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Outline

Multivariate methods for HEP

Event selection as a statistical test

Neyman-Pearson lemma and likelihood ratio test
Some multivariate classifiers:

Linear

Neural networks

Boosted Decision Trees

Support Vector Machines

Use of multivariate methods in a search (brief overview)
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Resources on multivariate methods
Books:

C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning, Springer, 2™ ed., 2009

R. Duda, P. Hart, D. Stork, Pattern Classification, 2" ad., Wiley, 2001

A. Webb, Statistical Pattern Recognition, 2" ed., Wiley, 2002

Materials from some recent meetings:

PHYSTAT conference series (2002, 2003, 2003, 2007,...) see
www.phystat.org

Caltech workshop on multivariate analysis, 11 February, 2008
indico.cern.ch/conferenceDisplay.py?confId=27385

SLAC Lectures on Machine Learning by Ilya Narsky (2006)

www-group.slac.stanford.edu/sluo/Lectures/Stat2006_Lectures.html
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Software

TMVA, Hocker, Stelzer, Tegenteldt, Voss, Voss, physics/0703039

From tmva.sourceforge.net, also distributed with ROOT
Variety of classifiers
Good manual

StatPatternRecognition, [. Narsky, physics/0507143

Further info from www.hep.caltech.edu/~narsky/spr.html
Also wide variety of methods, many complementary to TMVA
Currently appears project no longer to be supported
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A simulated SUSY event in ATLAS

high p.. jets
of hadrons

missing transverse energy

G. Cowan IDPASC School of Flavour Physics, Valencia, 2-7 May 2013 / Statistical Analysis Tools page 5



Background events

ATLAS Atlantis Event: myFiles2_8.4.0_3026_799902

This event from Standard
Model ttbar production also
has high p. jets and muons,
and some missing transverse
energy.

— can easily mimic a SUSY event.
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Event selection as a statistical test

For each event we measure a set of numbers: x = (xl,. : .,xn)

X, = Jetpy
X, = missing energy
x, = particle 1.d. measure, ...

X follows some n-dimensional joint probability density, which

depends on the type of event produced, i.e., was it pp — tt, pp —gg,...
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Finding an optimal decision boundary

In particle physics usually start
by making simple “cuts”:

xl.<cl.
x. <CC.
J J
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General considerations

In all multivariate analyses we must consider e.g.

Choice of variables to use
Functional form of decision boundary (type of classifier)

Computational issues
Trade-off between sensitivity and complexity
Trade-off between statistical and systematic uncertainty

Our choices can depend on goals of the analysis, e.g.,

Event selection for further study
Searches for new event types
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Probability — quick review

Frequentist (A = outcome of | . outcome is A
P(A) = lim

repeatable observation): n

Subjective (A = hypothesis): P(A) = degree of belief that A is true
Conditional probability: P(A|B) = P(ﬁ(;)B)

P(B|A)P(A)  P(B|A)P(A)
P(B) % P(B|A)P(A;)

Bayes' theorem: P(A|B) =
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Test statistics

The decision boundary is a surface in the n-dimensional space of
input variables, e.g., y(X)=const.

We can treat the y(x) as a scalar test statistic or discriminating
function, and try to define this function so that its distribution has the
maximum possible separation between the event types:

2 I I

The decision boundary Yeut
is now effectively a single s | 9CCePtHy e relectHy
cut on y(x), dividing /"\\
x-space into two FiylE,) \ B P
regions: os L™\ / \\ P VI
R (accept H) | \){ / N
Rl (reject HO) 0 | 2 3 5

4
yix)
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Classification viewed as a statistical test

Probability to reject A if it is true (type I error): a:f f(y|H)dy

R,

o = significance level, size of test, false discovery rate

Probability to accept H_if H is true (type 1l error): f zf f(y|H,)dy

, Ry
1 — B = power of test with respect to H_

Equivalently if e.g. H = background, H, = signal, use efficiencies:

fs:ff(y|H1)dy:1—B=power £b=f f(y|H,) dy=«a

R,
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Purity / misclassification rate

Consider the probability that an event assigned to a certain category
is classified correctly (i.e., the purity).

Use Bayes' theorem:

Here R is signal region prior probability

:

P(x € Ry|s)P(s)

Piix € M) = B e mpPe) + Px € Tb)P)
posterior probability

N.B. purity depends on the prior probabilities for an event to be
signal or background (~s, b cross sections).
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Constructing a test statistic

The Neyman-Pearson lemma states: to obtain the highest signal
efficiency for a given background efficiency (highest power for a
test of a given size), choose the critical region for a test of the
background hypothesis (acceptance region for signal) such that

p(x|s)
p(x[b)

where c 1s a constant determined by the background efficiency.

