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1 Introduction. Theoretical Situation

In subatomic world there is no unified theory, we have
only some of its parts, see Bronstein cube (1937) pre-
sented in Fig. 1. The axis are mass M , velosity v and
Plank constant h which has here the sence of inverse
distance 1/R.

Figure 1: Bronstein cube: NM = Newton mechanics (+); SR = Special Relativity (+);
QM = quantum mechanics (+); QFT = Quantum Field Theory (+/-); NG = Newton
gravity (+); GM = General relativity (+); QG = Quantum Gravity (-); UT = Unified
Theory of all interactions (-).

First four theories: Newton mechanics, special relativ-
ity, quantum mechanics, and Quantum Field Theory
(QED, QCD,...) form Standard Model.
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All physical theories are based on many experimental
facts, these facts are especially important on the stage
of formulation of a new theory. The Quantum Gravity
is not exists as a real physical theory because there is
no any experimental information about its effects.

In the present lectures we will consider mainly the
Quantum Field Theory, today it can not be considered
as a complete physical theory, so we present rather
large quantity of experimental information -
phenomenology.

3



2 Particles and Interactions

2.1 Sizes and Scales

All material objects in the Universe are builded from
atoms.

In the present course we will consider the properties
of the subatomic particles (elementary particles) and
their interactions.

The scale of the significant sizes is given below:

1 m (meter) → usual objects
in our life

1 mm=10−3m → smallest objects which
we can see by eye

1 µm=10−6m
(1 micron)
1 nm=10−9m → size of atoms is
(1 nanometer) about 0.1 nm
1 pm=10−12m
1 fm = 10−15m → size of a nucleon
(1 femtometer, 1 fermi)
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The probabilities of interactions of elementary par-
ticles are presented in terms of effective cross sections.

Cross Sections:

1 b (barn) = 10−28m2

1 mb = 0.1 fm2

1 µb
1 nb
1 pb
1 fb

Masses and Energies (c = 1)

1 eV
1 KeV
1 MeV (me = 0.511 MeV)
1 GeV (mp = 0.94 GeV)
1 TeV
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In high energy elementary particle physics people
usually work in “natural” units where h = c = 1.

In natural units length and time, that have same
dimension, can be measured as inverse mass/energies:

1 fm ≃ 5 GeV−1

1 GeV−2 ≃ 0.39 mb
1 GeV−1 ≃ 0.67 ·10−24 seconds
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2.2 Broad Classification of Sub-Nuclear Par-
ticles

All elementary particles can be divided in several groups:

HADRONS → have a size about 1 fm,
(they have an internal
quark-gluon structure)

LEPTONS AND → have no size, are
GAUGE BOSONS considered as pointlike

Hadrons → Mesons, bosons, qq̄)
Baryons, fermions, (qqq)

Leptons → e±, µ±, τ±

νe, νµ, ντ

Gauge bosons → γ ( Photon)
Z0,W±
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2.3 Interactions of Sub-Nuclear Particles

There exist four types of interaction: STRONG,
ELECTROMAGNETIC, WEAK, and GRAV-
ITATION. All of them are produced via the ex-
change of a specific particle - gauge boson.

Electromagnetic and gravitation interactions are well-
known in the usual world, and the strength both de-
crease with the distance as 1/R2. Such behaviour is
connected with the zero mass of their gauge bosons -
photon and graviton, respectively.

All material objects (including photons) participate of
the gravitation interaction, and all particles with non-
zero electrical charge participate in electromagnetical
interaction.

The strong and weak interactions only exist in the
subatomic world, because they exponentially decrease
with distance.
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The weak interaction is produced by the exchange of
W± or Z bosons, mW = 80.4 GeV, mZ = 91.2 GeV.

Thus the typical distance of weak interaction is about
10−2 GeV−1, i.e. 0.002 fm. As a rule we deal with
weak interactions in the decay processes.

All leptons and hadrons participate in weak inter-
actions. At very high energies the electromagnetic
and weak interactions are unified in the framework of
Electroweak Theory.

The strong interactions can be considered from two
different points of view: as the interaction between
hadrons via meson exchange, or as the interaction be-
tween quarks and gluons via gluon exchange.

9



2.4 An Example of Strong Interaction: One-
Pion-Exchange

The meson exchange leads to the coupling of protons
and neutrons in atomic nuclei. As the distance be-
tween nucleons in the nuclei is of the order of 1.2-1.5
fm, one can obtain (Yukawa, 1935) the mass of the
lightest meson which obey this coupling, which turn
out to be the pion (mπ = 0.14 GeV).

The meson exchange processes (mainly pion exchange)
play an important role in the production of secon-
daries at not very high energies in so-called “soft”
processes, i.e. in the processes with relatively small
transverse momenta. For example, the diagrams pre-
sented in Fig. 2 describe the process of one-pion pro-
duction in pp collision via ∆-resonance excitation.
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Figure 2: Pion production in pp collisions via ∆(1232) resonance excitation.

Due to the isospin invariance, all vertices in the dia-
grams of Fig. 2a and Fig. 2b are the same except for
the corresponding Clebsch-Gordan coefficients.
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2.5 The Quark-Gluon Structure of Hadrons

In the beginning of 1960’s the number of discovered
hadrons became very large (more than 200). Many
physisicts tried to suggest relatively small more fun-
damental constituets, and, at the same time to obtain
some classification of hadrons.

Gell-Mann and Zweig independently proposed in 1964
the SU(3) symmetry, where nucleons together with
hyperons correspond to the octet representation of
SU(3) group symmetry (p,n, Λ,Σ+,Σ0,Σ−, Xi0, Xi−),
light mesons (π,K, η and η′) correspond to the nonet
representation, etc. The lowest representation of the
SU(3) group is the triplet, and it was suggested that
it correspond to some hypothetical particles carrying
fractional electric charges, and called quarks (q).

noindent The most important property of quarks is
that they cannot exist as free particle.
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The quarks have a special quantum number, called
COLOUR, which plays the role of their strong charge
(coupling constant). There exist 3 colours, every quark
has one of them and antiquarks have anticolours. The
qq̄ system with the same colour-anticolour is colour-
less (white) and corresponds to a meson.

The sum of all three colours is also white (remember
the decomposition of white light by a glass prism), so
all these qqq states corresponds to the baryons.

The quark-quark (or quark-antiquark) interaction pro-
ceeds via the exchange of a vector particle - gluon
(g), which is bi-coloured. As gluons have colours they
interact (contrary to the case of photons) with each
other.

All interaction among quarks and gluons are decribed
by special field theory - Quantum ChromoDynamics
(QCD).
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There exist four vertices of quark-gluon interactions
shown in Fig. 3.

Figure 3: QCD vertices: gluon emission by quark (a); quark-antiquark annihilation
into gluon (b); quark-antiquark pair production by gluon (c); gluon emission by gluon
(d).

The strength of these interactions is determined by αs
- strong coupling constant.

Contrary to another theories (QED), αs increases with
the distance between two coloured particle, and it be-
comes infinitively large at distances of ∼ 1 fm. This
explains the phenomenon of Quark Confinement.

We cannot calculate anything when αs becomes of the
order of unity, so the microscopical theory of confine-
ment does not yet exist.
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At present we know 6 types of quarks, namely u,
d, s, c, b, and t, which have names “up”, “down”,
“strange”, “charm”, “beauty”, and “top”. The types
of quarks are called “flavours”. As quarks cannot be
observed as free particles, their masses are not well-
defined. However, the first three quarks are considered
as light ones, whereas c, b, and t quarks are considered
as heavy ones.

All quarks are fermions with spin 1/2. The quantum
numbers of quarks are presented in Table 1:

flavour charge mass other numbers
u +2/3 1.5 to 4 MeV Isospin = 1/2
d -1/3 4 to 8 MeV Isospin = 1/2
s -1/3 80 to 130 MeV Strangeness = -1
c +2/3 1.15 to 1.35 GeV Charm = +1
b -1/3 4.1 to 4.9 GeV Bottom = -1
t +2/3 170 to 185 GeV Top = +1

Table 1. Quantum numbers of quarks.
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When we consider hadrons as bound systems of quarks,
two approaches can be used.

In the case of hard interactions with large transfer mo-
menta, hadron consist of valence quarks which masses
are presented in Table 1, as well as of gluons and of
quark-antiquark pairs which are produced radiatively
by gluons (see Fig. 3c). The quarks from these pairs
are called sea-quarks.

When considering hadron systematics and soft hadron
interaction, gluons and sea pair can be included in the
content of an effective object called constituent quark.
So in this cases, we can consider mesons and baryons
as q̄q and qqq systems, respectively.
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3 Relativistic kinematics, 2 → 2 Scattering
Amplitude, and Cross Sections

3.1 Mandelstam Variables

We will consider mainly the particle interactions at
high energies. In this case energy E and vector mo-
mentum p of a particle with mass m and velocity v
are given by

E =
mc2

√

1 − v2

c2

, p =
mv

√

1 − v2

c2

. (3.1)

The energies and momenta of a particle in different
frames can be calculated using the Lorentz transfor-
mations. However such calculations becomes more
simple if one use 4-dimential vectors and relativistic
invariants. The energy E and 3-momentum p of a
particle of mass m form a 4-vector p = (E,p), whose
square p2 ≡ E2 − |p|2 = m2 is relativistic invariant.
The velocity of the particle is β = v/c = |p|/E.
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The simplest situation is the 2 → 2 particles interac-
tion, it can be elastic (say, pp→ pp) or inelastic (say,
π−p→ K0Λ) collision, see Fig. 4.

Figure 4: Two-particle final state in collision of two hadrons with momenta p1 and p2.

Let us consider the case when two particles 3 and 4 are
produced in the collision of incident particles 1 and 2

1 + 2 → 3 + 4 , (3.2)

and let p1, p2, p3, p4 and m1,m2,m3, m4 be their 4-
dimential moments and masses, respectively. So we
have

p1 + p2 = p3 + p4

p2
1 = m2

1, p
2
2 = m2

2, p
2
3 = m2

3, p
2
4 = m2

4

(p1 + p2 − p3)
2 = p2

4 = m2
4 (3.3)
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Let us introduce the Lorentz-invariant Mandelstam
variables which are defined by

s = (p1 + p2)
2 = (p3 + p4)

2

t = (p1 − p3)
2 = (p2 − p4)

2 (3.4)

u = (p1 − p4)
2 = (p2 − p3)

2 ,

and they satisfy

s + t + u = m2
1 +m2

2 +m2
3 +m2

4 , (3.5)

so only two variables are independent. Usually s and t
are chosen as the two independent variables for 2 → 2
process.

The variable s has a physical sence of energy. In lab.
frame

s = p2
1 + p2

2 + 2p1 · p2 = m2
1 +m2

2 + 2m2E1lab. , (3.6)

because p2 = 0 and p1 · p2 = m2E1lab..
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In c.m. frame by definition p2 = −p1, so p1 · p2 =
E1E2 + |p|2 and

s = (E1cm + E2cm)2 . (3.7)

In many cases it is interesting to know the c.m. en-
ergies of final particles 3 and 4 for given value of s.
They are given by expressions

E3cm =
s +m2

3 −m2
4

2
√
s

, E4cm =
s +m2

4 −m2
3

2
√
s

.

(3.8)

The variables t and u, Eq. (3.4) have a physical sence
of transfer momenta.

In the important case of elastic scattering when par-
ticles 1 and 3 as well as 2 and 4 coinside we have in
c.m. frame

t = −2|p|2(1 − cos(θ) = −4|p|2sin2(θ/2) . (3.9)
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3.2 S-matrix and scattering amplitude

Here we will consider the formalism of so-called S-
matrix. We will see that using the very general its
properties, such as unitarity, analiticity, conservation
laws, etc., allow one to obtain very important infor-
mation about interactions of elementary particles.

Let us consider a sample of physical states and pos-
sible transitions of state Φi into state Φf . It is equal
to the modulo squared of the correspondent matrix
element of S-matrix:

Sfi = 〈Φ+
f (t = +∞)|Ŝ(+∞,−∞)|Φi(t = −∞)〉 .

