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Outline 
Multivariate methods for HEP 

 Event selection as a statistical test 
 Neyman-Pearson lemma and likelihood ratio test 

Some multivariate classifiers: 
  Linear 

 Neural networks 
 Boosted Decision Trees 
 Support Vector Machines 

Use of multivariate methods in a search (brief overview) 
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A simulated SUSY event in ATLAS 

high pT 
muons 

high pT jets  
of hadrons 

missing transverse energy 

p p 
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Background events 
This event from Standard  
Model ttbar production also 
has high  pT jets and muons, 
and some missing transverse 
energy. 

→ can easily mimic a SUSY event. 
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Event selection as a statistical test 
For each event we measure a set of numbers: ( )nx,,x=x …1



x1 = jet pT  
x2 = missing energy 
x3 = particle i.d. measure, ...  

x follows some n-dimensional joint probability density, which  
depends on the type of event produced, i.e., was it ,ttpp→ …→ ,g~g~pp

xi

x j
E.g. hypotheses H0, H1, ...  
Often simply “signal” (s), 
 “background” (b) 

( )1H|xp


( )0H|xp

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Finding an optimal decision boundary 
In particle physics usually start 
by making simple “cuts”: 

   xi < ci 
   xj  < cj 

Maybe later try some other type of decision boundary: 
H0 H0 

H0 

H1 

H1 
H1 
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R1 

α 
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Constructing a test statistic 
The Neyman-Pearson lemma states:  to obtain the highest signal 
efficiency for a given background efficiency (highest power for a 
test of a given size), choose the critical region for a test of the 
background hypothesis (acceptance region for signal) such that 

where c is a constant determined by the background efficiency.  

Equivalently, the optimal test statistic is given by the likelihood 
ratio: 

N.B. any monotonic function of this is just as good. 
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Overtraining  

training sample independent validation sample 

If decision boundary is too flexible it will conform too closely 
to the training points  → overtraining. 
Monitor by applying classifier to independent validation sample. 
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Choose classifier that minimizes error function for validation sample. 
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Neural network example from LEP II 
Signal:  e+e- → W+W-    (often 4 well separated hadron jets) 
Background:  e+e- → qqgg  (4 less well separated hadron jets) 

←  input variables based on jet 
structure, event shape, ... 
none by itself gives much separation. 

Neural network output: 

(Garrido, Juste and Martinez, ALEPH 96-144) 



G. Cowan IDPASC School of Flavour Physics, Valencia, 2-7 May 2013 / Statistical Analysis Tools   41 



G. Cowan IDPASC School of Flavour Physics, Valencia, 2-7 May 2013 / Statistical Analysis Tools   42 



G. Cowan IDPASC School of Flavour Physics, Valencia, 2-7 May 2013 / Statistical Analysis Tools   43 



G. Cowan IDPASC School of Flavour Physics, Valencia, 2-7 May 2013 / Statistical Analysis Tools   44 



G. Cowan IDPASC School of Flavour Physics, Valencia, 2-7 May 2013 / Statistical Analysis Tools   45 



G. Cowan IDPASC School of Flavour Physics, Valencia, 2-7 May 2013 / Statistical Analysis Tools   46 

Kernel-based PDE (KDE, Parzen window) 
Consider d dimensions, N training events, x1, ..., xN,  
estimate f (x) with 

Use e.g. Gaussian kernel: 

kernel 
bandwidth  
(smoothing parameter) 

Need to sum N terms to evaluate function (slow);  
faster algorithms only count events in vicinity of x  
(k-nearest neighbor, range search). 
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Particle i.d. in MiniBooNE 
Detector is a 12-m diameter tank 
of mineral oil exposed to a beam 
of neutrinos and viewed by 1520 
photomultiplier tubes: 

H.J. Yang, MiniBooNE PID, DNP06 

Search for νµ to νe oscillations  
required particle i.d. using  
information from the PMTs. 
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Decision trees 
Out of all the input variables, find the one for which with a 
single cut gives best improvement in signal purity: 

Example by MiniBooNE experiment, 
B. Roe et al., NIM 543 (2005) 577 

where wi. is the weight of the ith event. 

Resulting nodes classified as either 
signal/background. 

Iterate until stop criterion reached 
based on e.g. purity or minimum 
number of events in a node. 
The set of cuts defines the decision 
boundary. 
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Finding the best single cut 
The level of separation within a node can, e.g., be quantified by 
the Gini coefficient, calculated from the (s or b) purity as: 

For a cut that splits a set of events a into subsets b and c, one 
can quantify the improvement in separation by the change in  
weighted Gini coefficients: 

where, e.g.,   

Choose e.g. the cut to the maximize Δ; a variant of this 
scheme can use instead of Gini e.g. the misclassification rate: 
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Decision trees (2) 
The terminal nodes (leaves) are classified a signal or background 
depending on majority vote (or e.g. signal fraction greater than a 
specified threshold). 

This classifies every point in input-variable space as either signal 
or background, a decision tree classifier, with discriminant function 

f(x) = 1 if x in signal region, -1 otherwise 

Decision trees tend to be very sensitive to statistical fluctuations in 
the training sample. 

Methods such as boosting can be used to stabilize the tree. 
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< 
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Monitoring overtraining  

From MiniBooNE 
example: 
Performance stable 
after a few hundred 
trees. 
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Comparison of boosting algorithms 
A number of boosting algorithms on the market; differ in the 
update rule for the weights. 

