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Lecture 3

So far we have talked about using machine learning techniques to classify

your

data; how to use 2-sample tests to compare data samples; and about

regression and multivariate GOF tests.

Today's lecture will cover the following:

frequentists vs Bayesians;
limits;
non-parametric density estimation;

non-parametric regression.

Tomorrow there will be a short practical session. It's only an hour long so
it'll be fairly simple but hopefully you'll get a feel for a few of these topics.
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immmn Frequentist vs Bayesian

It's now time to confront the epic division in statistics: Frequentists vs
Bayesians.

Frequentists

Objective probability. Always talk about fraction from an ensemble that
have some property. Can only talk about things for which there can be an
ensemble, but for these things total agreement (in theory).

Bayesians

Subjective probability. Given prior belief about something, can use
observations (data) to update belief. Can talk about anything, but room
for disagreement (your prior belief may not agree with mine).



Bayes’ Theorem

Bayes' Theorem: P(A|B) = %
Simple example: My friend belongs to a cult that thinks the world will end
on Feb. 1, 2013. | am skeptical. | think there's a 10% chance he's right.
One of the predicted signs of the coming doom is that it will rain in
Santiago de Compostela on Jan. 31. | check historical data and find that
the probability of rain on this date is 50% (in the absence of doom).

P(rain|doom)P(doom) __ 1x0.1 —0.18
P(rain) =~ Tx0.140.5%00 ~

P(doom|rain) =

l.e., if it rains today | will think there's an 18% he's right. If it doesn't rain
then 0% since his cult assigned 100% probability to it raining today.

OK, this was a stupid example, but how about “Was the universe created
by a Big Bang?”
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i Frequentist vs Bayesian
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immmn Frequentist vs Bayesian

FREQUENTIST STRTISTICIAN: BAYESIAN STATSTIOAN:

THE PROBABILITY OF THIS RESULT

HAPPENING BY CHANCE 15 320027 BET YOU $50
SNCE p<0.05, T CONCLUDE. IT HASNT,
THAT THE SUN HAS EXPLODED.

Taaf

In HEP we require p < 50 ~ 1/1.7M for discovery.




m Frequentist vs Bayesian

Let's change the cartoon problem slightly: Let's say instead of dice it has
a random number generator that throws numbers between 1 and 1.7M. If
it gets 60, it lies; otherwise, it tells the truth. We try and it says “yes”.

Frequentist Physicist

p < 50; thus, | reject the “sun has not exploded” hypothesis (I should

accept that there's a 1 in 1.7M chance I'm wrong, but | might not). A
physicist might claim that the sun has exploded; a statistician wouldn't.

Bayesian Physicist

Bayes’ theorem says P(explode|yes) = P(yes‘eXp}f,’(dyee)sﬁ(e’(plOde). Our prior
belief for the probability of the sun exploding during the required time
window is €, while the probability of the machine lying is ¢; thus,
P(explodelyes) = (1 — £)e/[(1 —O)e +4(1 —€)] =~ €¢/(e+ £). If e << ¢,
then P(explode|yes) ~ ¢/¢; i.e., my belief that the sun has exploded will
be 1.7M times bigger but still very very small.
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immmn Frequentist vs Bayesian

Bayesians can tackle any problem. E.g., does God exist? All you need is
prior belief in the existence of God (some probability) and then after an
“event” you can update your belief (one way or the other). Of course, no
reason for any two people to agree!

The advantage of frequentist statistics is that it's objective; however, the
trade off is that there are many questions you can't answer. In fact, you
can only really answer one question: if a given hypothesis is true, what is
the probability of obtaining the observed result.

In physics, if p < 5o, we claim “discovery”; however, nothing special
actually happens at 50. In frequentist statistics, all this means is that the
null hypothesis is rejected with a confidence level > 1 —6 x 10~7. Had the
significance been 4.90, then the probability would've been 107°.
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immmn Frequentist vs Bayesian

Frequentism is objective, but the “claims” made by physicists based on its
results are subjective. Most physicists claim to be frequentists; however,
frequentists can't say whether we've seen the Higgs boson; they can only
reject the null hypothesis at a certain confidence level.

How many believe that we've discovered the Higgs boson? Ask one and
you'll probably get a “yes”. You may get a “we have to measure the
couplings first”. The fact that they are even willing to give an answer
other than “such questions have no meaning” implies that, at heart, they
are Bayesians (they've defined P(Higgs)).

For better or worse, humans use Bayesian inference . ..and physicists are
human.