(3.10)

The S-matrix elements themselves are evaluated be-
tween asymptotic states at times t = ±∞ (the initial
state a long time before the interaction commences
and the final state a long time afterwards).
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If the interaction is absent, the state of the system
cannot be changed, that corresponds to the unit S-
matrix I = δfi. Generally

Sfi = δfi + iTfi (3.11)

The transitions between states i and f are possible if
Tfi 6= 0 and the matrix elements Tfi determine the
transition amplitude A(i → f). This amplitude is a
Lorents-invariant scalar determined as

Tfi = (2π)4δ(4)(
∑

pi − ∑

pf)A(i→ f) . (3.12)

The Lorentz invariant amplitude A(i→ f) is called a
scattering amplitude, it depends only on Lorentz
invariant scalars.
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3.3 Crossing and physical regions

The scattering amplitudes are the analitical functions
of their variables. It means that the amplitudeA(p1, p2, p3, p4)
has physical sence at arbitrary values of p1, p2, p3, p4.
The important point here is that the incoming particle
with negative value of 4-momentum (in the sense that
if p1 + p2 = p3 + p4, p3 + p4 − p1 − p2 = 0) becomes
the outgoing antiparticle with positive 4-momentum,
and vice versa.

For example, let us consider the elastic proton-neutron
scattering. It means that the incident and final state
proton has momenta p1 and p3, whereas the incident
and final state neutron has momenta p2 and p4 and
the scattering amplitude for the process 1+2 → 3+4
is A1+2→3+4(p1, p2, p3, p4).
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The crossing assumption means that the same analiti-
cal function should describe the processes 1+3̄ → 2̄+4
and 1 + 4̄ → 2̄ + 3. So, we have

s-channel, p + n→ p + n, s > 0 t < 0 u < 0
t-channel, p + p̄→ n + n̄, t > 0 s < 0 u < 0
u-channel, p + n̄→ p + n̄, u > 0 t < 0 s < 0

The values of variables s, t, u in these three cases are
not overlapping. The situation can be shown in the
so-called Mandelstam plane with triangle coordinates
shown in Fig. 5.
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Figure 5: Mandelstam plane for elastic scattering 1 + 2 → 3 + 4.

The shape of curves in Fig. 5 that show the boundaries
of s-, t- and u-channels depend on the masses of initial
as well as final particles.
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3.4 Probabilities of transitions and decays

The probability of transition of initial state i into final
state f (i 6= f) during a unit of time t is equal to

w̃i→f =
1

t
|Tfi|2 =

1

t
(2π)8[δ(

∑

pi−∑

pf)]
2|A(i→ f)|2

(3.13)

Here we have the square of δ-function. The δ-function
is an operator determined as

∫

f(x)δ(x− a)dx = f(a) . (3.14)

One δ-function in Eq. (3.13) can be represent as

δ4(
∑

pi − ∑

pf) =
1

(2π)4
∫

d4xe(
∑

pi−
∑

pf )x . (3.15)
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The probability of transition

w̃i→f = (2π)4 δ(
∑

pi − ∑

pf) |A(i→ f)|2 V . (3.16)

To account for that several final states are possible the
probability of transition w̃i→f should be multiplied by
the number of final states in the volume V , that is
equal to

Φ =
n
∏

k=1

V d3pk
(2π)3

, (3.17)

where n is the number of particles in the final state
and pk is the 3-dimential momentum of k-th particle
and be divided by

N =
l

∏

i=1
2EiV · n

∏

k=1
2EkV (3.18)

that is connected with normalization of the initial and
final wave functions.
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As a result, we obtain the normalized probability of
transition in the form

dwi→f =






l
∏

i=1
2EiV







−1

V |A(i→ f)|2 dτn , (3.19)

where

dτn = (2π)4 δ(
∑

pi − ∑

pf)
n
∏

k=1

d3pk
((2π)32Ek

(3.20)

is the n-particle phase space. In Lorentz-invariant
form it can be written as

d3pk
(2π)32Ek

=
d4pk
(2π)3

δ(p2
k −m2

k) . (3.21)

In the case of decay of a particle with mass m into
several (n) ones in the rest frame, Ei=1 = m,

dwi→f =
1

2m
|A(i→ f)|2 dτn . (3.22)
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3.5 Differential cross sections

In the case of collision of two particles with vector
momenta pa and pb and energiesEa and Eb. The most
important physical value is the cross section that
shows the effective range of particle interaction. Cross
section can be obtained by dividing the probability dw
by the flow density j of incident particles

dσi→f = dwi→f/j , (3.23)

where

j =
I

V EaEb
, (3.24)

that results in

dσ =
|A(i→ f)|2

4I
dτn , (3.25)

where
I =

√

(papb)2 −m2
am

2
b (3.26)
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In the case when only two particles exist in the final
state we obtain in c.m. frame

dσ =
1

64π2
|A(i→ f)|2 |p|

|p0|E2
0

dΩ . (3.27)

where |p0| and E0 are the the modulo of the momen-
tum and energy in the initial state and |p| is the mod-
ulo of the momentum in final state.

In the important case of elastic scattering and az-
imuthal symmetry dΩ = 2πdcos(θ) |p0| = |p|, dΩ =
2πdcos(θ), dt = 2|p|2dcos(θ) and we obtain

dσ

dt
=

1

64π2|p|2s |Ael|2 =
1

64π2|pa(lab)|2m2
b

|Ael|2 .
(3.28)
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Sometimes it is suitable to define the scattering anpli-
tude by another way, as

fi→f =
Ai→f

8π
√
s
,
dσ(ab→ ab)

dΩc.m.
= |fab→ab|2 . (3.29)

or as

Mi→f =
Ai→f

16πp0
√
s
,
dσ

dt
= 4π|Mab→ab|2 (3.30)

The integral of considered differential cross section de-
termines the total cross section of the considered pro-
cess

σ(a + b→ 1 + 2) . (3.31)

The sum of all possible channels corresponds to the
total cross section of ab interaction.
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4 Unitarity

4.1 Unitarity of S-matrix

The very important property of S-matrix is its unitar-
ity:

S+S = 1 , (S+S)fi =
∑

n
S∗
nfSni = δfi . (4.1)

Here we sum over all channels n and integrate over all
variables of the intermediate states.

In the case of only diagonal transitions (i = f)
∑

n
|Sni|2 = 1 , (4.2)

it means that the sum of the probabilities of all pos-
sible transitions is equal to unity.

Eq. (4.1) can be written as

(S+S)fi =
∑

n
(δfn − iT+

fn)(δni + iTni) = δfi , (4.3)

i.e.
Tfi − T ∗

if =
∑

n
iT ∗

nfTni . (4.4)
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For the amplitudes A we obtain

A(i→ f)−A∗(i→ f) = i(2π)4
∑

n
δ(

∑

pn−∑

pf)A(i→ n)·A∗

(4.5)
that is the unitarity condition fo the scatter-
ing amplitude.

In the most important case of elastic scattering i = f
and we have

2ImAel = (2π)4
∑

n
δ(

∑

pn − ∑

pf)|A(i→ n)|2 ,
(4.6)

where the imaginary part of elastic scattering ampli-
tude ImA(i→ i) is expressed via the sum af all pos-
sible intermediate states n. So, we have

ImAel(s, t) =
1

2

∑

n

∫

|A(i→ n)|2dτn (4.7)

=
1

2

∑

n
∆A(n)(s, t) =

1

2
∆A(s, t) ,

that is non-zero only at
√
s ≥ √

sn, where sn is the
threshold energy for the correspondent channel.
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New contributions to absorptive part ∆A(n) of
elastic scattering amplitude will appear with increaase
of energy, when new inelastic channels will appear.
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4.2 Optical Theorem

From unitarity condition we obtain

ImAi→i(q = 0) = 2p0

√
s

∑

σn = 2p0

√
s σtot . (4.8)

that is called the optical theorem.

As an analogy with classical optic, imaginary part of
elastic scattering amplitude determines the absorption
of icident particle, whereas the real part determines its
refraction.
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4.3 An example: K0
L → µ+µ− decay

Let us consider the probability of rare decay K0
L →

µ+µ− that was considered as a problem in early 70’s.
During some time this decay was not discovered.

there were theoretical reasons to think that the main
contribution to the discussed decay comes from the
diagram shown in Fig. 6, i.e via γγ intermediate state.

Figure 6: K0
L
→ µ+µ− decay via γγ intermediate state.

From the unitarity condition the imaginary part of
the considered amplitude is determined by

ImA(K0
L → µ+µ−) =

∫

A∗(µ+µ− → γγ)A((K0
L → γγ)dτγγ
(4.9)

The amplitude in the right-hand side are known, the
first one from QED and the second one from the
known decay K0

L → γγ that allows one to calculate
the low boundary for K0

L → µ+µ− decay probability.
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4.4 n-particle phase space and behaviour of
cross sections near the threshold

The phase space of n secondary particles can be cal-
culated by using the multiplicative expression which
allow one to present dτn as the product of τn1 and
τn2=n−n1.

dτn = dτn−1(W1)dτ2(
√
s,W1,m

2
n)
dW 2

1

(2π)
, (4.10)

where W1 is is the c.m. energy of n− 1 particles.

For example, in the case of three particle in the final
state

dτ3(
√
s) = dτ2(W1, m

2
1, m

2
2) dτ2(

√
s,W1, m

2
3)
dW 2

1

(2π)
.

(4.11)

37



Near the threshold of n particle production, sn, all of
them are non-relativistic ones. In this case one can
obtain

τn(s) ∼ (s− sn)
3n−5

2 . (4.12)

The amplitude should not have a strong dependence
on these variables in rather small energy region (some
special reasons are needed for this) So the energy
dependence of particle production cross section near
the threshold should be determined by non-relativistic
phase space.

In particular, for two-particle final state we have

σ2(s) ∼ (s− sn)
1/2 , (4.13)

for three-particle final state

σ3(s) ∼ (s− sn)
2 , (4.14)

and for four-particle final state

σ4(s) ∼ (s− sn)
7/2 . (4.15)
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The comparison of these prediction for the reactions
with three-particle final state and four-particle final
state are presented in Fig. 8.

Figure 7: Energy dependence of reactions pp→ pnπ+ (black points), pp→ ppπ0 (open
points), and pp→ ppπ+π− (triangles) near threshold. The curves represent Eq. (4.13)
and Eq. (4.14) energy dependences normalized to one experimental point for every
reaction.

The non-relativistic expressions for phase space rea-
sonably describe the energy dependences of the con-
sidered reactions near thresholds. With increase of
energy the energy dependences of reaction amplitudes
become important and the energy dependences of re-
action cross sections changes.
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4.5 Froissart theorem

In 1961 M. Froissart obtained the bound fo the in-
crease of total cross section with the energy.

σtot(s) ≤ C ln2 s , s→ ∞ . (4.16)

The idea of this boundary comes from the Yukawa
potential for strong interactions, the probability of in-
teractio at large distance r, P (r) = P0e

−br. The to-
tal inelastic cross section can not be larger that the
geometrical one π/b2 and the corrections to this esti-
mation can not be more strong than the logarithmical
ones.

The detaile proof of boundary Eq. (62) is based on
the partial vawes (i.e. orbital momentum) expansion
and on dispersion relations (see next Section) and can
be found in the original paper

M.Froissart. Phys.Rev. 123 , 1053 (1961).
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5 Analiticity and dispersion relations

5.1 Structure of singularities for high en-
ergy particle collision

All physical amplitudes are assumed to be the analu-
tycal functions of their variables.

At energies below the elastic treshold, i.e. at s <
(ma +mb)

2 the elastic scattering amplitude a + b →
a + b usually is pure real

At s > (ma+mb)
2 the values A(s+ iε) and A(s− iε)

become different at ε→ o. It means that there exists
a cut in the real axix of complex s-plane which start
at the point s = s2 = (ma+mb)

2 and goes to infinity,
as it is shown in Fig. 8.