> C

Equivalently, the optimal test statistic 1s given by the likelthood
ratio:
_ p(xs)

p(x[b)

y(x)

N.B. any monotonic function of this is just as good.
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Purity vs. efficiency trade-off

The actual choice of signal efficiency (and thus purity) will depend
on goal of analysis, e.g.,

Trigger selection (high efficiency)
Event sample used for precision measurement (high purity)
Measurement of signal cross section: maximize s/vs+5b

Discovery of signal: maximize expected significance ~ s/v/'5
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Neyman-Pearson doesn't always help

The problem i1s that we usually don't have explicit formulae for the pdfs
p(xls), p(xlb), so for a given x we can't evaluate the likelihood ratio.

Instead we may have Monte Carlo models for signal and background
processes, so we can produce simulated data:

“training data”
generate ¥~p(XF[s) — X ..., Xy / events of known type

.

generate X~p(X[b) — x...,xy

Naive try: enter each (s,b) event into an n-dimensional histogram,
use e.g. M bins for each of the n dimensions, total of M" cells.

n is potentially large — prohibitively large number of cells to populate,
can't generate enough training data.

G. Cowan IDPASC School of Flavour Physics, Valencia, 2-7 May 2013 / Statistical Analysis Tools 16



Strategies for event classification

A compromise solution is to make an Ansatz for the form of the
test statistic y(x) with fewer parameters; determine them (using
MC) to give best discrimination between signal and background.

Alternatively, try to estimate the probability densities p(xIs), p(xIb)

and use the estimated pdfs to compute the likelihood ratio at the
desired x values (for real data).
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Linear test statistic
Ansatz:  y(¥)=) wz.x,:w-;fx

Choose the parameters w,, ..., w, so that the pdfs f(y[s), f(»|b)

have maximum ‘separation’. We want:

r

ff)') | Tb
large distance between '
mean values, small widths

(T _Tb)2

S

3437
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Coefficients for maximum separation

" v 1
> e mean, covariance of x

We have (up) =) x; p(3|H,)dx _

o

(Vk)ij: (x—lli\—)z-(x_IJI\—)J-])(3‘:”'[1\—)d36

L2

where k=0,1 (hypothesis)
and i,j=1,..,n (component of x)

For the mean and variance of y(X) we find
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Determining the coefficients w

The numerator of J(w) 1s

and the denominator 1s / ‘within’ classes

Si43i= ) ww (V o+ VI)U:WTWVV
i, j=1
w' Bw _ separation between classes

- maximize J(w)=—= : R
T —

w W w separatlon within classes
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Fisher discriminant function

ﬁ

O

Setting =0 gives Fisher’s linear discriminant function:

.

y(¥)=wlx withio W_l(ﬁo—ﬁl)

Gives linear decision boundary.

Projection of points in direction of decision

boundary gives maximum separation. H - w7
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Fisher discriminant for Gaussian data

Suppose f(x|H ) is a multivariate Gaussian with mean values
E,|%|=[,for H, E,|X|=p,for H,

and covariance matrices V0 = V/ = V for both. We can write the

Fisher's discriminant function (with an offset) 1s

— — —1—>
-

y(}):WO_F(UO_IH) VX

The likelihood ratio 1s thus

o =exXp|l o (X—f,) V - (x—pa)h VO (3F—4)
P(lel) p[ 2 ’ : : ]

y
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Fisher for Gaussian data (2)

That 1s, y(x) 1s a monotonic function of the likelihood ratio, so for

this case the Fisher discriminant is equivalent to using the likelihood
ratio, and is therefore optimal.

For non-Gaussian data this no longer holds, but linear
discriminant function may be simplest practical solution.

Often try to transform data so as to better approximate
Gaussian before constructing Fisher discrimimant.
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Fisher and Gaussian data (3)

Multivariate Gaussian data with equal covariance matrices also
gives a simple expression for posterior probabilities, e.g.,

P(BHHO)P(HO)

P(H,X)= p(X|H,)P(H,)+ p(x|H,)P(H,)

For Gaussian x and a particular choice of the offset w, this becomes:

|

1 1
PUH )= 1+e-.v(x-)ES(J’(x)) SOD g |
06 F
which i1s the logistic sigmoid function: 04 I
02 -
(We will use this later in connection

0 1 1 1 1
with Neural Networks.) 4 2 0o 2 4
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Transformation of inputs

If the data are not Gaussian with equal covariance, a linear decision
boundary 1s not optimal. But we can try to subject the data to a

transformation . R
(Pl(x)) AAF (P,,,(X)

and then treat the ¢ as the new input variables. This 1s often called

“feature space” and the ¢ are “basis functions™. The basis

functions can be fixed or can contain adjustable parameters which
we optimize with training data (cf. neural networks).

In other cases we will see that the basis functions only enter as
dot products

— —

(p(‘i:i)'(p(fj):K(‘i:i) -7::])

and thus we will only need the “kernel function™ K(x’_, xj)
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[ _inear decision boundaries

A linear decision boundary is only
optimal when both classes follow
multivariate Gaussians with equal
covariances and different means.