,B. Roe et al., NIM 543 (2005) 577 
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earlier 
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Support Vector Machines 
Map input variables into high dimensional feature space: x → φ	


Maximize distance between separating hyperplanes (margin)  
subject to constraints allowing for some misclassification. 

Final classifier only depends on scalar 
products of  φ(x): 

So only need kernel 

Bishop ch 7 
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margin 

margin. 
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Summary on multivariate methods 
Particle physics has used several multivariate methods for many years: 

 linear (Fisher) discriminant 
 neural networks 
 naive Bayes 

and has in recent years started to use a few more 
 k-nearest neighbour 
 boosted decision trees 
 support vector machines 

The emphasis is often on controlling systematic uncertainties between 
the modeled training data and Nature to avoid false discovery. 

Although many classifier outputs are "black boxes", a discovery 
at 5σ significance with a sophisticated (opaque) method will win the 
competition if backed up by, say, 4σ evidence from a cut-based method. 



Quotes I like 

“If you believe in something  
you don't understand, you suffer,...” 

    – Stevie Wonder 

“Keep it simple. 
As simple as possible. 
Not any simpler.” 

    – A. Einstein 
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Extra slides  
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Frequentist statistical tests – quick review 
Consider a hypothesis H0 and alternative H1, which each specify 
the probability for data x., i.e., P(x|H0), P(x|H1). 

A test of H0  is defined by specifying a critical region w of the 
data space such that there is no more than some (small) probability 
α, assuming H0 is correct,  to observe the data there, i.e., 

  P(x ∈ w | H0 ) ≤ α 

Need inequality if data are 
discrete. 

α is called the size or  
significance level of the test. 

If x is observed in the  
critical region, reject H0. 

data space Ω 

critical region w 
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Role of the alternative hypothesis 
But in general there are an infinite number of possible critical 
regions that give the same significance level α. 

So the choice of the critical region for a test of H0  needs to take 
into account the alternative hypothesis H1. 

Roughly speaking, place the critical region where there is a low  
probability to be found if H0 is true, but high if H1 is true: 
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p-values 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Express level of compatibility by giving the p-value for H: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

Requires one to say what part of data space constitutes lesser 
compatibility with H than the observed data (implicitly this 
means that region gives better agreement with some alternative). 
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Using a p-value to define test of H0 

One can show the distribution of the p-value of H, under  
assumption of H, is uniform in [0,1]. 

So the probability to find the p-value of H0, p0, less than α is 

IDPASC School of Flavour Physics, Valencia, 2-7 May 2013 / Statistical Analysis Tools   

We can define the critical region of a test of H0 with size α as the  
set of data space where p0 ≤ α. 

Formally the p-value relates only to H0, but the resulting test will 
have a given power with respect to a given alternative H1. 



G. Cowan 85 

Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 
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E.g. Z = 5 (a “5 sigma effect”) corresponds to p = 2.9 × 10-7. 
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Two distinct event selection problems 
In some cases, the event types in question are both known to exist. 

 Example:  separation of different particle types (electron vs muon) 
 Use the selected sample for further study. 

 
In other cases, the null hypothesis H0 means "Standard Model" events, 
and the alternative H1 means "events of a type whose existence is 
not yet established" (to do so is the goal of the analysis). 

 Many subtle issues here, mainly related to the heavy burden 
 of proof required to establish presence of a new phenomenon. 

 Typically require p-value of background-only hypothesis  
 below ~ 10-7 (a 5 sigma effect) to claim discovery of  
 "New Physics". 
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Using classifier output for discovery 

y 

f(y) 

y 

N(y) 

Normalized to unity Normalized to expected  
number of events 

excess? 

signal 

background background 

search 
region 

Discovery = number of events found in search region incompatible 
with background-only hypothesis. 
p-value of background-only hypothesis can depend crucially 
distribution f(y|b) in the "search region". 

ycut 
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Prototype search 
Suppose # of events  
found in search region: 

expected  
background 

expected 
signal 

strength  
parameter 

For each event measure x: 
(classifier output or kin. var.)  

Likelihood function is: 

where each x follows 
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Test of signal strength µ 

Can test a value of µ using: 

E.g. to test  
H0 : µ = 0  versus 
H1 : µ > 0 use 

I.e., large q0 means increasing disagreement between data and 
hypothesis of µ = 0. 

In this case, we are assuming alternative to background-only 
hypothesis is a positive signal strength. 

, 
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p-value for discovery 
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Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

For large sample related to 
chi-square distribution. 

From p-value get  
equivalent significance, 
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  
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The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Alternative likelihood ratio for full experiment 
We can define a test statistic Q monotonic in the likelihood ratio as 

To compute p-values for the b and s+b hypotheses given an  
observed value of Q we need  the distributions f(Q|b) and f(Q|s+b). 

     Note that the term –s in front is a constant and can be dropped. 

The rest is a sum of contributions for each event, and each term 
in the sum has the same distribution. 

Can exploit this to relate distribution of Q to that of single 
event terms using (Fast) Fourier Transforms (Hu and Nielsen,  
physics/9906010). 
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Distribution of Q 
Take e.g. b = 100, s = 20. 

f (Q|b) 
f (Q|s+b) 

p-value of 
 b only 

p-value of s+b 

Suppose in real experiment 
Q is observed here. 

If ps+b < α, reject signal model s at confidence level 1 – α. 

If pb  < 2.9 × 10-7, reject background-only model (signif. Z = 5). 