Figure 8: Elastic scattering amplitude 1+2 → 1+2 together with its first two-particles
cut in the complex s-plane.
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The physical amplitude is determined on the up bor-
der of the cut, i.e.A(s + iε) and this part of plane is
called as physical sheet.

At higher energy new branching points s3 and the cuts
appeaer. The discontinuity of the lastic scattering
amplitude is the difference of its values on the up and
dpown borders of the cut

∆A(s) = A(s + iε) − A(s− iε) , (5.1)

that coinside with the absorptive part of the ampli-
tude.

The examples of simple mathematical functions that
have similar analitical properties are the functions

f1(s) = a1 + b1(sn − s)m+1/2 (5.2)

and

f2(s) = a2 + b2(sn − s)m ln (sn − s) . (5.3)

The discontinuity ∆f1(s) and ∆f2(s) coinside with
the cuts connected with even number n = 2m of and
odd number n = 2m + 1 of produced particles, re-
spectively.
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For the determination of the scattering amplitudeA(s)
one should to present all its cuts in the complex s-
plane from s = sn until infinity, as it is shown in
Fig. 9.

Figure 9: Elastic scattering amplitude a + b → a + b with its two-particle, three-
particle and four-particle branching point that correspondent to particle production in
the intermediate state together with the corresponding cuts in the complex s-plane.
Really all angles φi → 0.

For fixed value of variable t = t0 the variable u that
corresponds to the u-channel reaction 1 + 4̄ → 2̄ + 3
changed in dependence of s value, as u = ∑m2

i−s−t.
This point is also the branching point of the amplitude
A(s), and the correspondent cut exists in the real axes
of s in the negative direction, until s = −∞.
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Usually there exists the region where the scattering
amplitude is real and A∗(s) = A(s∗). The physical
amplitude is determined upper the right-hand-side cut
and below the left-hand-side cut, i.e.

A(s) = A(s + iǫ) , A(u) = A(u + iǫ) = A(s− iǫ) .
(5.4)

the discontinuity on the right-hand cut

∆A1(s, t0) =
∑

n
∆A(n)(s, t0) = ImAa+b→a+b((s+iǫ, t0)

(5.5)
and the discontinuity on the left-hand cut

∆A2(u, t0) =
∑

n
∆A(n)(u, t0) = ImAa+b̄→a+b̄(s−iǫ, t0) .

(5.6)
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5.2 Poles of the scattering amplitude and
dispersion relation at fixed t

The scattering amplitude at the point s + iδ can be
written as the Cauchy integral over an arbitrary con-
teur around this point on the physical sheet

A(s + iδ, t0) =
1

2πi

∮ A(s′)

s′ − (s + iδ)
ds′ . (5.7)

If the only singularities of the scattering amplitude on
the physical sheet are the cuts and branching points
and the cuts are not overlapped, one can deform the
conteur and obtain it as is shown in Fig. 10.

Figure 10: Conteur integral which determines the elastic scattering amplitude in the
point s + iδ.
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If the amplitude A(s) decrease at s→ ∞ faster than
1/(ln s)2, the first integral over contout CR is negligi-
ble at R→ ∞ and we obtain

A(s, t = t0) =
1

π

∫ ∞
s2

∆A1(s
′, t0)

s′ − s− iδ
ds′. + (5.8)

+
1

π

∫ ∞
u2

∆A2(u
′, t0)

u′ − u + iδ
du′ δ → 0 .

In many cases in the system ab (or in the system ab̄)
there exists bound states with m2 < s2, or m2 < u2.
The simplest example is a pion in the case of NN̄
scattering.

Figure 11: Elastic scattering amplitude a+ b→ a+ b via s-channel pole.

For the case of only one pole, see Fig. 11, we obtain

∆A1(s, t0) = π|giAB|2δ(s− si) (5.9)

with si = m2
i that should be accounted for.
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Accounting for both the poles in s-channel and in u-
channel we can write the final expression as follows

A(s, t0) =
∑

i

ai
(si − s)

+
∑

j

aj
(uj − u)

+ (5.10)

+
1

π

∫ ∞
s2

∆A1(s
′, t0)

s′ − s− iδ
ds′. +

1

π

∫ ∞
u2

∆A2(u
′, t0)

u′ − u + iδ
du′ .

This expression is known as the dispersion rela-
tion for the elastic scattering amplitude at fixed t =
t0.

Here it is assumed that on the physical sheet there
exist only poles and cuts and all another singulari-
ties of the elastic scattering amplitude are placed on
unphysical sheets.

47



5.3 Real part of the elastic scattering am-
plitude

In the operator sence

1

s′ − s∓ iǫ
=

1

s′ − s
± iπδ(s′ − s) , (5.11)

so we can write the real part of the amplitude
as

ReA(s, t0) =
∑

i

ai
(si − s)

+
∑

j

aj
(uj − u)

+ (5.12)

+ P
1

π

∫ ∞
s2

∆A1(s
′, t0)

s′ − s
ds′ + P

1

π

∫ ∞
u2

∆A2(u
′, t0)

u′ − u
du

If the elastic scattering amplitude A(s, t0) decrease
with s slower than 1/ ln2 s, one can write the Couchet
integral Eq. (5.10) for the quantity

A(1)(s) =
A(s) − A(s0)

s− s0
, (5.13)

where s0 is an arbitrary point and we obtain disper-
sion relation with one subtraction.
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The real part of the elastic scattering amplitude can
be measured experimentally via its interference be-
tween strong and electromagnetic (Coulomb) scatter-
ing at very small |t|. The discontinuities ∆A1(s, t)
and ∆A2(s, t) at t = 0 can be expressed via the total
ab and ab̄ cross sections. Say, in lab. frame we have

∆A1(s) = 2pambσ
tot
ab , (5.14)

∆A2(s) = 2pambσ
tot
ab̄ , (5.15)

and s′ − s = 2mb(E
′
a − Ea), u

′ − u = 2mb(E
′
a + Ea)

and for the real part of elastic ab amplitude we have

ReAel
ab =

∑

i

ai
2mb(Ei − E)

+
∑

j

aj
2mb(Ej − E)

+ (5.16)

+
2mb

π

∫ ∞
ma









σtotab
E ′ − E

+
σtotab̄

E ′ + E









√

E ′2 −m2
adE

′ ,

where Ei and Ejare the lab energies that correspond
to the bound states production, say

Ei =
m2
i −m2

a −m2
b

2mb
. (5.17)
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Dispersion relation can be compared with the experi-
mental data. Its violation means the violation of as a
minimum one of the underlying principles of elemen-
tary particle physics, namely

i) conservation of probabilities;

ii) micro-causality;

iii)Lorentz-invariance;

iv) structure of S-matrix singularities.

The real part depends on the integrals over total cross
sections. It means that the precision measurement
of the real part of elastic scattering amplitude give
information about the behaviour of total cross sections
at energies where direct measurements are impossible.
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5.4 Dispersion relations for πp and pp scat-
tering

Usually the ratio of the real to imaginary parts is con-
sidered

ρhN =
ReA(s)

ImA(s)
. (5.18)

The comparison of the experimental data on the val-
ues of ρπ−p with the calculations is presented in Fig. 12.

Figure 12: Comparison of ReA(s)
ImA(s)

experimental data for π−p elastic scattering (points)
with the dispersion equation calculations shown by curve.
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In the case of proton-proton elastic scattering the the-
oretical situation is more complicated. In s-channel
there exist only cuts, the first one starts from the point
s = 4m2

p . However, in u-channel (pp̄ scattering) we
have one-pion pole at u = m2

π, after that the cuts
that correspond to the virtual production of 2π. 3π,
etc. and only after, at larger u the elastic scattering
cut that corresponds to pp̄ → pp̄ elastic scattering
appears. So we have the pole and the unphysical dis-
continuity in the interval 4m2

π < u < 4m2
p that is

unknown experimentally.

Fortunately the contribution of this discontinuity to
ρpp decrease at high energies as 1/s and it can be ac-
counted for by the subtraction term at not very low
energy. This unphysical discontinuity can create prob-
lems for the theoretical calculations only at compara-
tively low energies.
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The comparison of the experimental data on the val-
ues of ρpp scattering with calculations is presented in
Fig. 13.

Figure 13: Comparison of ReA(s)
ImA(s)

experimental data for pp elastic scattering (points)
with the dispersion equation calculations shown by curve.
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6 Elastic and Inelastic Collisions at Differ-
ent Energies

6.1 Hadron interactions in different energy
regions

The hadron interaction processes can be divided (of
course, rather subjectively) into the energy regions
defined in Table 2:

low energy plab ≤ (1.5 GeV/c
intermed. energy 1.5 ≤ plab ≤ 30 GeV/c

high energy 8 ≤ √
s ≤ 1000 GeV

superhigh energy
√
s ≥ 1 TeV

Table 2. Hadronic interactions classified by energy
regions.

At low energies the elastic scattering dominates, some-
times it can realize via s-channel resonances, i.e. via
pole diagram.
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At intermediate energies the structure of elastic hN
interactions is rather complicated. Sometimes it is
considered as a meson exchange in t-channel. The
qusielactic processes become play an important role,
when in the processes 1 + 2 → 3 + 4 one or both final
particles are resonances. Also there exists a number
of s-channel resonances, etc. and the processes of real
multiparticle production start to appear. Due to all
these the structure of elastic hN interactions is rather
complicated.

At high energies the structure of interactions becomes
simpler. The Regge-pole exchange phenomenology,
which will be considered later provides a useful tool
for the description of many quantitative features of
high energy hadronic collisions and small momentum
transferred.

At high momentum transferred different QCD ap-
proaches can be used.
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For high energies plab > 30GeV, more than 80% of
the total cross section is associated with processes in
which new particles are produced. As the beam en-
ergy increases, the average number of the produced
secondaries per inelastic event < n > also increases
firstly as ∼ ln s and even more fast at higher energies.
However, the number of secondaries produced on the
unit of initial energy decrease with the growth of s.

All produced secondaries can be divided into two groups,
fragmentation particles and centrally produced par-
ticles. The first ones carry out significant parts of
the energy of the incident hadrons and their quantum
numbers correlate with the quantum numbers of the
incident hadrons, for example, in the case of a proton
beam the fasters secondaries usually are proton and
neutron. In the case of π− beam the fragmentation
production of secondary π− or K− is more proba-
ble than the production of π+ or K+. The reason is
that rather often the fragmentation secondaries con-
tain the valence quarks of incident particles. Centrally
produced particles have rather small longitudinal mo-
menta in c.m. frame, particles and antiparticles are
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produced in equal portions and these particles contain
only sea quarks produced in the collision.

The main part of produced secondaries are pions, the
large fraction of them appears as a result of meson and
baryon resonances decay. The number of produced
K-mesons is significantly smaller than the number of
pions, and the number of antibaryons is more smaller.
For example, the ratios of particles produced in pp
collisions at

√
s = 200 GeV in the central region are:

K−/π− ≃ 1/10 , p̄/π− ≃ 1/20 . (6.1)

At superhigh energies the multiplicities of secondary
particles increase and, at the same time the proba-
bility of hard processes such as gluon jet production
becomes significant. The behaviour of cross sections
in dependence on the initial energies is govered by
Froissart theorem.
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6.2 Neutral kaon regeneration

The processes in the system of neutral kaons present
us very nice example of quantum effects in high energy
physics.

From the point of view of strong interaction there exist
two states, K0 and K̄0 which have strangeness equal
to +1 and -1, respectively. Strangness is conserved in
strong interaction, so K0 and K̄0 are different parti-
cles.

Free kaons decay via weak interaction, where strangeness
is not conserved, but the CP -parity is approximately
conserved (its violation occurs with very small probability).K0

ds̄ and K̄0 = d̄s have no the definite values of CP -
parity. From the point of view of decay we have two
another system, K0

s with CP = +1, which decay into
ππ with mean life time 0.9 · 10−10 s and K0

L with
CP = −1, which decay into 3π with mean life time
5 · 10−8 s.
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So from the point of view of hadrons (in strong inter-
actions)

K0 =
(Ks +KL)√

2
, K̄0 =

(Ks −KL)√
2

, (6.2)

and from the point of view of weak decay

Ks =
(K0 + K̄0)√

2
, KL =

(K0 − K̄0)√
2

. (6.3)

Now let us consider two interesting cases.