For some other cases a linear
boundary 1s almost useless.
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Nonlinear transformation of inputs

We can try to find a transformation, Xi,---, X, =@ (X),....9,(X)
so that the transformed “feature space” variables can be separated

better by a linear boundary:
Here, guess fixed

— _1 -~ -~
@, =tan " (x,/x,) basis functions

S (no free parameters)
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Neural networks

Neural networks originate from attempts to model neural processes
(McCulloch and Pitts, 1943; Rosenblatt, 1962).

Widely used in many fields, and for many years the only “advanced”
multivariate method popular in HEP.

We can view a neural network as a specific way of parametrizing
the basis functions used to define the feature space transformation.

The training data are then used to adjust the parameters so that the
resulting discriminant function has the best performance.
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The single layer perceptron

n
Define the discriminant using y(X)=h Wo"’z W, X,
i=1

where £ 1s a nonlinear, monotonic activation function; we can use
. . . o —-X ._.1
e.g. the logistic sigmoid A(x)=(1+e ) .

X
If the activation function is monotonic, |
the resulting y(x) is equivalent to the
original linear discriminant. This is an O y(x)
example of a “generalized linear model”
called the single layer perceptron. T
X

» output node

input layer
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The multilayer perceptron

Now use this idea to define not only the output y(x), but also the set of
transformed inputs ¢, (x),..., @, (x) that form a “hidden layer”:

Superscript for weights indicates
layer number

\

P,(3)=h|wig+ 2 wy'x,
j=1
e, N L@ (=
y(F)=h|wi+ 2w @, (F) b lidden output
=1 inputs

layer ¢

This 1s the multilayer perceptron, our basic neural network model;

straightforward to generalize to multiple hidden layers.
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Network architecture: one hidden layer

Theorem: An MLP with a single hidden layer having a sufficiently

large number of nodes can approximate arbitrarily well the
optimal decision boundary.

Holds for any continuous non-polynomial activation function
Leshno, Lin, Pinkus and Schocken (1993), Neural Networks 6, 861—867

In practice often choose a single hidden layer and try increasing the
the number of nodes until no further improvement in performance
1s found.
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More than one hidden layer

“Relatively little 1s known concerning the advantages and disadvantages
of using a single hidden layer with many units (neurons) over many
hidden layers with fewer units. The mathematics and approximation
theory of the MLP model with more than one hidden layer is not well
understood.”

“Nonetheless there seems to be reason to conjecture that the two hidden
layer model may be significantly more promising than the single hidden
layer model, ...”

A. Pinkus, Approximation theory of the MLP model in neural networks,
Acta Numerica (1999), pp. 143—195.
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Network training

The type of each training event is known, i.e., for event a we have:

xa:(xl 3eers x,,) the input variables, and

t,=0,1 a numerical label for event type (“target value™)

Let w denote the set of all of the weights of the network. We can
determine their optimal values by minimizing a sum-of-squares
“error function”

w)=3 2 v w) =1 f= 3 E ()

Contribution to error function
from each event
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Numerical minimization of E(w)

Consider gradient descent method: from an initial guess in weight
space w'" take a small step in the direction of maximum decrease.
[.e. for the step T to T+1,

W= OV £ (37

learning rate (1>0)

If we do this with the full error function E(w), gradient descent does
surprisingly poorly; better to use “conjugate gradients”.

But gradient descent turns out to be useful with an online (sequential)
method, 1.e., where we update w for each training event a, (cycle through

all training events):
w(T+1)= w(f)_ n V Ea(w(f))
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Error backpropagation

Error backpropagation (“backprop™) is an algorithm for finding the
derivatives required for gradient descent minimization.

The network output can be written y(x) = h(u(x)) where

2 : W'Y 5
jk Xk
k=0

u(X)=) w(lzj?(pj(}), @ (x)=h
j=0

where we defined ¢, = x, = | and wrote the sums over the nodes

in the preceding layers starting from 0 to include the offsets.

0E,

So e.g. for event a we have ==(y,~t,)h"(u(3)) @, (X)

(2)
0wy b
derivative of
Chain rule gives all the needed derivatives. activation function
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Overtraining

[f decision boundary 1s too flexible 1t will conform too closely
to the training points — overtraining.

Monitor by applying classifier to independent validation sample.

training sample

> 4
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Monitoring overtraining

If we monitor the value of the error function E(w) at every cycle of
the minimization, for the training sample it will continue to decrease.

error But the validation sample it may
initially decrease, and then at
some point increase, indicating
overtraining.

validation sample

training sample

training cycle
Choose classifier that minimizes error function for validation sample.
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Validation and testing

The validation sample can be used to make various choices about the
network architecture, e.g., adjust the number of hidden nodes so

as to obtain good *“generalization performance” (ability to correctly
classify unseen data).

If the validation stage is iterated may times, the estimated error rate
based on the validation sample has a bias, so strictly speaking one
should finally estimate the error rate with an independent test sample.