Frequentist vs Bayesian

You truly avoid Bayesism completely if you take this view:

Scientific theories say nothing about truth. Scientific theories are simply
useful tools for assigning probabilities to future events.

The correct answer for you to the Higgs question is: The existence or not
of the Higgs boson has no meaning. The SM — Higgs is rejected at the

1 — e CL. The SM + Higgs is now the simplest model which cannot be
rejected at any appreciable CL. The use of Occam's razor is for pure
utilitarian reasons, and since the only use for this theory is utility, it is OK
to take this approach.

Would you like to change your answer to the Big Bang question now?



m Frequentist vs Bayesian

So, most physicists are really (implicit) Bayesians; however, that doesn't
mean that frequentist reporting isn't valid.

Here's my (current) opinion on the matter:

If a frequentist result is possible, then it's preferred; it's objective and
everybody (Bayesians included) will know exactly what it means and
can freely use your result however they want.

If a certain measurement can only be made by making some
assumptions (e.g., on the shape of the background), then report a
Bayesian measurement. | see no reason not to make a measurement
because it can only be done by inputing a bit of prior knowledge.
Clearly state your measurement is Bayesian and what your subjective
assumptions are. People are free to disagree, but provided you haven't
done anything “crazy” the disagreement will be at a ~ 20% level.
You can kill a lot of theories with an “order of magnitude” limit.



Limits

Setting limits is very important in physics since, unfortunately, most of the
things we look for we don't find (probably they don't exist).

Poisson Limits

n observed | low: >  P(n,A\) = 0.05 | high: >  P(n,\) =0.95

0 - 3.00
1 0.05 4.74
2 0.36 6.30
3

0.82 7.75

Unfortunately, it's not always (ever?) this easy ...
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T WTF?

We expect 3.0 background events and observe n = 0; thus, at the 95% CL
A=s+ b < 3.0. So, we get an upper limit on the signal at s < 07

Il On one had, we know that as many as 5% of our claims at 95% CL
should be wrong. So, fine, this is one of them. Publish (to avoid bias)
and move on.

Il On the other hand, we know that s > 0. Can't we use this knowledge
somehow?
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immm_Feldman-Cousins

Let's go back to our WTF example. Our background expectation is
b = 3.0, we observe n = 0. What do we learn about s? Let’s start in the
frequentist paradigm ...

First, what sounds like a different problem. Prior to looking at your data,
you need to decide if you're going to quote a Cl or a limit. If you don't,
you will bias your result ... but how do you know what to quote without
looking at the data?

See G.Feldman and R.D.Cousins, A unified approach to the classical
statistical analysis of small signals, PRD 57, 3873-3889 (1998).
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immmn Feldman-Cousins

For our example, for each value of s, construct a “belt” that contains the
desired probability by ranking on P(n|s) = (s + b)"exp(—(s + b))/n!,
where s=n— b or 0.

Il For each s, start with the highest
P(n|s) and keep adding until you reach 90% CL for b=3.0
the CL. MREE

I Do this for all s. >

Il For any measured n, read “vertically”
(e.g, for n =0 the interval is [0,1.1);
for n =6 its (0.2,8.5)).

Il Guarantees correct coverage;
automatically returns limit or Cl.

10 |-

Signal Mean

Il Works for MVA problems too! 012345567 s o0z 3115

Measured n

Il In general, rank on likelihood.
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immu Bayesian Limits

To calculate a Bayesian limit we need to first determine the posterior
distribution for the signal
p(s|n) o< [ [ P(nl|s, b,e)m(s)m(b)m(e)dbde,

where 7(x) is the prior for x and P(n|s, b,e) = exp(—(es+ b))(es + b)"/n!
(€ is the efficiency/normalization).

LHCb

The limit @ 90% credibility level is
1220 p(B| ngis)AB = 0.9 [5° p(B|nops)dB.

E
1
il

Naturally get 1 or 2-sided interval; however,
credibility based on priors used.

Posterior Probability/107

L Ix10®

2 4
Br(B* - D" K*)




immm Priors, Priors, Priors

Bayesian methods seem really great but there are some odd features.

A common choice for the signal prior is uniform on
[0, 00), but if you work with x? instead of x you get
a different answer (something uniform in x is not
uniform in x?).

This means your “objective” totally ignorant of x
declaration does not survive a change of variables.