Below the threshold of K0K̄0 pair production only
K0 can be produced, say in the low energy reactions
π−p → K0Λ or pp → K0Λp. However, Ks and KL

that consistK0 in accordance with Eq. (6.2) will decay
with their own mean life times presented above. At
some distanse the number of KL will be many times
larger than the number ofKs, and, in accordance with
Eq. (6.3) K̄0 will appear.
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In the second case let us consider the kaon beam at
significantly large distance from the production point,
so all Ks decayed and we have pure KL beam. Let
this beam interacts with another extended target T,
as it is shown in Fig. 14.

Figure 14: Regeneration of K-mesons.

In strong interactions we should consider separately
the interactions of K0 and K̄0. The absorption cross
section of K̄0 in any target is larger in comparison
with K0 absorption cross section, so the main part of
K̄0 will be absorbed and after the target we will have
pure K0 beam which consists of the equal part of Ks

and KL in agreement with Eq. (6.2). The process of
appearance of Ks after a target is called K-meson
regeneration.
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6.3 Energy behaviour of hadron cross sec-
tions

In the energy region
√
s = 5− 50 GeV the total cross

sections of hN interactions are practically constant.

Figure 15: Total and elastic cross sections of pp, π−p, and K−p collisions.

If one can see in more details, the total cross sections
slightly decreaase at low energies and later srart to
increase. The elastic cross sections repeate this be-
haviour.
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At very high energies, see Fig. 16, there exist up to
now only several experimental points for p̄p collisions
obtained from colliders with rather large errorbars.
However, they evidently show rather fast increase of
this cross section with the energy.

Figure 16: Total cross sections of p̄p collisions at very high energies.

Let us consider the energy independent behaviour of
the total cross sections from the point of view that
with the increase of the initial energy more and more
new channels of secondary production are opened.
The answer is that at the same time the cross sections
of previously opened channels decrease. A schematic
example is shown in Fig. 17: at s = s2 the elastic
scattering channel is open and the total cross section
σtot is equal to the elastic cross section σel.
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Figure 17: Energy dependence of total hadron-hadron cross section (solid curve) as
a sum of elastic cross section (dashed curve) starting from threshold s2 and several
inelactic cross sections (dash-dotted curves) which start at thresholds s3, s4, and s5.

In the case of pp collisions the first inelastic threhold
(pNπ final state production) appears at s = s3 > s2.
Next inelastic threholds (production of two, three,etc.
pions) appear at s = s4, s = s5, etc., and increase
of their cross sections are equilibrate by decrease of
firstly of σel, after that by decrease of cross section of
pp→ pNπ reactions, etc. It means that the cross sec-
tion of every channel (of every exclusive reaction)
can increases or decreases, but the sum of all these
cross sections equal to the total cross section σtot is
not changed.
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At the same time some exclusive cross sections also
can be energy independent in rather large energy re-
gion. The sinplest example are the elastic cross sec-
tions, in the region

√
s = 5 − 30 GeV we have

σelpN
σtotpN

≃ 1

6
,

σelπN
σtotπN

≃ 1

8
,

σelKN
σtotKN

≃ 1

10
. (6.4)

Let us consider the differences of total cross sections of
antiparticles and particles with protons. In all cases
these differences are positive ones due to s-channel
poles contributions in the cases of antiparticle inter-
actions, namely there are a pion pole in p̄p scattering
and nucleon pole in π−p scattering, whereas there are
no s-channel poles in the cases of pp and only small
number of poles in π+p scattering.
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The differences of σtotp̄p −σtotpp , σtotπ−p−σtotπ+p, and σtotK−p−
σtotK+p measured experimentally at plab > 35 GeV/c
that means

√
s > 8 GeV are presented in Fig. 18.

Figure 18: The differences of the total cross sections of p̄p − pp, π−p − π+p, and
K−p−K+p collisions.

One can see that the differences of the presented cross
sections decrease with the energy as the powers of s.
It means that in the high energy region, the Pomer-
anchuk theorem which states that the total cross
sections of particles and antiparticles are equal at asymp-
totically, high energies, is approximately fulfilled.
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6.4 Limited transverse momenta of secon-
daries and Peyrou plot

The experimental fact is that in inelastic hadron-hadron
interactions at high energy the produced particles have,
as a rule, small transverse momenta (pT ) (of the order
of their masses). At the same time the longitudinal
momenta (pL) can be as large as possible due to the
energy conservation.

This situation can be shown in so-called Peyrou plot,
where particle population is presented on the pL− pT
plane, see Fig. 19.

Figure 19: Peyrou plot defining various regions for a high energy collision (starred
values refer to the c.m. frame).
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The phase space boundary is shown by semicircle.
The main part of secondary particle are placed be-
low the horizontal line which schematically divide the
regions of low and high pT , i.e. in the regions of diffrac-
tion dissociation (DD in the Fig. 21), fragmentation
regions, and central region, and only a few of them
can be found in the region of hard (high pT ) collision
processes.

However, the average values of transverse momenta
are different for different secondaries, they increase
with the mass of secondary particle. For example, in
the central region of in pp collisions at

√
s = 200 GeV

〈pT〉π− ≃ 0.35GeV/c , 〈pT 〉K− ≃ 0.53GeV/c , 〈pT〉p̄ ≃ 0.68GeV
(6.5)
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6.5 Multiperipheral collisions

The main properties of the soft multiparticle produc-
tion at high energies are characteristic features of the
multiperipheral collisions picture. At high en-
ergies the so-called ladder diagrams dominates, their
rize and evolution are shown in Fig. 20.

Figure 20: A sequence of t-channel ladder Feynman diagrams: (a) the single particle
exchange Born approximation, (b) the box diagram, and (c) n-rung ladder.
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The process of n-particle production in a high energy
collision is shown in Fig. 21:

Figure 21: (a) Multiperipheral n-particle production process. (b) Cut-ladder multipe-
ripheral diagram, and (c) cluster production multiperipheral diagram.

The ladder is called multiperipheral if all the secon-
daries can be ,enumerated in decreasing order of their
longitudinal momenta:

p1L ≥ p2L ≥ ... ≥ pnL . (6.6)

and all transverse momenta are small enough

piT ≤ mi . (6.7)
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In the multiperipheral processes all squares of the mo-
mentum transferred along the ladder ti and squares
of the adjacent invariant masses si,i+1 are limited as
s→ ∞:

ti = (pa −
i

∑

k=1
pk)

2

= (1 − i
∑

k=1
xi)

2 · (m2
a −

i
∑

j=1

m2
jT

xj
)2 − (

i
∑

j=1
p2
jT )2 ,(6.8)

si,i+1 = (pi + pi+1)
2

= (xi + xi+1) · (
m2
iT

xi
+
m2

(i+1)T

xi+1
)

− (piT + p(i+1)T )2 . (6.9)
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6.6 Formation time

The important theoretical point is the existence of a
formation time for secondary production.

IN QED the accelerated electron with energy Ee, ve-
locity ve and mass me emits the photons with wave-
length λ from a distance

λf ≃
λ

1 − ve
≃ λ

2







Ee

me







2

(6.10)

A similar example for strong interaction was demon-
strated on a quantum mechanical level. Let us con-
sider the case of deuteron–nucleus interaction, Fig. 22,
with impact parameter b such that

RA < b < RA + Rd . (6.11)
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Figure 22: Fast deuteron disintegration in peripheral dA collision, b is the impact
parameter.

If the transfer momenta are comparatively small. In
this case both the deuteron ground state and its desin-
tegration can occur. After the interaction we should
expand the wave function of the final state d∗ as su-
perposition of deuteron and free proton and neutron:

Ψd∗ = C0Ψd+
∑

i
CiΨ

(i)
pn , |C0|2+

∑

i
|Ci|2 = 1 . (6.12)

However, it is possible to write such superposition only
at rather large time/distance, when nucleons in d∗

state will interact. This needs a time of the order of
Rd/v where v. So the state d∗ can be determined as
a deuteron or free p + n state only at distance larger
than

lf =
Ed

md

Rd

v
(6.13)
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This length is the formation length of the considered
process. The value of Rd/v is of the order of 10 fm, so
the formation length for relativistic deuterons with a
large Lorenz-factor Ed/md can be many times larger
than the nuclear radii. At the distances smaller than
lf we can not say anything about the nature of the
state d∗.

All this can be extended and used for the explanation
of multiple hadron production processes.
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6.7 Secondary production in QCD

The simplest case of real QCD mechanism of sec-
ondary production is high energy e+e−-annihilation.

Figure 23: Multiple quark-antiquark pair production in e+e−-annihilation that results
in multiple production of secondary hadrons.

In the first step the virtual photon produces a quark-
antiquark pair q1q̄1 at small distance with large rel-
ative momentum, see Fig. 23a. When the distance
between these two quarks becomes about 1 fermi (the
confinement range), the tension of the colour field be-
comes so large that new quark-antiquark pair q2q̄2 can
be produced (Fig. 23b).
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The probability that these four quarks will turn into
two mesons (say, pions) is small. More probably sev-
eral new quark-antiquark pairs q3q̄3, q4q̄4 and q5q̄5
will be produced, that corresponds to the multiple
production of secondaries, as it is shown in Fig. 23c,
where five secondary mesons will be produced after
hadronization of five quark-antiquark pairs. We will
call such configuration of quarks a coloured string.

In the case of hadron–hadron inelastic interaction more
probable is the production of gluon (octet) string 8×8̄.

The most important characteristic for our considera-
tion is that due to the confinement mechanism of sec-
ondary production we need about 1 fm longitudinal
distance for the production of every quark-antiquark
pair (i.e. for each secondary hadron). So, at high en-
ergies the space distance of secondary production can
be about 10 fm, or even more, that is larger than the
nucleus radius. It means that in the case of secondary
production on nuclear target even without accounting
the formation time effect, some part of secondaries
will be produced outside the nucleus.
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7 Regge-Gribov theory

7.1 Regge trajectories

Now we will consider the scattering theory in which
the scattering amplitudes are analytically continued
in the complex angular-momentum j-plane.

By analytically continuing the partial-wave amplitudes
in angular momentum, one can represent the scatter-
ing amplitude as a sum of pole and cut contributions
in the complex l plane. These singularities are related
to the aymptotic behaviour of the scattering ampli-
tude. The summation of ladder diagrams at high en-
ergies leads to the scattering amplitudes that contain
so-called Regge-trajectories.

A(s, t) =
∑

i
Ai ∼ ∑

i
g2
i · sαi(t) , (7.1)

where Regge trajectory αR(t) usually are written as

αR(t) = αR(0) + α′
R t , (7.2)

where αR(0) (intercept) and α′
R (slope) are some num-

bers.
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The integer values of ReαR(t) with t > 0 (non-physical
region) correspond to the real particle exchange in t-
channel with mass M 2 = t. So the notation of the
trajectory usually coincides with that of the lowest
mass hadron lying on this trajectory. The only ex-
ception is the Pomeron, the vacuum Regge trajectory
with the highest intercept.

Regge trajectories have a special quantum number
signature. The t-channel exchange by a Reggeon
with positive signature (Θ = +1) corresponds to the
exchange by particles having even spin, for example,
f and a2, whereas the exchange by a Reggeon with
negative signature (Θ = −1) corresponds to the ex-
change by odd spin, for example ρ and ω particles.

The most important at high energies is the exchange
by a Pomerons (vacuum Regge singularity).Unfortunately,
until now we do not know the particles lying on the
Pomeron trajectory.
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Figure 24: The Chew-Frautschi plot of Reα(t) versus t for the well established mesons
with relatively large intercept. Upper panel: the particles lying on a2 (Θ = +1, solid
line and closed points) and on ρ (Θ = −1, dashed line and open points) trajectories.
Lower panel: the particles lying on f (Θ = +1, solid line and closed points) and on
ω (Θ = −1, dashed line and open points) and on K∗ (Θ = −1, dashed line and open
crosses) trajectories.