Rule of thumb if data not  train : validate : test
too expensive (Narsky): 50 : 25 25

But this depends on the type of classifier. Often the bias in the error
rate from the validation sample is small and one can omit the test step.
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Regularized neural networks

Often one uses the test sample to optimize the number of hidden nodes.

Alternatively one may use a relatively large number of hidden nodes
but include in the error function a regularization term that penalizes

overfitting, e.g.,
regularization parameter

/

E(w):E(w)—i—%wTw

Increasing A gives a smoother boundary (higher bias, lower variance)
Known as “weight decay”, since the weights are driven to zero unless

supported by the data (an example of “parameter shrinkage™).
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Neural network example from LEP II

Signal: ete” - W*W~ (often 4 well separated hadron jets)
Background: e*e” — qqgg (4 less well separated hadron jets)

s | < 1nput variables based on jet
h oas | oos | 1~ structure, event shape, ...
T e 0 ke ° wawes  nONE by itself gives much separation.
e % “ }&% Neural network output:
I:;(Nm?; ‘ ng\eficit; ’ glf:r\ority1 2:; :
o.o:E~ " o.o:;— Ty o.o::— Th :f L J
?.og(Ap?inori(yf Q Qs'lhrus t1 [ oiain(E,.)i s 01 02 03 04 05 06 07 N%Eron%’utpu:

(Garrido, Juste and Martinez, ALEPH 96-144)
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Probability Density Estimation (PDE)

Construct non-parametric estimators for the pdfs of the data x for the

two event classes, p(xIH ), p(xIH ) and use these to construct the

likelihood ratio, which we use for the discriminant function:

n-dimensional histogram is a brute force example of this; we will
see a number of ways that are much better.
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Correlation vs. independence

In a general a multivariate distribution p(x) does not factorize into a
product of the marginal distributions for the individual variables:

n holds only if the

(T — . . /
P(l)—n pi(x;) components of x
are independent

Most importantly, the components of x will generally have nonzero
covariances (1.e. they are correlated):

V,.]:cov[x,., xj]ZE[x,.xj]—E[x,.]E[xj]iO
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Decorrelation of input variables

But we can define a set of uncorrelated input variables by a
linear transformation, i.e., find the matrix A such that for Y= 4 X
the covariances covly, yi] =0:

fLnl 6 T T T T

-

s“"’

0 0 -
g | 2 L i’
4 f @ tr 8
6 1 1 1 1 6 1 1 1 1
6 4 2 0 2 4 6 5 4 2 0 2 4 6
X M

For the following suppose that the variables are “decorrelated” in
this way for each of p(xIHO) and p(xIHl) separately (since in general

their correlations are different).
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Decorrelation 1s not enough

But even with zero correlation, a multivariate pdf p(x) will in general
have nonlinearities and thus the decorrelated variables are still not
independent.

. pdf with zero covariance but
,

yA T T T Too

N ‘ components still not
. L independent, since clearly

- G px1, )
T p(x;|x;) >+
i pi(x,)

¢])2(x2)

and therefore

X1 plxx,)# p(x)) palx,)
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Naive Bayes

But if the nonlinearities are not too great, it is reasonable to first
decorrelate the inputs and take as our estimator for each pdf

=

b >=H 5, ()

So this at least reduces the problem to one of finding estimates of
one-dimensional pdfs.

The resulting estimated likelihood ratio gives the Naive Bayes classifier
(in HEP sometimes called the “likelithood method™).
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Kernel-based PDE (KDE, Parzen window)

Consider d dimensions, N training events, x,, ..., Xy,
estimate f (x) with

. N T — @
F@ = g 2 1 (557

\ ™~ bandwidth
kernel (smoothing parameter)

1 "
Use e.g. Gaussian kernel: K(x) = (27T)d/26_|x|2/2

Need to sum N terms to evaluate function (slow);
faster algorithms only count events in vicinity of x
(k-nearest neighbor, range search).
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Test example with TMVA

[ TMVAInput Variable: x | [ TMVATInput Varizble: y | [ TMVAInput Variable:z |
k- ] TT T[T T I T [T I T T[T T T T[T T T T[TTTT[TT k=] T[T T T T[T T TI T [ TTTT[TT] o
E s 1.Slgnd _- E
E E Backgromd : g 3
2 2 1. 2

2 1% 25

o e

s 13

£ 1z 2

S 15

] 12 15

i {a

) l=

: o

0.10.20.3 0.4 0.50.6 0.70.80.9
X Yy
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Test example, x vs. y with cuts on z

no cutenz

= d

3}

2

no cut on z

<05
> 4

[

—

z< 0.5

ol 1 N P |
2 1 0 1 2
by lsey ol T 1
2 1 0 1 2

[

z<0.75

il e z<0.25
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Test example results

§
Fisher ,
discriminant |
ol
8
gm‘

Naive Bayes,

10°

no decorrelation

10°

G. Cowan

I -
.5

_ enlres

10° =

W E

e
05

Multilayer
perceptron

Naive Bayes with
decorrelation
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Particle 1.d. in MiniBooNE

