1 x
√

g =

(L

ε

)d−1
∫

Rd−1

dd−1 x

∫
Rd−1

d
d−1

x = R
d−1

A∂ =

(

RL

ε

)d−1

GN = (lP )d−1 =
1

(MP )d−1

N
AdS
dof =

1

4

(

R

ε

)d−1 (

L

lP

)d−1

QFT side Put the system in a box of size R with lattice spacing ε

# dof per cell

Gravity side

Area of the AdS 
boundary

Planck length and mass

From the entropy formula

(

L

lP

)d−1

∼ cQFT
classical gravity in AdS ∼

(

L

lP

)d−1

>> 1

large # dof per unit volume



String theory basics

Historical origin Description of hadronic resonances of high spin (60’s)

M
2
∼ J

M
2

J

Regge trajectories

Basic objects extended along some characteristic distance ls
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Strings can be open (Fig. 1.5) or closed (Fig. 1.6), the latter meaning that the 
ends are connected. 

Excitations of the string give different fundamental particles. As a particle moves 
through space-time, it traces out a world line.  As a string moves through space-
time, it traces out a worldsheet (see Fig. 1.7), which is a surface in space-time 
parameterized by ( , )σ τ . A mapping xµ τ σ( , ) maps a worldsheet coordinate 
( , )σ τ to the space-time coordinate x.

So, in the world according to string theory, the fundamental objects are tiny 
strings with a length on the order of the Planck scale (10 33−  cm). Like any string, 

Figure 1.5 Fundamental particles are extended one-dimensional objects 
called strings.

Figure 1.6 A closed string has no loose ends.
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t

Schematic representation of a
string moving through space-
time, it is represented by a
worldsheet (a tube for a closed
string)

x

t

A particle moving through
space-time has a world
line 

Figure 1.7 A comparison of a worldsheet for a closed string and a world line 
for a point particle. The space-time coordinates of the world line are parameterized 
as x xµ µ= ( )τ , while the space-time coordinates of the worldsheet are parameterized 

as xµ( , )τ σ  where ( , )σ τ give the coordinates on the surface of the worldsheet.
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open closed

non-local theory

The rotational degree of freedom gives rise to high spins and Regge trajectories



In modern language a meson is a quark-antiquark pair joined by a string
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q
q E ∼ L confinement!

d

d

x

x

x

τ τ
τ

0

1

2

)τ(µ
x

s

x
µ = x

µ(τ)

x
µ
→ parametrizes the space in which the point particle is moving

τ → world-line coordinate

Classical relativistic particle

S = −m

∫

ds = −m

∫ τ1

τ0

dτ
√

−ηµν ẋµ ẋνAction



Classical relativistic string

x

x

x

0

1

2

!(!x

!

!0 "#
#

,#)

d

dA

$
2

SNG = −T

∫
dA T =

1

2π l2
s

ls → string length

It describes a surface  in spacetime worldsheet

Worldsheet coordinates ξα
α = 0, 1 (ξ0, ξ1) = (τ, σ)

Nambu-Goto action

Induced metric

Embedding: Σ → M with ξa → Xµ(ξa)

Ĝαβ ≡ Gµν ∂α X
µ

∂β X
ν

SNG = −T

∫
√

−det Ĝαβ d2ξ



String quantization 

M2, J

1/l2
s

The classical eom's for the relativistic string can be solved in general for 
different boundary conditions (Neumann  and Dirichlet) 

It opens Pandora's box!!

-Oscillation modes can be interpreted as particles

-Spectrum with infinite tower of  particles with growing masses and spins

mass gap ∼ 1/ls



Consistency requires:

-Supersymmetry (symmetry between bosons and fermions)

If not there are tachyons in the spectrum (particles with m
2

< 0)

-The number of spacetime dimensions must be D=10

The extra dimensions should be regarded as defining a configuration 
space (as the phase space in classical mechanics)

Massless modes of the open string

Contains massless particles of spin one with the couplings needed to 
have gauge symmetry gauge bosons (fotons, gluons, ...)