The Reggeon parameters determined by the compar-
ison with existing experimental data on high energy
hadron collisions are presented in Table 3. It is nec-
essary to note that these parameters depend on some
model assumptions, so they are slightly different in
different papers.
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The experimental data show that all meson trajecto-
ries are approximately linear and they have approx-
imately equal slopes α′ ≈ 0.8 ÷ 1 GeV−2; the slope
α′
P is significantly less. The mass of the lightest par-

ticle that could lie on the Pomeron trajectory may be
estimated with the help of α′

P ; its quantum numbers
should be IG =0+, JP =2+ and the mass about 2.7
GeV. Such a heavy hadron may probably be associ-
ated with a glueball state.

Baryon trajectories also exist, but their contributions
have been studied in much less detail.

All well established hadrons lie on Reggeon trajecto-
ries at t > 0.
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7.2 Regge pole exchange

One Regge pole exchange corresponds to the set of
ladder diagrams where we sum over all possible num-
bers of rungs, see Fig. 25:

Figure 25: A ladder diagram which corresponds to exchange one Regge pole.

The contribution of a single t-channel Regge pole R
to the amplitude of the process in Fig. 25 is given by
:

AR(s, t) = γR(t)η(αR(t))






s

s0







αR(t)

. (7.3)

Here
γR(t) = γR0 e

R2
Rt (7.4)

is the coupling of Regge-pole which should be taken
from experimental data.
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η(αR(t)) =
1 + ΘRe

−iπαR(t)

sin παR(t)
(7.5)

is the signature factor, where ΘR = ±1 is the signa-
ture, the quantum number connected with the sort of
the Reggeon.

η(Θ) =















i− tan−1(παR2 ) Θ = +1
i + tan(παR

2
) Θ = −1 .

(7.6)

Let us consider the most essential properties of the
Reggeon exchange amplitude:

i. All energy dependence of AR(s, t) comes just from
the factor (s/s0)

αR(t).

ii. AR(s, t) is an analytic function of s: its phase is
uniquely determined. AR(s, t) is even (odd) under
the crossing transformation s ↔ u, if the signature
ΘR = +1(−1).

iii. A significant property of the residue function γR(t)
is the factorization property:

γR(t) = g13
R (t)g24

R (t) . (7.7)
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The contribution of different Reggeon exchanges to
the elastic scattering hp amplitudes are presented in
Table 3.

Reaction Regge singularities
pp → pp AP + Af − Aω − Aρ + Aa2

p̄p → p̄p AP + Af + Aω + Aρ + Aa2

π±p → π±p AP + Af ± Aρ

K±p → K±p AP + Af ± Aω ± Aρ + Aa2

Table 4. Regge poles which determine the elastic
hp collisions at high energies

In linear combinations of the total cross sections, the
contributions of some trajectories cancel, and the con-
tributions of a single Reggeon can be isolated:

∆σ(π±p) = σtot(π
+p)−σtot(π−p) = 2γρ







s

s0







αρ(0)−1

.

(7.8)

Thus, the parameters of Reggeon intercepts αR(0) and
couplings γR for non-vacuum trajectories (ρ, ω, a2, etc.)
can be obtained via the fit of cross section differences.
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The differential cross section of the elastic hN scat-
tering can be parametrized in the form

dσ

dt
=
σ2
tot

16π
(1 + ρ2)eb(s)t , (7.9)

where ρ is the ratio of the real and imaginary parts of
the amplitude, and the slope can be written as

b(s) = a0 + 2α′
eff ln s/s0 , (7.10)

so the slope parameter logarithmically increases with
the energy. A precise fit of small-t elastic cross sec-
tions with the inclusion of the Reggeon cuts and non-
vacuum Reggeons gives the effective slope value α′

eff =
0.14 ± 0.02 GeV−2.
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7.3 Reggeon cuts, planar and non-planar di-
agrams

In Regge-Gribov theory there exist more complicate
diagrams, first of all Regge cuts that are the absorp-
tive corrections to Regge pole exchange. They arise
from the exchange of two or more Reggeons:

Figure 26: A two-ladder exchange diagram which corresponds to a Regge cut exchange.

However, the diagram in Fig. 26 considered as a Feynman-
diagram gives zero contribution to the scattering am-
plitude. The reason comes from the space-time pic-
ture of strong interactions at high energy. The growth
of characteristic longitudinal distances in strong inter-
actions at high energies is quite evident. This effect
reflects a very general feature of soft hadronic inter-
actions.
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Each hadron is considered to be surrounded by vac-
uum fluctuations, corresponding to the emission
and absorption of virtual particles. Thus, a fast hadron
with the momentum k ≫ m (m is a mass scale, say
m ∼ mρ), can be imagined as a cloud of particles
– ”partons” with different momenta. Then, the par-
ton fluctuation can gather into a hadron, so that its
Fock wave function approaches its asymptotic form,
see Fig. 27a. Obviously, this requires a time of the or-
der of k/m2, k/m being the Lorentz factor and 1/m
– the characteristic time of the interaction.

Figure 27: Interaction of a fast hadron with nucleon (a) and successive interaction with
two nucleons (b) in the parton model.

The second interaction with a target needs again a
time of the order of k/m2 that seems to be impossible
because a fast particle will be at large distance from
a target.
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In the language of Reggeon diagrams the simplest
graph for the elastic scattering amplitude is the one-
Pomeron exchange in Fig. 28a, which corresponds to a
multiperipheral ladder of hadrons in the intermediate
state, see Fig. 28b. The crosses mark the hadrons on
the mass shell.

Figure 28: The Pomeron exchange (a) and its intermediate states (b). Planar (c-e)
and non-planar (f,g) diagrams for the two-Pomeron cut.

The elastic cross section shown in Fig. 28c is one of the
possible cuts of the diagram in Fig. 28d. The process
in Fig. 28d is highly improbable at high energies since
it corresponds to a repeated interaction with a point-
like target. Thus, the amplitude in Fig. 28d should in
fact vanish.
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A large imaginary part in Fig. 28c is canceled by the
cuts shown in Fig. 28e.

Non-zero corrections to the elastic amplitude come
from the diagrams with the so-called Mandelstam crosses
in Fig. 28f where both Pomerons interact simultane-
ously.

Figure 29: The integration contour C in the s1-plane and singularities of the diagrams
in Fig. 28d (a) and Fig. 28f (b).

The analytical properties of the diagrams in Fig. 28d
and Fig. 28f are shown in Fig. 29. The amplitude in
Fig. 28d has only a right discontinuity and a pole, both
on the same side of the contourC as shown in Fig. 29a.
A positive contribution of the pole is canceled by the
negative contribution of the discontinuity.

Contrary to this, the amplitude in Fig. 28f has both
left and right discontinuities, see Fig. 29b. Thus a
nonzero answer follows.
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7.4 Contribution of reggeon cuts in eikonal
approximation

Let us consider the case when the exchanges by one
and two Reggeons are possible, as it is shown in Fig. 30a,
b, and c.

Figure 30: Elastic scattering amplitudes with exchange of one (a and b) and two (c)
Reggeons. The eikonal approximation of the diagrams (c) is shown in (d).

The eikonal approximation means that we cal-
culate the diagram Fig. 30d intead of Fig. 30c. The
crosses in Fig. 30d mean that this particle is on mass-
shell, i.e. we account for only a pole in Fig. 29a asuum-
ing that the negative contribution of a cut in Fig. 29a
and a positive contribution of a cut in Fig. 29b cancel
each other.
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After rather simple calculations we obtain

Ael(s, q2) = A(1)(s, q2) + A(2)(s, q2) , (7.11)

A(1)(s, q2) = A1(q
2) + A2(q

2) , (7.12)

A(2)(s, q2) =
i

8π2s

∫

d2q1A1(q1)A2(q − q1) . (7.13)

The last integral is proportional to

∫

d2q1e
−a1q

2
1e−a2(q−q1)2 =

π

a1 + a2
· exp





− a1a2

a1 + a2
q2





 .

(7.14)

Finally, the the amplitude Ael(s, q2) reads as

Ael(s, q2) = γR1
0 ηR1







s

s0







αR1
(0)

e−a1q
2
+ γR2

0 ηR2







s

s0







αR1
(0)

e−a2

+
i

8π

γR1
0 γR2

0

a1 + a2
ηR1ηR2







s

s0







αR1
(0)+αR2

(0)−1

· exp




− a

a1

In the practically important case of Pomeron-Pomeron
cut ηP ≃ i, the double exchange contribution has a
negative sign.
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Now we believe that the Pomeron trajectory

αP (t) = 1 + ∆ + α′
P t , ∆ > 0 (7.16)

the one-Pomeron contribution to σtothN equals

σP = γP0 e
∆ξ , ξ = ln s/s0 , (7.17)

where γP0 is the Pomeron coupling, and σP rises with
energy as s∆. To obey the s-channel unitarity, and the
Froissart bound in particular, this contribution should
be screened by the multipomeron discontinuities. An
eikonal approximation yields

σtothN = σPf(z/2) , (7.18)

where

f(z) =
∞
∑

k=1

1

k · k!
(−z)k−1 =

1

z

∫ z
0

dx

x
(1 − e−x) ,(7.19)

z =
γ

4πaP
e∆ξ , aP = R2 + α′

Pξ .

Here R2
P is the radius of the Pomeron

At asymptotically high energies (z ≫ 1) we obtain

σtothN = 8πα′
P∆ξ2 , (7.20)

according to the Froissart limit.
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8 Diffractive Dissociation and Inclusive Re-
actions

8.1 Diffractive dissociation in hN collisions

At high energies a new class of processes appears –
the diffractive dissociation of one or both colliding
hadrons, see Fig. 31.

Figure 31: Regge-pole diagrams for elastic hN scattering (a), single diffractive disso-
ciation of one colliding particle, (b) and (c), and double diffractive dissociation (d).

There exist single (Fig. 31b, 31c) diffractive processes,
where one particle produces a diffractive jet and an-
other is conserved, and a double diffractive dissocia-
tion (Fig. 31d), where both particles produce jets.

The integral cross sections of such processes are not
large, but at high energies they generate new effects
in inelastic collisions.
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The contribution of the Pomeron exchange to the diffrac-
tive dissociation cross section is large, so these pro-
cesses can exist even at asymptotically high energies.

The cross sections of single diffractive production σD
at high energies can be estimated from the existing
data. For the process of Fig. 31b the ratios of RD =

σD/σ
el were found to be R

(p)
D = 0.16 ± 0.04, R

(π)
D =

0.37 ± 0.12 and R
(K)
D = 0.42 ± 0.2.

The structure of the diffractive jet with mass M is the
following. At small M it is saturated by resonance.
The interference between resonance and background,
or between two resonances with close masses can play
here an important role.

An important feature of single diffraction dissociation
processes is the existence of a minimal momentum
transferred of the recoil particle, say a target nucleon
in Fig. 31b. To calculate this, let us find the t value
at zero transverse momentum (p3T = 0) for the case
m2 = m4 in the center-of-mass system,

t = (p1 − p3)
2 = (E1 − E3)

2 − (p1L − p3L)
2 . (8.1)
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We use now

E1 =
s +m2

1 −m2
2

2
√
s

, E3 =
s +m2

3 −m2
4

2
√
s

(8.2)

and, for pure longitudinal momenta,

piL =
√

E2
i −m2

i = Ei

√

1 −m2
i/E

2
i . (8.3)

Let us expand these equations up to the second cor-
rection term,

√
1 − x = 1 − x/2 − x2/8. Assuming

p3T = 0 corresponding to the minimal value of t, we
obtain

tmin = −m2
2

(m2
3 −m2

1)
2

s2
, M = m3 . (8.4)

Clearly, for the case of elastic scattering m3 = m1,
and tmin = 0.