Detector 1s a 12-m diameter tank

of mineral o1l exposed to a beam Etectron cancidate
fuzzy ring, short trz}qk

of neutrinos and viewed by 1520  v;~_ &

photomultiplier tubes: w
n : P

MiniBooNE Detector

Muon candidate
sharp ring, filled in

i~
W
L
ﬁ | Pion candidate
‘ _two "e-like" rings
. . F =
Search for v  to v_ oscillations ol |

: W , -
required particle i.d. using n_— <D

information from the PMTs.
H.J. Yang, MiniBooNE PID, DNP06
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Decision trees

Out of all the mnput variables, find the one for which with a
single cut gives best improvement 1n signal purity:

signal !
signal ! background !

where w.. 1s the weight of the ith event.

P=

Resulting nodes classified as either
signal/background.

[terate until stop criterion reached
based on e.g. purity or minimum
number of events in a node.

The set of cuts defines the decision
boundary.
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Finding the best single cut

The level of separation within a node can, e.g., be quantified by
the Gini coefficient, calculated from the (s or b) purity as:

G =p(l—p)

For a cut that splits a set of events a into subsets b and ¢, one
can quantify the improvement in separation by the change in
weighted Gini coefficients:

A=W,G, —W,Gy, — W.G. where,eg., W, = Z w;
1ea

Choose e.g. the cut to the maximize A; a variant of this
scheme can use instead of Gini e.g. the misclassification rate:

c=1—max(p,1 —p)
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Decision trees (2)

The terminal nodes (Ieaves) are classified a signal or background
depending on majority vote (or e.g. signal fraction greater than a

specified threshold).

This classifies every point in input-variable space as either signal
or background, a decision tree classifier, with discriminant function

fix) =1 1f x in signal region, —1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in
the training sample.

Methods such as boosting can be used to stabilize the tree.
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Boosting

Boosting is a general method of creating a set of classifiers
which can be combined to achieve a new classifier that 1s more stable
and has a smaller error than any individual one.

Often applied to decision trees but, can be applied to any classifier.

Suppose we have a training sample 7 consisting of N events with

X ..., X event data vectors (each x multivariate)

Yysees ¥, tTUE class labels, +1 for signal, —1 for background

W, W event weights

Now define a rule to create from this an ensemble of training samples
I,T, .., derive a classifier from each and average them.

Trick 1s to create modifications in the training sample that give
classifiers with smaller error rates than those of the preceding ones.

A successful example is AdaBoost (Freund and Schapire, 1997).
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AdaBoost

First initialize the training sample 7' using the original
X ......X, ~ eventdata vectors

Y»ees ¥, true class labels (+1 or -1)

s W event weights

with the weights equal and normalized such that

> =1

i=1
Then train the classifier fl (x) (e.g. a decision tree) with a method that
incorporates the event weights. For an event with data x,

fx)>0 classify as signal

fx)<0 classity as background
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Updating the event weights

Define the training sample for step k+1 from that of k by updating

the event weights according to

—akfk(xi)yilz
- L\ €
(_I\ +l): w(l\)

1 1
Zy

i ~

i = event index k = training sample index

w

where Zk 1s a normalization factor defined such that the sum of the

weights over all events 1s equal to one.

Therefore event weight for event i is increased in the k+1 training
sample 1f it was classified incorrectly in sample k.

Idea is that next time around the classifier should pay more

attention to this event and try to get it right.
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Error rate of the kth classifier

At each step the classifiers f (x) are defined so as to minimize

the error rate €.

Zw (3, f+(x,)<0)

where /(X) = 1 1f X 1s true and is zero otherwise.
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Assigning the classitier score

Assign a score to the kth classifier based on its error rate,

x,=In
€k

If we define the final classifier as f(x

||M><:

then one can show that its error rate on the training data satisfies
the bound

K
e<[]2Ve (1—¢,)
k=1
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AdaBoost error rate

So providing each classifier in the ensemble has € < 2, i.e., better than

random guessing, then the error rate for the final classifier on the training
data (not on unseen data) drops to zero.

That 1s, for sufficiently large K the training data will be over fitted.

The error rate on a validation sample would reach some minimum after a
certain number of steps and then could rise.

So the procedure is to monitor the error rate of the combined classifier at
each step with a validation sample and to stop before it starts to rise.

Although in principle AdaBoost must overfit, in practice following this
procedure overtraining is not a big problem.
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BDT example from MiniBooNE

~200 input variables for each event (v interaction producing e, |l or T).

Each individual tree is relatively weak, with a misclassification
error rate ~ 0.4 — 0.45

_l 1 1 | I | | 1 I | | I I I | | I I I | 1

1 7 e un-weighted misclassified event rate 3

0.8 _: a weighted musclassified event rate. err_ _

= o B T B*hl((l—enm)--‘errm), ]5=05 ;

S 06 - - T L . B L
S
< 04
0.2 4
.