Good practice is to try several priors (e.g., uniform, Jefferys) and see how
much your result changes. If the difference is small, great. If not, then
your result is simply reflecting what you choose to believe about x prior to
looking at your data (i.e., it is meaningless).

Also, the more data you have the less dependence on priors you'll have.
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immm Limits Summary

Despite the very different philosophies, Bayesian and Frequentist
methods give very similar results with enough data and even with
small statistics tend to give results consistent at the 20% level
(roughly).

Other limit-setting options on the market (e.g., CLs, profile
likelihood) too. No single right way but plenty of wrong ones.

If you set a Bayesian limit you must check that the choice of prior
doesn’t have an big effect (> 20% or so).

You must follow this approach: decide on a strategy; examine the
data; publish your result. If you swap the first two you bias the result!

If you have a big systematic uncertainty, more honest to use a
Bayesian technique. Otherwise, use either but “standard” is to use
(inspired) frequentist.
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i Why Non-Parametric?

Why use non-parametric methods? In many cases the model would be
very complicated and we don't care what it is. We don't care what f is so
why try and model it?

Some examples where non-parametric techniques are useful:

Il The 2-sample tests from yesterday are good examples. We want to
know if f4 = fg; we don't care at all about f.

I Signal/background separation where we have MC that accounts for
physics and detector efficiencies. We really don't care what f is just
how much of the sample is signal.

Il We want to visualize the data. Having a PDF here wouldn't help us.

I Unfolding.

M etc

There are many examples. Just remember, if you don't care about f, why
spend a lot of time determining f7?
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immm Non-Parametric Methods

There are two main categories:

I No PDF: Some techniques, like the 2-sample tests from yesterday, do
not require that we try and estimate f.

Il Estimated PDF: Some times we do want to have an estimate of f,
but we don't care about its functional form. In these cases we can use
the data to estimate f.

Let's start with the second case . ..
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i Histograms

A histogram estimates the PDF by computing which bin X is in and then
using the number of data observed in that bin (properly normalized).

2 4
X

Main criticism: information on location of each datum is ignored. Hit by

curse of dimensionality very quickly.
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immm Kernel Estimation

A better approach: build the PDF as )" f;(X)/n; i.e., put a function at

each datum and for any X sum up the contributions from each datum
0.6, 0.6,

0.6

0.4

0.4
0.2]

0.2

Typically put a Gaussian at each point. Quality of PDE depends on width
chosen. Entire industry in choosing the width

See K.Cranmer, Kernel estimation in high-energy physics, CPC 136, 198-207 (2001)



immm Kernel PDF's in Regression

Can use kernel PDF as component of full PDF in regression; can combine
with parametric PDF components.

h
(=1

o~ T T T T T T T T T E
< LHCb A
g 40 BO—)DK‘G =
z § FDK" ]
:/ ] Bn_)Dpn _;
% [J Comb. bkg. 3
= s
=]

5

@]

P SRS TR A« 0 =t 22T

5 52 54 5.6 58

M(D,, K") [GeV/c']
If you don't know a bkgd component’s PDF, then guessing what
functional form “kind of looks like the data” doesn't add any information.



i Non-PDF Nonparametric Regression
have data sets from unknown f;, and | know, e.g., fo(X) =

> aifi(X). |
want to know «; but don't care about f;. Here's an example

7 3
m2 (GeV?)

) 3
m? (GeV?)

) 3
m? (GeV?)

p 3

m2 (GeV?)
| just want to know §;. Clearly trying to model f; is going to be very hard
Can | avoid it and avoid using kernels?



Non-PDF Nonparametric Regression

Remember the energy test? We can use it here for regression by allowing
the “charges” of the 3 samples to float. These charges are then related to
the coefficients we want to know.

In this example (see ref below), it correctly determines the parameters of
interest with 7% relative uncertainties. It nevers tries to estimate the
PDF, it circumvents it by using the fact that the data sets we have follow
those PDFs.

See M.Williams, Nonparametric regression using the concept of minimum
energy, JINST 5, P10003 (2011).



Summary

Il Bayesians and frequentists philosophies are very different; however,
with enough data the data “speaks for itself” and you'll get the same
result using either approach.

Il Bayesians can answer any question but you're free to disagree with
them.

Il It's very important when setting limits to choose your strategy prior
to looking at your data. If you have a large systematic uncertainty,
use a Bayesian method. If not, | prefer frequentist but do what you
want (is easiest to get past your referees).

Il Why parametrize f if you don't care about f? Non-parametric
methods work well. Plenty out there. Use them!
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