The minimal longitudinal momentum p4L of the re-
coil nucleon which appears due to the transfer of lon-
gitudinal momentum qz, q

2
z = −tmin. At high ener-

gies and m2
i ≪ M 2 ≪ s, in the laboratory system

s ≃ 2m2Elab and we obtain

qz = p4L =
M 2 −m2

1

2Elab
. (8.5)
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8.2 Inclusive reactions

In inelastic high energy collisions many secondary par-
ticles can be produced. The reaction a + b → h1 +
h2 + ... + hn, where all the secondaries are registered
is called an exclusive reaction.

More often only one secondary particle h is registered
and such processes

a + b→ h +X (8.6)

are called inclusive reactions. X denotes all sec-
ondaries but h.

The inclusive cross section is defined as

F (s, pL, pT ) = 2E
d3σh
d3p

. (8.7)

The important variable isFeynman-x:

xF = pH/phmax , (8.8)

where phmax is the kinematically maximum momentum
of the incident hadron h; at high energies phmax ≃ pa.
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For the production of secondaries in the central region
it turns out to be very convenient to use the variable

y =
1

2
ln
E + pL
E − pL

= ln
E + pL
mT

≃ ln 2xEa/mT ,

(8.9)
called rapidity. The rapidity transforms additively un-
der a Lorentz boost with a velocity β = v/c along the
beam axis:

y′ = y − 1

2
ln

1 + β

1 − β
. (8.10)

In some high energy experiments only the angular dis-
tributions of the secondaries are measured and here
the so-called pseudorapidity is used:

η = − ln tan(θ/2) ≃ ln 2xEa/pT , (8.11)

and η ≃ y for y ≥ 2 ÷ 3.

There exists the exact equality

dσ(ab→ hX)

dy
= xE

dσ(ab→ hX)

dxF
, (8.12)

where xE = Eh/Ea, Ea is the energy of the incident
hadron a.
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There are also several sum rules :

∫

dxF
xE
σinab

dσ(ab→ hX)

dxF
= 〈Kh〉 , (8.13)

∑

h

∫

dxFxE
dσ(ab→ hX)

dxF
= σinab (8.14)

(if the elastic a + b → a + b channel is not included)
and

∫ dy

σinab

dσh
dy

= 〈nh〉 , (8.15)

where Kh is the part of the initial energy carried away
by the secondary hadron h, ∑〈Kh〉 = 1, and 〈nh〉 is
the averaged multiplicity of h.

At high energies, multiperipheral production processes
give the main contribution to the inelastic cross sec-
tion that leads to the flat rapidity distribution in the
central region.
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8.3 Inclusive spectra at xF → 0 and xF → 1

At small x the x-dependence of F (x, pT ) is negligible.
The behavior of F (x, pT ) in this region is determined
by the multiperipheral diagram Fig. 32a.

Figure 32: The modulo squared of the amplitude of inclusive production in the central
region (a), (b) and the Regge-pole diagram for this reaction (c).

The inclusive production in the central region is de-
termined as:

F (x, pT ) =
1

π2s
gaaR1

(0)gbbR2
(0)ghhR1R2

(pT )






s1

s0







αR1
(0) 





s2

s0







αR2
(0)

,

(8.16)

s1 = (pa + ph)
2 = mT

√
se−y

∗
(8.17)

s2 = (pb + ph)
2 = mT

√
sey

∗
.
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The limit of x, close to unity, corresponds to the
production of a diffractive beam with mass squared
M 2 ≪ s, see Fig. 33a. Now x = 1 −M 2/s. In the
case of M 2 ≫ m2 the modulo squared of the graph
Fig. 33a leads to the triple-Reggeon limit shown in
Fig. 33b.

Figure 33: Secondary h production at m2
N
≪M2 ≪ s (a) and modulo squared of this

amplitude which corresponds to the triple-Reggeon diagram (b).

The triple-Pomeron term increases rapidly the inclu-
sive spectrum at x→ 1.
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8.4 The AGK cutting rules for Reggeon di-
agrams

The imaginary part of the elastic amplitude is writ-
ten as a sum of several absorptive parts correspond-
ing to all possible cuts of the given Reggeon diagram,
each one related to a specific group of intermediate
states via the s-channel unitarity. The one-Pomeron
exchange gives a multiperipheral hadron ladder with
small transverse momenta and the multiplicity ∼ ln s.

Figure 34: Various absorptive parts for the single (a) and double (b-e) Pomeron ex-
changes.
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The contribution of the double Pomeron exchange
to the elastic scattering amplitude is connected with
three different types of intermediate states correspond-
ing to the three possible cuts in Figs. 34b, 34c and 34d.

Consider a diagram with n Pomerons, yielding the
contribution (−1)n+1Sn to the total cross section. The
cross section for ν ≤ n cut Pomerons is shown by
simple algebra to be

σ(n,ν) = (−1)n+ν n!

ν!(n− ν)!
2n−1Sn , ν ≥ 1 , (8.18)

σ(n,0) = (−1)n(2n−1 − 1)Sn . (8.19)

These relations are conventionally referred to as the
Abramovsky-Gribov-Kancheli (AGK) cut-
ting rules.

Obviously, the sum of all σn,ν equals Sn for each n ≥ 1
n
∑

ν=1
σ(n,ν) + σ(n,0) = Sn(−1)n+1 . (8.20)
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The sum ∑∞
n=ν σ

(n,ν) for a fixed ν gives the total cross
section for a specific physical process – the production
of ν ladders of secondary particles.

σ(ν) =
∞
∑

n=ν
σn,ν =

(−1)ν

ν!

∞
∑

n=ν

n!

(n− ν)!
(−1)n2n−1Sn .

(8.21)

The AGK cutting rules yield several important rela-
tions for inclusive production. For example, consider
the multiplicity of a secondary hadron h with given
quantum numbers in the central region of the spec-
trum, nh(xF → 0).

Multiplying the probability for each process by the
corresponding multiplicity, one obtains

nh(x = 0) = n
(1)
h

∞
∑

ν=1
νσ(ν)/

∞
∑

ν=1
σ(ν) = n

(1)
h S1/

∞
∑

ν=1
σ(ν)

(8.22)
i.e. the diagram with a one-Pomeron exchange S1

is the only one contributing to the multiplicity (to
the inclusive spectrum) in the central region. Con-
tributions of various absorptive parts in an arbitrary
diagram with n ≥ 2 cancel each other.
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9 Hard Processe in Hadron Interactions and
Parton Distributions

9.1 Connection between hadron-hadron and
quark-gluon interactions

QCD describes the hard processes that occur in hadron-
hadron collisions, on the level of hard interactions of
partons – quarks and gluons. As the examples of
such processes we can present production of high-pT
hadron jets, heavy particles ((charmed and beauty
hadrons,W andZ bosons), high mass Drell-Yan (µ+µ−)
pairs, high-pT (direct) photons, etc.

QCD is a theory for quark-gluon interactions, whereas
the experimental data are obtained in hadron-hadron
collisions. Usually the standard factorization ex-
pression is used for the cross section of a hard pro-
cess in a hadron a-hadron b collision has the form

σabhard =
∫ 1
x10

dx1

x1

∫ 1
x20

dx2

x2

[

x1Ga/1(x1, µ
2)

]

× (9.1)

×
[

x2Gb/2(x2, µ
2)

]

σ̂hard(ŝ, µ2) ,

where x10 = ŝmin/s and x20 = ŝmin/(sx1).
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Eq. (9.1) should account for all possible hard subpro-
cesses in the considered order of αs. For example,
the LO heavy quark pair production cross section in
hadron-hadron collision should account for the contri-
butions of four diagrams presented in Fig. 35.

Figure 35: Low Order parton model diagrams for heavy quark production via quark-
antiquark (a) and gluon-gluon (b, c, d) fusion.

The parton cross section σ̂hard(ŝ, µ2) should be cal-
culated in accordance with Feynman rules for QCD
diagrams.
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In the simplest approach of QCD – parton model
– all quarks and gluons involved are assumed to be
on mass shell, having only longitudinal component of
the momentum collinear approximation and the
cross section is averaged over two transverse polariza-
tions of the gluons. The virtualities q2 of the initial
partons are taken into account only through their den-
sities.

The cross sections of hard processes depend signif-
icantly on the quark and gluon structure functions.
These functions are practically unknown experimen-
tally for very small values of x.
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9.2 Deep inelastic scattering and its vari-
ables

The most important information about internal struc-
ture of a nucleon can be obtained from deep inelastic
ep scattering. Just in these experiments it was proved
in sixties that inside a proton there exist point-like
electrically charged particles – partons.

Figure 36: Deep inelastic ep scattewring (a) and the process of virtual photon absorp-
tion by a quark with x = Q2/(W 2 +Q2).
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The cross section of the process ep → eX , Fig. 36a,
depends on two structure functions, F1(x,Q

2) and
F2(x,Q

2):

d2σ

dxdy
=

4πα2(s−m2)

Q4
[(1 − y)F2(x,Q

2) + (9.2)

+ y2F1(x,Q
2) − m2

s−m2
xyF2(x,Q

2)] ,

where m is a proton mass.

ν = (qp)/m (9.3)

is the virtual photon energy in the lab. frame, s =
(k + p)2 - total energy of the process,

W 2 = (q + p)2 = m2 + 2mν −Q2 (9.4)

is the mass squared of the system recoiling against the
lepton,

x =
Q2

2(pq)
= Q2/(W 2 +Q2) ≃ Q2/(W 2 +Q2) (9.5)

is Bjorken variable,

y = (qp)/(kp) = ν/E (9.6)

- the fraction of the lepton energy lost in the lab.
frame.
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If electrically charged partons have spin 1/2 (they are
quarks),

F2(x,Q
2) = 2xF1(x,Q

2) . (9.7)

Let us calculate which quark can absorb the photon
with given Q2 and ν. The masses of light quarks are
negligibly small, so (q + xp)2 = 2x(qp)−Q2 = 0 and
x = Q2/(2mν). It means that only a quark having
the x fraction of the proton momentum in a frame
where the proton momentum is large can absorb the
virtual photon in the process with given Q2 and ν. So
the cross section of a virtual photon absorption gives
the information about quark distributions.

In Leading αs Order (LO) QCD a proton structure
function F2(x,Q

2) can be expressed in terms of par-
ton distributions fi(x,Q

2):

F2(x,Q
2) =

∑

i
e2
ifi(x,Q

2) . (9.8)

The parton distributions fi(x,Q
2) are the probabil-

ities that a parton of type i (quark, antiquark or
gluon) carries a proton momentum fraction x in a
frame where the proton momentum is large.
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9.3 Evolution equation for parton distribu-
tions

The (GLDAP) evolution equation is used usually for
extraction the quark and gluon distributions from the
experimental data. It sums up in leading logarithm
approximation (LLA) all the QCD diagram contribu-
tions proportional to (αs ln q2)n.

The conventional GLDAP evolution equations for quark
q(x,Q2) and gluonG(x,Q2) distributions can be writ-
ten in the form

dqi(x,Q2)

d lnQ2
=
αs(Q

2)

2π

∫ 1
x

dy

y
[qi(y,Q2)Pqq(

x

y
) +

+ G(y,Q2)PqG(
x

y
)] , (9.9)

dG(x,Q2)

d lnQ2
=
αs(Q

2)

2π

∫ 1
x

dy

y
[
2nf
∑

i=1
qi(y,Q2)PGq(

x

y
) +

+ G(y,Q2)PGG(
x

y
)] . (9.10)
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In LO the running QCD constant

αs(Q
2) =

12π

(33 − 2nf) lnQ2/Λ2
QCD

, (9.11)

where the value of the parameter ΛQCD depends on
the value of nf , i.e. on the assumption how many
quarks can be considered as massless ones. Usually
nf = 3 is used If the values of Q2 are not very large
and in this case ΛQCD ∼ 250 MeV. In the case of more
precise calculations (Next-to Leading Order, etc.) the
value of ΛQCD changes, but not too strong.