0 200 400 600 800 11000
Number of Tree Iterations

B. Roe et al., NIM 543 (2005) 577
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Monitoring overtraining

Training MC Samples .VS.  Testing MC Samples

. . E — 1500 — _
From MiniBooNE =~ ™1  DNwe=1 o Niee = 1
20000 " ] Ei

example: 10000 — EE I] 500 — Ei II

3 Jl N hl
Performance stable N N N DRSS A SRS MARAE DR
after a few hundred 204  Neee =100 w0 Nige =100

] e 6000 o,

0

trees. 1000 S0 1000 3 s,
i J h ] : N
. {:’ B> 2000 2 =
T l-’l T T T T T .-I‘ T T T I T T 0 - l.-‘l T T T T T I--I.' T T I T

-20 —lIO [I) 10 N 20 —?_0j —lIO [I) 10 S 20
T N =500 { N_.=500
] tree — 10000 tree —
2000 o, 7500 o
7] v "ty L 5,
] = H £000 ] - E
1000 & Y 000 1 .
] - 2500 {4 e
B -|.| - b _.n‘ N .
O =Tt 0 == T
20 0 20 20 0 20
2000 !
o] N e = 1000 8000 - N, . =1000
1500 — tree 3 tree
] ::\--‘—-_l GOOU - .
1000 —_ l.—l- I_. 4000 _: ...,' '\l‘.
0 .-: T T I T T |.I I T T T I T 0 = .-‘l T T I T T T [‘-‘l--l T I T
40 20 0 20 40 20 0 20
Boosting Outputs Boosting Outputs

G. Cowan IDPASC School of Flavour Physics, Valencia, 2-7 May 2013 / Statistical Analysis Tools page 61



,B. Roe et al., NIM 543 (2005) 577

Comparison of boosting algorithms

A number of boosting algorithms on the market; differ in the
update rule for the weights.

3 TS 3 ¥
i 7] ]
® ¢-Boost(45) i E ] @ £-Boost(45) i E
2.5 4 Ao AdaBoost(45) HINE N 2.5 4 Ao AdaBoost(45) I E
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Boosted decision tree summary

Advantage of boosted decision tree is it can handle a large number
of inputs. Those that provide little/no separation are rarely used as tree
splitters are effectively ignored.

Easy to deal with inputs of mixed types (real, integer, categorical...).

If a tree has only a few leaves it is easy to visualize (but rarely use only a
single tree).

There are a number of boosting algorithms, which differ primarily in the
rule for updating the weights (e-Boost, LogitBoost....)

Other ways of combining weaker classifiers: Bagging (Boostrap-
Aggregating), generates the ensemble of classifiers by random sampling
with replacement from the full training sample.
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Support Vector Machines

Support Vector Machines (SVMs) are an example of a kernel-based
classifier, which exploits a nonlinear mapping of the input variables
onto a higher dimensional feature space.

The SVM finds a linear decision boundary in the higher dimensional space.

But thanks to the “kernel trick™ one does not every have to write down
explicitly the feature space transformation.

Some references for kernel methods and SVMs:

The books mentioned earlier

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,
research.microsoft.com/~cburges/papers/SVMTutorial.pdf

N. Cristianini and J.Shawe-Taylor. An Introduction to Support Vector Machines

and other kernel-based learning methods. Cambridge University Press, 2000.
The TMV A manual (!)
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Support Vector Machines

Map input variables into high dimensional feature space: x — ¢

Maximize distance between separating hyperplanes (margin)
subject to constraints allowing for some misclassification.

Final classifier only depends on scalar
products of ¢(x):

y(x)=sign|

-

So only need kernel

K(x,x")J=p(x)p(x)
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[Linear SVMs

Consider a training data set consisting of

X ooy X event data vectors

Vs Yy lTUE class labels (+1 or —1)

Suppose the classes can be separated by a hyperplane defined by
a normal vector w and scalar offset b (the “bias™). We have

X, wt+b=>+1 for all y = +1

x;w+b<—1 forall y = -1 "

or equivalently

v, (x;w+b)—1=0 foralli A
Bishop Ch. 7
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Margin and support vectors

The distance between the hyperplanes defined by y(x) = +1 and y(x) = —1

is called the margin, which is:
e y=—1
y—0
y=1

marginzi
[[w]]

[f the training data are perfectly separated then this means there are
no points inside the margin.

Suppose there are points on the margin (this is equivalent to defining
the scale of w). These points are called support vectors.
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LLinear SVM classifier

We can define the classifier using
v(x)=sign(x-w+5)

which is +1 for points on one side of the hyperplane and —1 on the other.