CHAPTER 1 Introduction 13

Strings can be open (Fig. 1.5) or closed (Fig. 1.6), the latter meaning that the 
ends are connected. 

Excitations of the string give different fundamental particles. As a particle moves 
through space-time, it traces out a world line.  As a string moves through space-
time, it traces out a worldsheet (see Fig. 1.7), which is a surface in space-time 
parameterized by ( , )σ τ . A mapping xµ τ σ( , ) maps a worldsheet coordinate 
( , )σ τ to the space-time coordinate x.

So, in the world according to string theory, the fundamental objects are tiny 
strings with a length on the order of the Planck scale (10 33−  cm). Like any string, 

Figure 1.5 Fundamental particles are extended one-dimensional objects 
called strings.

Figure 1.6 A closed string has no loose ends.

x

t

Schematic representation of a
string moving through space-
time, it is represented by a
worldsheet (a tube for a closed
string)

x

t

A particle moving through
space-time has a world
line 

Figure 1.7 A comparison of a worldsheet for a closed string and a world line 
for a point particle. The space-time coordinates of the world line are parameterized 
as x xµ µ= ( )τ , while the space-time coordinates of the worldsheet are parameterized 

as xµ( , )τ σ  where ( , )σ τ give the coordinates on the surface of the worldsheet.



Massless modes of the closed string
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It contains a particle of spin 2 and zero mass which can be 
interpreted as the graviton (the quantum of gravity)

String theory is a theory of quantum gravity!!

Moreover

Quantum consistency implies Einstein equations in 10d plus corrections:

Rµν + · · · = 0

Thus ls ∼ lP (and not of the order of the hadronic scale ∼ 1 fm)

Elementary strings with zero thickness were born for the wrong purpose



String interactions

Allow strings to join and split

It is like thickening a QFT vertex292 J. Louis et al.

Fig. 1. ‘Thickening’ a field theory interaction vertex

While unification in the narrow sense is manifest in the formalism, the con-
ceptual unification of quantum theory and gravity has not yet been achieved
in a satisfactory way. The reason for this is that the formalism of ‘perturbative
string theory’, to be reviewed in Sects. 2 and 3, only gives a set of rules for
computing on-shell scattering amplitudes in an on-shell background. While
the UV finiteness of string amplitudes, which has been made highly plausible
(though not been proved rigorously), is clearly relevant for the conceptual uni-
fication, it mainly takes care of a technical aspect. Given that the amplitudes
are indeed finite, string theory provides only a perturbative theory of quan-
tum gravity. Note, however, that this allows to do more than just to compute
graviton scattering in a fixed background. It also allows to compute an effec-
tive action, which encodes quantum corrections to the Einstein–Hilbert term.
This in turn has implications for black hole physics, which will be the subject
of Sect. 8. At this point we just emphasize that conceptual issues of quantum
gravity, such as black hole entropy, have been addressed successfully in string
theory. This said, it must also be stressed that the range of conceptual points
which can be addressed today is quite limited. The main reason is that as a
starting point one always has to specify a reference background space-time.
We will come back to this when discussing open questions in Sect. 10.

Next, let us briefly come back to the question whether the concep-
tual unification of quantum theory and gravity mainly requires to ‘quantize
gravity’, or whether both quantum theory and gravity need to be modified in
a more drastic way. In perturbative string theory quantization is applied in
the same pragmatic spirit as in theoretical particle physics. Actually, the ap-
proach is at first glance a bit more naive, as one quantizes the relativistic string
and thus does quantum mechanics rather than quantum field theory. The fact
that this procedure results in a consistent perturbative theory of quantum
gravity is a surprising discovery, and the deeper reason behind this remains to
be understood. Heuristically, the improved UV behaviour can be understood
in terms of the ‘thickening’ of propagators and vertices, which we mentioned
above. As a consequence, classical physics is modified in two ways, not only by
quantum corrections, but also by stringy corrections related to the finite size of
strings. As we will see later, the string length replaces the Planck length as the
fundamental scale (at least in perturbative string theory), while there are also
transformations (‘dualities’) in the theory, which mutually exchange quantum
corrections and stringy corrections. While the deeper implications of these ob-
servations remain to be explored, it indicates that the full theory does more