The kernels Pqq(z), PqG(z), PGq(z) and PGG(z) cor-
respond to the possibility of the transitions:

(i) quark into quark with emission a gluon,

(ii) gluon into quark-antiquark pair,

(iii) gluon production by a quark and

(iv) gluon production by gluon via the triple gluon
vertex.
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At smallQ2 besides the GLDAP contribution to struc-
ture functions there exist many another contributions,
such as non-perturbative ones, etc. Many sets of par-
ton distributions are obtained by the following way:
the boundary conditions are written at some Q2 =
Q2

0, which can be considered as large enough (usually
Q2

0 is 4-5 GeV2) in agreement with the existing ex-
perimental data, and then the structure functions at
Q2 > Q2

0 are obtained using GLDAP equation:

xqi(x,Q2) = xqi(x,Q2
0) +

∫ lnQ2

lnQ2
0
d lnQ2

1 × (9.12)

× αs(Q
2
1)

2π

∫ 1
x

dy

y
[qi(y,Q2

1)Pqq(
x

y
) +

+ G(y,Q2
1)PqG(

x

y
)] ,

xG(x,Q2) = xG(x,Q2
0) +

∫ lnQ2

lnQ2
0
d lnQ2

1 × (9.13)

× αs(Q
2
1)

2π

∫ 1
x

dy

y
[
2nf
∑

i=1
qi(y,Q2

1)PGq(
x

y
) +

+ G(y,Q2
1)PGG(

x

y
)] ,
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9.4 Boundary conditions and gluon distri-
butions at small x

The integral representation of GLDAP Eqs. allow one
to calculate the Q2-dependences of the parton distri-
butions if they are known at some value Q2 = Q2

0 as
the functions of x.

The so-called ”dynamical” generation of parton dis-
tributions seems to be very attractive. The first at-
tempts tryed to generate all gluon and sea quark dis-
tributions purely dinamically, as a results of parton
evolution starting from only valence quark distribu-
tions at Q2 = Q2

0, i.e. with the extreme boundary
condition at Q2

0 ∼ Λ2
QCD:

xG(x,Q2
0) = xq(x,Q2

0) = 0 (9.14)

without any free parameters. This approach works
qualitatively well and yields, in particular, the remark-
able prediction for the momentum fraction 〈x〉g car-
ried by gluons,

〈x〉g =
∫ 1
0 xG(x,Q2)dx = 0.45 (9.15)

at Q2 = 1 - 5 GeV2 without using any parameters.
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However, quantitatively the obtained gluon and sea
quark distributions are in contradiction with the ex-
perimental data. These distributions are too soft at
comparatively large x and too steep in the small x
region.

So, one can use the boundary conditions

xG(x,Q2
0) = Axα(1 − x)β , (9.16)

xq(x,Q2
0) = Bxγ(1 − x)δ (9.17)

with α > 0 and γ > 0 at small enough Q2 = Q2
0

and we can be sure that all parton distrinbutions at
Q2 > Q2

0 will be positive at all x.

The presented scheme is known as the Double Leading-
Logarithm Approximation (DLLA) as it sums the lead-
ing power of lnQ2 and ln(1/x). That is, for each ad-
ditional factor of αs, we keep only the ln(Q2) · ln(1/x)
term accompanying that αs.
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It is useful to give a simple diagrammatical explana-
tion of the DLLA. The leading double logarithms at
large Q2 and small x are generated by the diagrams
of Fig. 37a in which the gluons have strongly ordered
transverse momenta

Q2 ≫ k2
T ≫ k2

nT ≫ ...≫ k2
2T ≫ k2

1T ≫ Q2
0 .
(9.18)

The longitudinal momenta in the DLLA are also or-
dered :

x < xn < ... < x2 < x1 . (9.19)

Figure 37: Diagrammatic representation for probing the gluon content of the proton
at high Q2. On squaring the amplitude (a)we obtain a ladder diagram (b).

Thus as we proceed along the chain from the proton
momentum p towards that of the probe γ∗, the proton
is split into smaller and smaller pieces.
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In each loop the integration over the transverse mo-
mentum is logarithmical (dk2

iT/k
2
iT ) and the strong

ordering generates a (lnQ2)n/n! behaviour.

Thus we say that the DLLA is generated by the sum
of gluon ladder diagrams of the type of with strongly
ordered transverse and longitudinal momenta.

In the region of very small x an additional problem
appears. The DLLA equation neglects, by definition,
those terms in the perturbative expansion which con-
tain the leading power of ln(1/x) but which not ac-
companied by the leading power of lnQ2.

The accounting for these terms gives the gluon dis-
tribution at x → 0 in the Balitskij-Fadin-Kuraev-
Lipatov (BFKL) form

xG(x,Q2) ∼ h(Q2) · x−λmax , (9.20)

where

λmax =
3αs
π

4 ln 2 . (9.21)

One can see that xG(x,Q2) grows rapidly with in-
creasing ln(1/x) at fixed Q2.
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10 Nuclear Shapes

10.1 Nuclear structure, protons, neutrons,
meson currents

The atomic nucleus is usually a sphere which con-
tains nucleons: protons and neutrons.Light nuclei con-
tain approximately equal numbers of protons and neu-
trons, whereas the number of neutrons in heavy nuclei
is about 1.5 times larger than the number of protons,
mainly due to the Coulomb repulsion contribution to
the total binding energy.

The binding energy of nucleons in nuclei (except in
the lightest ones) is about 8 MeV per nucleon, i.e.
by two orders of magnitude smaller than the nucleon
masses. So the Fermi motion of the nucleon is a non-
relativistic one, and the high-momentum tail of the
nucleon motion is relevant just in a few cases.

Nuclear matter is not distributed uniformly even in
spherical nuclei; its radial distribution is rather com-
plicated, being a real function of the radial variable r
– the distance from the center.
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It is, however, quite reasonable to introduce the ”ef-
fective” nuclear radius RA, and the experimental data
show that for not very light nuclei these radii can be
described by the rather simple dependence

RA = R0A
1/3 , R0 = 1.1 ÷ 1.3fm . (10.1)

The radii of most of the individual nuclei vary, as a
rule, within the presented limits.

We can see here the serious problem for our future con-
siderations. Protons and neutrons should be bound by
meson exchanges. The number of required mesons is
rather large, of the order of ten. As the pion is the
lightest meson, it must give a significant contribution,
especially at large distances (∼ 1/mπ); this is in beau-
tiful agreement with Yukawa’s estimation of the range
of strong interactions. So we can expect that nuclei
consist of nucleons and mesons. If so, our fast particle
(probe) can sometimes interact with a target meson,
different from the meson belonging to the individual
nucleon.

However, nobody ever saw such a reaction.
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10.2 Elastic eA-scattering and nuclear form
factors

High energy elastic eA scattering can be used for in-
vestigation of nuclear structure.

Figure 38: Elastic eA scattering in Born approximation.

If q is the momentum transferred from the electron to
the nucleus via one-photon exchange, RZ is the aver-
age electric radius of the nucleus, and qRZ ≫ 1 (i.e.
the photon can interact with only one nuclear proton),
we obtain the matrix element of such scattering as

M ∝
∫

ψZ(p)ψ∗
Z(p + q)d3p , (10.2)

where ψZ(p) and ψ∗
Z(p + q) are the scattered proton

wave functions before and after the scattering.
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Taking into account that

ψZ(p) =
∫

ψZ(r)eiprd3r , ψ∗
Z(p+q) =

∫

ψ∗
Z(r)e−i(p+q)rd3r ,

(10.3)
we obtain

M ∼
∫

|ψZ(r)|2e−iqrd3q . (10.4)

The expression for a one-particle charged nuclear form
factor reads

GZ(q) =
∫

ρZ(r)e−iqrd3r , GZ(0) = 1 , (10.5)

where the distribution of charged nuclear density is
ρZ(r) = |ψZ(r)|2.
It is clear now that the cross section of the elastic
eA scattering is proportional to G2

Z(q); from mea-
surements of such cross sections at different q we can
obtain information about the charged nuclear density
distribution ρZ(r).

In the case of qRZ ≤ 1 the probing electron can inter-
act with several nucleons or even with a whole nucleus.
This can result in either one-particle or collective nu-
clear excitations related to the subject of classical nu-
clear physics.
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10.3 Hofstädter experiments and the geom-
etry of the nucleus

The first detailed information about nuclear charge
density distributions comes from the experiments of
R. Hofstädter on high energy eA scattering. Dif-
ferent models for charge density distributions were
used for the analyses, including the point-like model
ρ(r) = δ(r), uniform, Gaussian, exponential and some
other distributions; some of them give rather similar
numerical results. First of all, it was observed that
the point-like model can be excluded, the nuclei being
best characterized by form factors.

A reasonable fit of the nuclear form factors can be
obtained using the Fermi (Woods-Saxon) distribution

ρA(r) =
ρ1

1 + e(r−c)/a , c≫ a . (10.6)

Here ρ1 is the normalization constant, c is a param-
eter measuring the nuclear size and a is related to
the diffuseness of the surface, in other words, to the
thickness of the nuclear ”skin”.
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This distribution is shown in Fig. 39 in more detail.
The parameter c shows the value of r at which ρ(r)
decreases twice compared to ρ(r = 0), ρ(r = c) =
0.5 ρ(r = 0). The value of a determines the dis-
tance a1 = 4 a ln 3 ∼ 4.4 a, where ρ(r) decreases from
0.9 ρ(r = 0) to 0.1 ρ(r = 0).

Figure 39: Woods-Saxon distribution, Eq. (10.7), with c = 6 fm and a1 = 4a ln 3, with
a = 0.55 fm.

We will also use

〈R2
A〉 = 4π

∫ ∞
0 ρ(r)r4dr , (10.7)

or its square root.
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The parameters of several nuclei are presented in Ta-
ble 7.

Nucleus r.m.s. radius Req r0 = Req
A1/3 r′0 = c

A1/3

Ca40 3.52 4.54 1.32 1.06
V51 3.59 4.63 1.25 1.07
Co59 3.83 4.94 1.27 1.05
In125 4.50 5.80 1.19 1.08
Au197 5.32 6.87 1.18 1.10
Bi209 5.52 7.13 1.20 1.09

Table 7. Some parameters in fm) of the nuclear den-
sity distribution. Req is the radius of the equivalent
uniform model.

In the case of light nuclei (9Be, 12C, 16O) a Gaussian
parametrization can also be used:

ρA(r) = (α2/π)3/2e−α
2r2 , (10.8)

1/α2 =
2

3
〈R2

A〉. (10.9)

Such a parametrization allows to calculate analytically
many expressions related to the scattering on nuclear
target.
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11 Cross Sections of Hadron-Nucleus Scat-
tering

11.1 Eikonal approximation and Glauber the-
ory

The case of hadron–nucleus interactions is more com-
plicated compared to eA scattering due to the possi-
bility of multiple interactions. A good formalism for
this is the Glauber theory which comes from quantum
mechanics.

The basis is the eikonal approximation for fast
particle scattering in quantum mechanics. Let a fast
particle with momentum k and kinetic energy T in
laboratory frame scatter on the nucleus A, which we
treat for the moment as a collection of potential wells
of the size a and of the depth V0.
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Provided the following conditions

ka≫ 1 , T/V0 ≫ 1 (11.1)

are satisfied, the characteristic scattering angles are
small and thus the phase shift χA(b) is given by the
integral of the total nuclear potential :

χA(b) = −m
k

∫ ∞
−∞ dz VA(b, z) , (11.2)

b being the impact parameter (2-dimensional vector).
Due to the conditions (11.1), the incident particle can-
not interact more than once with a given target nu-
cleon and the target nucleons have no time for inter-
actions with each other during the scattering process.