The best classifier should have a large margin, so to maximize

« o o 2 . o
we can minimize ||w||~ subject to the constraints

v.(x; w+b)—1=0 foralli
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Lagrangian formulation

This constrained minimization problem can be reformulated using
a Lagrangian

1,
LZE“”’” _Zo‘i(yi(xi'w+b)_l)

i=1 \

positive Lagrange multipliers o

1

We need to minimize L with respect to w and » and maximize
with respect to o,

There 1s an o for every training point. Those that lie on the margin
(the support vectors) have o > 0, all others have o = 0. The solution

can be written (sum only contains

w= Z & V; X
i support vectors)
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Dual formulation

The classifier function is thus
y(x)=sign(x-w+b)=sign(z (x,.y,.x-x,.+b)

[t can be shown that one finds the same solution a by minimizing
the dual Lagrangian

LD:Z O‘i_%z K&V, YV X X,
i i,J

So this means that both the classifier function and the Lagrangian
only involve dot products of vectors in the input variable space.
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Nonseparable data

If the training data points cannot be separated by a hyperplane,
one can redefine the constraints by adding slack variables &i:

y.(x,; w+b)+&—1=>0with& >0 forall i

Thus the training point x. is allowed to
be up to a distance &i on the wrong side
of the margin , and & =0 ator on the

right side of the margin.

For an error to occur we have §i > 1, so
D&
]

1s an upper bound on the number of training errors.
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Cost function for nonseparable case
To limit the magnitudes of the &i we can define the error function that

we minimize to determine w to be

1 2
E(W)ZEHWH +C

T

where C is a cost parameter we must choose that limits the amount

of misclassification. It turns out that for k=1 or 2 this is a quadratic

programming problem and furthermore for k=1 it corresponds to
minimizing the same dual Lagrangian

LD:Z ai_%z KV VX X
i i, ]

where the constraints on the o become 0<;<C.
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Nonlinear SVM

So far we have only reformulated a way to determine a linear
classifier, which we know 1s useful only in limited circumstances.

But the important extension to nonlinear classifiers comes from first
transforming the input variables to feature space:

—

@ (x)=(p,(x),...,p,(x))

These will behave just as our new “input variables”. Everything
about the mathematical formulation of the SVM will look the same

as before except with @(x) appearing in the place of x.
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Only dot products

Recall the SVM problem was formulated entirely in terms of dot
products of the input variables, e.g., the classifier is

y(x):sign(z a,.y,.x-x,.+b)
so in the feature space this becomes

y(x)=sign| 2 00y, (x)-B(x)+)
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The Kernel trick

How do the dot products help? It turns on that a broad class of
kernel functions can be written in the form:

—

K(x,x")=¢(x)-@(x’)
Functions having this property must satistfy Mercer's condition
f K(x,x")g(x)g(x")dxdx'>0

for any function g where f o’ (x)d x is finite.

So we don't even need to find explicitly the feature space transformation

¢(x), we only need a kernel.
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Finding kernels

There are a number of techniques for finding kernels, e.g., constructing

new ones from known ones according to certain rules (cf. Bishop Ch 6).

Frequently used kernels to construct classifiers are e.g.

K(x,x")=(x-x"+0)" polynomial

—[lx—x|f
7 o Gaussian

K(x,x'")=exp

K(x,x')=tanh(k(x-x")+0) sigmoidal
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Using an SVM

To use an SVM the user must as a minimum choose

a kernel function (e.g. Gaussian)
any free parameters in the kernel (e.g. the ¢ of the Gaussian)
the cost parameter C (plays role of regularization parameter)

The training is relatively straightforward because, in contrast to neural
networks, the function to be minimized has a single global minimum.

Furthermore evaluating the classifier only requires that one retain
and sum over the support vectors, a relatively small number of points.
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Summary on multivariate methods

Particle physics has used several multivariate methods for many years:
linear (Fisher) discriminant
neural networks
naive Bayes

and has 1n recent years started to use a few more
k-nearest neighbour
boosted decision trees
support vector machines

The emphasis is often on controlling systematic uncertainties between
the modeled training data and Nature to avoid false discovery.

Although many classifier outputs are "black boxes", a discovery
at 50 significance with a sophisticated (opaque) method will win the
competition if backed up by, say, 4o evidence from a cut-based method.
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Quotes I like

“Keep it simple.
As simple as possible.
Not any simpler.”
— A. Einstein

“If you believe in something
you don't understand, you suffer,...”
— Stevie Wonder
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Extra slides
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Frequentist statistical tests — quick review

Consider a hypothesis |, and alternative ,, which each specify
the probability for data x., 1.e., P(x|H,), P(x|H,).

A test of H, 1s defined by specifying a critical region w of the
data space such that there 1s no more than some (small) probability
o, assuming H, 1s correct, to observe the data there, 1.e.,

Pxewl|H,)<
(Ew[Hy)=a data space €

Need inequality if data are
discrete.

a 1s called the size or
significance level of the test.

If x 1s observed 1n the
critical region, reject H,,.

critical region w
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Role of the alternative hypothesis

But in general there are an infinite number of possible critical
regions that give the same significance level o.

So the choice of the critical region for a test of /4, needs to take
into account the alternative hypothesis H,.