String Theory: An Overview 297

heterotic theories have local (1,0) supersymmetry. The superpartner of Xµ is a
single Majorana–Weyl fermion ψµ

+. Absence of gravitational anomalies on the
world-sheet requires, in the fermionic formulation of the theory, 32 additional
Majorana–Weyl fermions λa

−, a = 1, . . . , 32. In the bosonic formulation these
32 fermions are replaced by 16 periodic chiral scalars ΦI(τ +σ), I = 1, . . . , 16
which are the coordinates of a 16-dimensional torus. Modular invariance re-
stricts the allowed tori to those which are generated by a 16-dimensional
self-dual even lattice Λ via T 16 = R16/Λ. There are precisely two such lattices
which lead to the two allowed gauge groups E8 × E8 and SO(32). The mass-
less spectra of the two heterotic theories are again those of supersymmetric
Yang–Mills theory, coupled to supergravity, now with gauge group E8 × E8

or SO(32).

4 The Interacting String

The discussion in Sect. 3 was based on the free string theory. Interactions
are introduced through the inclusion of topologically non-trivial world-sheets.
Figure 4 shows the decay of a closed string into two closed strings, while Fig. 5
shows the joining of two open strings into a closed string.

The strength of the interaction is controlled by the value of the dimension-
less string coupling constant g, which is dynamically determined through the
background value (vacuum expectation value) Φ0 of the dilaton Φ, g = eΦ0 .
The dilaton, as the graviton, is part of the massless spectrum of every string
theory. Different values of g do not correspond to different theories but they
parametrize ground states5 of a given theory. The coupling constants of the
different string theories are, however, a priori independent.

In string theory, the quantum field theoretical computation of scattering
amplitudes by summation over Feynman diagrams is replaced by the summa-
tion over world-sheets of different topologies (cf. Fig. 6). Which topologies are

ι

Fig. 4. Decay of a closed string into two closed strings

5 By a (perturbative) string ground state (‘string vacuum’) we mean a conformal
field theory with the correct properties, i.e. the correct central charge, modular
invariant partition function, etc. A geometric realization can be provided by spe-
cific background configurations of the massless fields. In this section we choose
Gµν(X) = ηµν , Φ = Φ0 with all others set to zero. More general backgrounds will
be mentioned in later sections.

Triple vertex

∼ gs

gs → string coupling



of sphere, dotted with vertex operators where the legs used to be.

Figure 33:

However, we already saw in the previous section that the constraint

of Weyl invariance meant that vertex operators are necessarily on-
shell. Technically, this is the reason that we can only compute on-
shell correlation functions in string theory.

6.1.1 Summing Over Topologies

The Polyakov path integral instructs us to sum over all metrics. But
what about worldsheets of different topologies? In fact, we should also sum over these.

It is this sum that gives the perturbative expansion of string theory. The scattering of
two strings receives contributions from worldsheets of the form

+ + + (6.2)

The only thing that we need to know is how to weight these different worldsheets.

Thankfully, there is a very natural coupling on the string that we have yet to consider
and this will do the job. We augment the Polyakov action by

Sstring = SPoly + λχ (6.3)

Here λ is simply a real number, while χ is given by an integral over the (Euclidean)
worldsheet

χ =
1

4π

∫

d2σ
√

gR (6.4)

where R is the Ricci scalar of the worldsheet metric. This looks like the Einstein-
Hilbert term for gravity on the worldsheet. It is simple to check that it is invariant

under reparameterizations and Weyl transformations.

In four-dimensions, the Einstein-Hilbert term makes gravity dynamical. But life is
very different in 2d. Indeed, we’ve already seen that all the components of the metric
can be gauged away so there are no propagating degrees of freedom associated to

gαβ. So, in two-dimensions, the term (6.4) doesn’t make gravity dynamical: in fact,
classically, it doesn’t do anything at all!