The next and very important assumption is that the
nuclear potential VA is built up from spatially sep-
arated potentials corresponding to nucleons. In this
case the phase shift on the nucleus, χA(b), is equal to
the sum of phase shifts χN(bi) for each hadron-nucleon
scattering:

χA(b) =
A
∑

i=1
χN(bi) . (11.3)
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The phases χA(b) and χN(bi) are directly related to
the elastic scattering amplitudes on the nucleus F el

hA

and on the isolated nucleon F el
hN , respectively:

f el(q) =
ik

2π

∫

d2bΓ(b)eiqb , (11.4)

ΓN(bj) = 1 − eiχN (bj) , (11.5)

ΓA(b; r1, ..., rA) = 1−eiχA(b;r1,...,rA) = 1−ei
∑A
j=1 χj(b−bj) ,

(11.6)
where r1, ..., rA are the positions of the nucleons and bj
are their transverse coordinates. Only A−1 of the nu-
cleon coordinates are independent, because ∑A

j=1 rj =
0; this leads to the so-called center-of-mass motion
correction.

Let us note that the amplitudes F el differ from the
amplitudes f el unly by the fact that the first ones are
defined in laboratory system. The optical theorem for
F el reads:

ImF el(s, 0) =
k

4π
σtot . (11.7)
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11.2 Elastic scattering on a deuteron target

Let rp and rn be the coordinates of the proton and the
neutron, ~r = ~rp−~rn, b1/2 and −b1/2 their transverse
coordinates. The elastic scattering hd amplitude can
be written in Glauber theory as

F el
hd(q) =

ik

2π

∫

eiqbd2b
∫

ψ∗
f(r) × (11.8)

×
{

1 − e[iχp(b+b1/2)+iχn(b−b1/2)]
}

ψi(r)d
3r .

Figure 40: Elastic scattering of a fast hadron with momentum k on a deuteron target.
All space vectors are two-dimensional.
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After substituting f elhN (≡ fp or fn) instead of ΓN , we
obtain

F el
hd = 〈f |eiqb1/2Fp(q) + e−iqb1/2Fn(q) (11.9)

+
i

2πk

∫

d2q′eib1q
′
Fp(q

′ + q/2)Fn(q
′ − q/2)|i〉

= Gd(q/2)Fp(q) +Gd(q/2)Fn(q)

+
i

2πk

∫

Gd(q
′)Fp(q/2 − q′)Fn(q/2 + q′)d2q′ ,

where
Gd(q) =

∫

eiqr|ψ(r)|2d3r (11.10)

is the deuteron form factor. It follows from the optical
theorem that

σtothd = σtothp + σtothn − ∆2 (11.11)

with

∆2 =
2

k2

∫

Sd(q) Imfp(q) Imfn(q)[1 − ρp(q)ρn(q)]d
2q .

(11.12)
Here ∆2 is the Glauber correction for double scatter-
ing and

ρN(q) =
RefN(q)

ImfN(q)
. (11.13)
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11.3 Elastic scatterings on heavy nuclei

Let us now consider the elastic hA scattering, with the
transition of the ground state A of the target nucleus
to itself,

F el
hA(q) =

ik

2π

∫

d2beiqb〈A|ΓA(b; r1, ...rA)|A〉 (11.14)

Using the expression for ΓA and ΓN Eq. (11.5) and the
basic assumption Eq. (11.3), and carrying out a final
transition from the phase back to the amplitudes, we
obtain

F el
hA(q) =

ik

2π

∫

d2beiqb
∫

d3r1...d
3rAρ(r1, ..., rA)(11.15)

× A
∏

i=1





1 − 1

2πik

∫

d2q1e
−iq1(b−bi)FhN(q1)





 .

Here bi is the transverse coordinate of the ith nucleon,
and ρ(r1, ..., rA) is the probability distribution to find
the nucleons in positions ri.

One can reduce ρ(r1, ..., rA) to the product of one-
particle densities ρ(ri)

ρ(r1, ..., rA) =
A
∏

i=1
ρ(ri) ,

∫

d3riρ(ri) = 1 . (11.16)
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After integrating over the positions of the nucleons we
get

F el
hA(q) =

ik

2π

∫

d2beiqb







1 −





1 − 1

2πik

∫

d2q1e
−iq1bFhN(q1)G(q

(11.17)
where

G(q1) =
∫

d3riρ(ri)e
iq1ri (11.18)

is the one-particle nucleus form factor.

For further simplification for purely imaginaryReFhN(q ≃
0)/ImFhN(q ≃ 0) ≪ 1. FhN and A ≫ 1 the optical
theorem gives

F el
hA(q) =

ik

2π

∫

d2beiqb
[

1 − e−1/2σT (b)
]

, σ = σtothN .

(11.19)

In particular,

σtothA = 2
∫

d2b
[

1 − e−(1/2)σT (b)
]

, (11.20)

σelhA =
∫

d2b
[

1 − e−(1/2)σT (b)
]2

(11.21)

and
σinelhA =

∫

d2b
[

1 − e−σT (b)
]

. (11.22)
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11.4 Experimental proton and neutron dis-
tributions in the nuclei

Contrary to the case of eA scattering, hadron-nucleus
collisions give information about the distribution not
of the nuclear charge, but of nuclear matter.

Comparing the eA and hA experimental data, one
can obtain separated distributions of protons and neu-
trons in nuclei. The question about the expected dif-
ference of proton and neutron distributions in heavy
nuclei is not so simple. From one point of view the ad-
ditional neutrons should increase the absolute values
of their distributions in the whole nuclear volume.

Experimentally the case of proton-nucleus scattering;
a lot of experimental data exists here. Some exam-
ples for the data and their theoretical description are
shown in Fig. 44.

The distributions of protons were taken from elec-
tron scattering data, the neutron parameters were
found by fitting theoretical cross sections to the ex-
perimental pA data. In addition to the Woods–Saxon
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Figure 41: Differential cross sections for 1 GeV proton scattering on 90Zr and 208Pb
nuclei together with their description by Glauber theory.

nuclear distribution, the more complicate form

ρ̃(r) = ρ0
1 + w(r/c)2

1 + e(r−c)/a (11.23)

was also used.

The main result is that the difference in the radii
of proton and neutron distributions is very small. In
Table 8 we present several examples.
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Nucleus rp rn rn − rp
32S 3.24 3.24 0.00

40Ca 3.48 3.50 0.02
48Ca 3.47 3.66 0.19
48Ti 3.58 3.68 0.10
58Ni 3.76 3.72 -0.04
64Ni 3.84 3.83 -0.01
90Zr 4.26 4.37 0.11

208Pb 5.50 5.50 0.00

Table 8
Parameters of the proton and neutron folded densi-
ties, rp and rn are r.m.s. radii (in fm) of proton and
neutron distributions respectively.

One can see that the difference in the r.m.s. radii
rn−rp is rather small, with the only exceptions of the
cases 40Ca and 48Ca, where the difference is in eight
additional neutrons, and in the case of 90Zr.

131



12 Possibilities of Practical Use of High En-
ergy Physics

12.1 Geological survey and investigation of
the Earth structure with the help of
neutrino beams

Low ebergy neutrino has very small interaction cross
section, so it can cross the Earth without interaction.
This cross section increase linearly with the initial en-
ergy Eν. In lab. system

σ(νN)/Eν ∼ 10−11mb/GeV , (12.1)

and the energies of the order of hundreds GeV obey
the significant probability of interactions on the lengh
of penetration of several thousands km inside the Earth.
Muon neutrinos are produced by an accelerator (block
A in Fig. 45 via the decay of secondary charged pions
π → µ + νµ produced on any target.
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Figure 42: General scheme of geological survey of the Earth.

In the case of heavy metal (copper, silver, gold, lead,
etc.) ore on the neutrino beam trajectory one can
see an increase of muon production from the charged
current reaction νµ+N → µ−+X because the average
density of such ores are significantly larger that the
average density of the Earth’s crust. In the case of
undergraund oil-field a specific acustic signal can be
registrated, etc.

In the case of neutrino beam trajectory near to vertical
direction one can investigate the general structure of
the Earth including its kernel, etc.
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12.2 Muon catalyzed fusion and nuclear en-
ergy production.

The reaction of nuclear fusion of heavy hydrogen iso-
topes, deuteron d and tritium t

d + t→4 He + n + 17.6MeV (12.2)

usually needs a high temperatures due to the Coulomb
repalsion between d and t. This repulsion begins when
the distance between d and t becomes smaller that the
range of the correspondent atom D and T. The atomic
radii are proportional to the inverse value of the mass
of electron, me. So it is clear that if one can change an
electron by a negative muon which is 200 times more
heavy (mµ/me ∼ 200), the role of repulsion signifi-
cantly decrease. The estimations which are confirmed
by the experimental data show that the reaction

d + tµ →4 He + n + µ− + 17.6MeV (12.3)

can occur at normal temperatures and densities. Very
important point is that the final muon in the reaction
Eq. (11.3) stay free with probability more than 99%
(its state overlap very weakly with the wave functions
of 4Heµ atom in the momentum representation).
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After that this muon can induce next fusion reaction,
etc., so we can consider this muon as the catalizator
of the process of Eq. (12.3). The muon mean life time
is many times larger than the time of this processes.

The neutrons obtained in the process of Eq. (12.3)
can be used directly as high intensity monoenergetical
neutron source, say, for material science, or for the
production a fuel for via reaction n+238U →239Pu +
X.

The general scheme of 14.1 MeV neutrons production
via muon catalyzed fusion is presented in Fig. 46.

Figure 43: General scheme of high intensity 14.1 MeV neutrons production via muon
catalyzed fusion.
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Firstly we use, say, deuteron beam from accelerator
with kinetic energy about 1 GeV per nucleon. for
the production π− on the target. Deuteron beam is
preferable because negative pions are produced mainly
in reactions with neutrons, see Exercises 1 and 2. The
kinetic energy about 1 GeV per nucleon is near to the
optimal value. At lower energies the pion production
cross section becomes too small in comparison with
elastic and quasielastic cross section, at higher ener-
gies the number of π− produced by the unit of energy
decreases.

The produced negative pions decay into muons in the
converter, where the special configuration of magnetic
fields optimize the losses of muons.

After that µ− turn to µ-catalize reactor with mixture
of deuterium and tritium where the 14.1 MeV neu-
trons are produced in the reaction Eq. (12.3). These
neutrons can be used for the experiments or used for
production of 239Pu from 238U for the futher use of
this plutonium in usual nuclear plants for the electri-
cal energy production.
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12.3 Proton terapy

Sometimes people have serious medical problems, for
example swelling, aneurisma, etc. and the standard
surgical methods can not be used, for example the
problem is inside brains. In this case the beam of
high energy particles, usually protons can be used as
it is schematically shown in Fig. 47.

Figure 44: General scheme of use high energy particle beam in medicine. A part of
body is shown by dashed circle and an affected region by solid circle.

there exist two possibilities, the energy can be taken
by such a way that the beam will be stopped inside
the affected region, see Fig. 50a or beam can penetrate
all the body using different trajectories but everytime
with the crossing point inside the affected region, see
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Fig. 50b. Both methods have some preferencies and
problems and both are used with very successful re-
sults.
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13 Exercises

To SEction 2

Exercise 1:

Calculate the ratio of π+ to π0 production using the
diagrams in Fig. 2 and the table of Clebsch-Gordan
coefficients. Proton and neutron have isospin 1/2 with
projections +1/2 and -1/2, π+ and π0 have isospin 1
with projections +1 and 0, and ∆++ and ∆+ have
isospin 3/2 with projections +3/2 and +1/2, respec-
tively.

Exercise 2:

Calculate the ratio of π+ to π0 and to π− production
in proton-neutron collisions using similar diagrams to
those Fig. 2 and the table of Clebsch-Gordan coeffi-
cients.

Exercise 3:

Using the results of above exercises, isospine invari-
ance, the and table of Clebsch-Gordan coefficients,
calculate the ratio of π+ production cross sections in
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pp and pn collisions.

To Section 3

Execise 4

Prove Eqs. (3.5), (3.8), and (3.9).

Execise 5

If s-channel reaction is π−p → π0n, what are t-
channels and u-channels reactions ?

Exercise 6

Prove Eq. (7.23).

Exercise 7

Prove Eqs. (8.5).

Exercise 8

Obtain Glauber cross section for p3H scattering
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