Roughly speaking, place the critical region where there 1s a low
probability to be found if H,, 1s true, but high if H, 1s true:

S'Q\Ho\ e \,H,"u.\l r&jtvh W
': o £ )
X
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p-values
Suppose hypothesis H predicts pdf f(Z|H) for a set of

observations © = (x1,...,Zn) .
We observe a single point in this space: Zgpg

What can we say about the validity of A in light of the data?

Express level of compatibility by giving the p-value for H:

p = probability, under assumption of H, to observe data with
equal or lesser compatibility with H relative to the data we got.

/N This is not the probability that H is true!

Requires one to say what part of data space constitutes lesser
compatibility with A than the observed data (implicitly this
means that region gives better agreement with some alternative).
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Using a p-value to define test of H,

One can show the distribution of the p-value of H, under
assumption of H, 1s uniform in [0,1].

So the probability to find the p-value of H,, p,, less than o 1s
P(pyo < a|Hp) = «

We can define the critical region of a test of A, with size « as the
set of data space where p, < .

Formally the p-value relates only to /,, but the resulting test will
have a given power with respect to a given alternative .
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Significance from p-value

Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate 1n one direction
to give the same p-value.

e

e X

Zz.c

o0 ]. —332/2
p=/ e dr =1- ®(Z) 1 - TMath: :Freq

Z =11 -p) TMath: :NormQuantile

E.g. Z=15 (a “5 sigma effect”) corresponds to p =2.9 x 107,
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Two distinct event selection problems

In some cases, the event types in question are both known to exist.

Example: separation of different particle types (electron vs muon)
Use the selected sample for further study.

In other cases, the null hypothesis //, means "Standard Model" events,
and the alternative //, means "events of a type whose existence 1s
not yet established" (to do so is the goal of the analysis).

Many subtle i1ssues here, mainly related to the heavy burden
of proof required to establish presence of a new phenomenon.

Typically require p-value of background-only hypothesis
below ~ 1077 (a 5 sigma effect) to claim discovery of
"New Physics".
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Using classifier output for discovery

sienal search
o)l No)! — region
background background
excess?
Y Ve Y
Normalized to unity Normalized to expected

number of events

Discovery = number of events found in search region incompatible
with background-only hypothesis.

p-value of background-only hypothesis can depend crucially
distribution f(y|b) in the "search region".
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Prototype search

Suppose # of events n ~ Poisson( ,u 54 b

found 1n search region: /

strength Xpected expected
parameter  signal background

For each event measure x:

(classifier output or kin. var.) 17T dm
where cach x follows  f(xlp) = ——— f(x[s) + ’ f(z|b)

Likelihood function is: L (z) = 2 +' O) o= (us+t) IT f(xilw)
TL. :
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Test of signal strength u

Can test a value of y using: \(p) = E(M) : fi = argmax L(u)

(&) .
E.g. to test —2InA0) 4>=0
H,:nu=0 versus qo =
H,:u>0use 0 p<0

[.e., large g, means increasing disagreement between data and
hypothesis of u = 0.

In this case, we are assuming alternative to background-only
hypothesis 1s a positive signal strength.
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p-value for discovery

Large g, means increasing incompatibility between the data
and hypothesis, therefore p-value for an observed g, ., 18

{X;.
Po :/ f(q0]0) dqo
q40,0bs
‘\

For large sample related to
chi-square distribution.

f

a,l0)

—— —_—

From p-value get
equivalent significance,

7 =3"11-p)
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Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Cumulative distribution of g, significance

From the pdf, the cumulative distribution of g, 1s found to be

1

Flao) = (Vi - 12)
The special case u' =0 1s
F(q0|0) = q’(\/%)
The p-value of the u = 0 hypothesis 1s
po=1—F(ql|0)
Therefore the discovery significance Z 1s simply

Z=o"1-py) =@
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Alternative likelithood ratio for full experiment

We can define a test statistic Q monotonic 1n the likelthood ratio as

B Ls-|—b__ S (Xz‘)
Q= —2In = SJrzln(l—l_bf XJM)

To compute p-values for the b and s+b hypotheses given an
observed value of O we need the distributions Q|b) and f(Q|s+b).

Note that the term —s 1n front 1s a constant and can be dropped.

The rest 1s a sum of contributions for each event, and each term
in the sum has the same distribution.

Can exploit this to relate distribution of Q to that of single
event terms using (Fast) Fourier Transforms (Hu and Nielsen,
physics/9906010).
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Distribution of O

Take e.g. b =100, s = 20. Suppose in real experiment
O 1s observed here.
g 0.08
/(O
J(Q|stb)
0.
0.02 I
p-value of — _— p-value of s+b
b only '
0

-80 -60 -40 -20 0
Q

If p.., < a, reject signal model s at confidence level 1 — a.

If p, <2.9 x 1077, reject background-only model (signif. Z =5).

G. Cowan IDPASC School of Flavour Physics, Valencia, 2-7 May 2013 / Statistical Analysis Tools



