Characterising the response to high energy photons of the R3B/FAIR electromagnetic calorimeter CALIFA

Pamela Teubig

5th IDPASC and LIP PhD student workshop

LISBOA UNIVERS

* Motivation: Contribute to the characterization of CsI(Tl) crystals using high energy γ-rays

* Measurement of direct decay to ground or first excited state from resonances of light nuclei produced in a high Q-value radiation reactions

FAIRFacility for Antiproton
and Ion Research

Reactions with Relativistic Radioactive Beams

CALorimeter for the In-Flight detection of gamma rays and light charged pArticles

Extensive energy range photons: 0 – 20 MeV protons: 0 – 300 MeV

High energy resolution 1 - 10 %

Working conditions

γ-ray spectrometerγ-ray calorimeterHybrid detector

Nowadays...

Phase-Zero: 2018

Benchmarking:

Protons Beam Photons

B. Pietras, *et al.* First testing of the CALIFA Barrel demonstrator. NIMB (2016) 814:56-64.

Particle Induced Gamma Emission (PIGE): as a tool

$$^{27}Al(p,\gamma)^{28}Si$$

to produce γ > 10 MeV to challenge CALIFA barrel segments

Q-value: 11.59 MeV

Nuclear reaction line @ tandem accelerator at LATR-CTN

Resonance picture of ²⁸Si determined by the yield of first excited state

Resonance picture of ²⁸Si determined by the yield of first excited state

CALIFA petal

Experimental setup @ LATR-CTN

Beam line

Calibration Procedure

Data efficiently unpacked using R3BRoot unpacker

* A flavour of CALIFA barrel response:

★ Source: ⁶⁰Co

*** Continuous monitoring:** ²⁷Al(p,p'γ)²⁷Al

Intrinsic petal response: $E_p = 2210 \text{ keV}$

Petal Integral response: Energy Resolution

Petal Integral response: Mean crystal multiplicity

Recontruction approaches (1 petal)

★ Calorimeter

★Active shield

 $\star E_{max}$ dependent

Distance dependent

Reconstruction approach: calorimeter

Reconstruction approach: Active Compton shield

E_(MeV)

Reconstruction approach: Highest energy core

Reconstruction approach: Distance constrained

$$d_i = \sqrt{(x_i - x_{max})^2 + (y_i - y_{max})^2}$$

 d_i in crystal units

$$\sum_{i} d_{i} < d_{max}$$

Distance

condition

applied

$$d_{max} = mult \cdot \sqrt{2}$$

Comparison of Reconstruction approaches:

Possible source for ANN approaches:

11000

11500

12000

12500

E_v (keV)

Collaborators

- D. Galaviz L. Peralta A. Henriques E. Galiana
- P. Velho
- D. Ferreiras

A.P. Jesus J. Cruz M. Fonseca J. Machado H. Silva

D. Cortina-Gil H. Álvarez-Pol P. Cabanelas D. González E. Galiana

R. Gernhäuser P. Remmels P. Klenze

E. Alves
R. Coelho da Silva
H. Luís
J. Rocha

A. Sánchez-Benítez

Thank you!

Questions?