– 127 –

298 J. Louis et al.

(a) (b)

t

Fig. 5. Two open strings join to a closed string (a) in a space-time diagram and
(b) in a world-sheet diagram

allowed depends on the string theory. In particular, in type I both orientable
and non-orientable world-sheets must be summed over while the world-sheets
of the four other theories must be orientable.

Scattering amplitudes A can be computed in perturbation theory. A is
expanded in a power series in the string coupling g

A =
∑

n

gnA(n)

where each term A(n) is computed separately. The validity of perturbation
theory requires g ! 1. The power of g with which a given world-sheet con-
tributes is the negative of its Euler number, i.e. it is determined by its topology.
The scattering amplitudes A(n) of physical states are correlation functions of
BRST-invariant vertex operators of the quantum field theory on Σ as specified
by the Polyakov action. In the path-integral formulation one has to sum over
all metrics hαβ on Σ and over all embeddings Xµ of Σ in space-time M . The
computation of scattering amplitudes is most easily done with the methods of
conformal field theory. Using the local symmetries on Σ one goes to (super)
conformal gauge and the infinite dimensional integration over hαβ (χ±

α ) is re-
duced to the finite dimensional integration over the (super) moduli of Σ and
the integration over the Faddeev–Popov ghosts. For closed strings, requiring
invariance of the amplitudes under those reparametrizations which are not
continuously connected to the identity transformation (modular invariance)
restricts the range of integration of the modular parameters to a fundamental
region. Requiring modular invariance for the one-loop amplitudes guarantees

Fig. 6. One-loop quantum correction to the propagation of a closed string

Loop= hole in a Riemann surface

Perturbative series

A topological expansion!! A =
∞∑

h=0

g2h−2

s Fh(α′)



Topological expansion of gauge theories

U(N) Yang-Mills theory L = −
1

g2
Tr

[

FµνFµν
]

Fµν = ∂µ Aν − ∂νAµ + [Aµ, Aν ] Aµ → N × N matrix Aa
µ , b

’t Hooft topological expansion → in powers of N at fixed λ

double line notation

gauge propagator
d

a

b

c

vertices
∼

N

λ

∼

λ

N

index loop → color sum → N

Rewrite L L = −
N

λ
Tr

[

FµνF
µν

]

λ = g2N → ’t Hooft coupling



D ∼

(

λ

N

)E (

N

λ

)V

N
F

= N
F−E+V

λ
E−VF → number of index loops (faces)

V → number of vertices

E → number of propagators (edges) connecting two vertices

Diagram D with

χ = 2 − 2h

The color lines form the perimeter of an oriented polygon (a face)

Polygons join at  a common edge

Every vacuum graph is associated to a triangulated 2d surface

h → genus → number of handles

F − E + V = χPower of N Euler characteristic (topological invariant)

Planar diagrams → h = 0 → triangulate a sphere ∼ N
2

Non-planar diagrams → h ≥ 1 → h-torus ∼ N2−2h



E = 0, V = 0, F = 2

χ = 2, h = 0

λN
2E = 3, V = 2, F = 2

λ
3
N

2E = 9, V = 6, F = 5

N
2

E = 3, V = 2, F = 1 λN
0

χ = 0, h = 1

Planar diagrams are dominant for large N and go like N2λn

Examples

non-planar diagrams

planar diagrams



fh(λ) → sum of diagrams that can be drawn in a surface of genus h

gs ∼

1

N

Connected vacuum-to-vacuum amplitude

Similar to the perturbative expansion of  string theory with

Heuristically: gauge theory diagrams triangulate 
the worldsheet of an effective string

for N, λ → ∞ (planar and strongly coupled)

The AdS/CFT correspondence is a concrete realization of this connection

log Z =
∞∑

h=0

N2−2h

∞∑

l=0

cl,h λl =
∞∑

h=0

N2−2h fh(λ)


