Physics at the Large Hadron Collider

Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore

1st June 2019

Lecture Plan

Overview of the 2 lectures in the next days

- Lecture 1: Introduction to Experimental Techniques at the LHC & Measurements and test of the Standard Model
- Lecture 2: The Higgs boson and Searches beyond the Standard Model, and a short outlook to the future at the LHC

Disclaimer: ATLAS & CMS have very similar results Typically one chosen for illustration

Outline Lecture I

- The Higgs: new physics or Standard Model
- Searching for Supersymmetry
- Searching for Dark Matter
- New Searches
- Outlook
- Summary

Summary: Cross Sections 7/8/13 TeV

All measurements in good agreement with the Standard Model predictions!!

Physics case for new High Energy Machines

Higgs

The party 7 years ago

2012: A Milestone in Particle Physics

Observation of a Higgs Particle at the LHC, after about 40 years of experimental searches to find it

The mass of the Higgs particle is $m_H = 125.09 \pm 0.24$ GeV following the Run-1 ATLAS+CMS combination arXiv:1503.07589

The Theorist and Experimentalists

The party in 2012!

A. Pomarol ICHEP2012

Not everybody at the party eg higgsless models...

But careful about resurrections, Higgs imposters...

Tuesday 8 October 2013

Francois Englert

XXIII

Peter Higgs

Higgs Production and Decay

Higgs Production & Decay

Numbers taken from the LHC Higgs Cross Section WG

See CERN yellow reports: YR1: Inclusive cross sections YR2: Differential cross sections YR3: Properties YR4: Deciphering the nature of the Higgs sector

2012: A Milestone in Particle Physics

Observation of a Higgs Particle at the LHC, after about 40 years of experimental searches to find it

	ggF	VBF	VH	ttH
H-> gamgam				
H-> ZZ				
H->WW				
H-> bb	_	_		
H-> tau tau	_			
H-> Zgamma				
H-> mumu				
H-> invisible				

2014: Higgs Boson well established.

Most accessible channels studied

Observation in WW,
ZZ and γγ channels
tau tau at the limit
bb and ttH not
observed in Run-1

Higgs: ATLAS+CMS Combination

Production process	Measured significance (σ)	Expected significance (σ)
VBF	5.4	4.6
WH	2.4	2.7
ZH	2.3	2.9
VH	3.5	4.2
ttH	4.4	2.0
Decay channel		
$H \rightarrow \tau \tau$	5.5	5.0
$H \rightarrow bb$	2.6	3.7

The Run-1 Higgs Legacy!

arXiv:1606.02266 / JHEP 1608 (2016) 045 5153 authors!!

The newly found boson has properties as expected for a Standard Model Higgs

Signal strength/SM:

 $\mu = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07} \text{ (stat)} {}^{+0.04}_{-0.04} \text{ (expt)} {}^{+0.03}_{-0.03} \text{ (thbgd)} {}^{+0.07}_{-0.06} \text{ (thsig)},$

Higgs @ 13 TeV in Run 2

Higgs particle is still there ! ③

- The mild deviations seen in Run-1 seem to be gone ☺
- Observation of H→bb in the associated production channel
- Direct observation of ttH production
- No deviations from Standard Model Higgs expectations yet!!
 The Higgs Boson is still very

The Higgs Boson is still very much Standard Model-like!

$$\mu = 1.17^{+0.10}_{-0.10}$$

Higgs ttH Production

ttH production: Combination of all Higgs decay channels and combination with the 7/8 TeV data of Run-1 arXiv:1804.0261

Observation of ttH production with:

- Run-2 alone: 5.8 σ significance (4.9 σ expected)

- Run-1 and Run-2 combined: 6.3 σ significance (5.1 σ expected)

Observation of ttH! Results in agreement with the Standard Model

7+8+13 TeV data $\mu_{t\bar{t}H} = 1.26 + 0.31 - 0.26$ Significance = 5.9 σ (exp 4.2 σ)

Higgs to bb Decay

H->bb decay: Combination of all Higgs decay channels and combination with the 7/8 TeV data of Run-1

More Higgs Studies..

arXiv:1802.04329

Higgs decay to charm search

Higgs decay to $\rho\gamma$ and $\phi\gamma$ search

arXiv:1712.02758

Branching Fraction Limit (95% CL)	Expected	Observed
$\mathcal{B}\left(H\to\phi\gamma\right)\left[\ 10^{-4}\ \right]$	$4.2^{+1.8}_{-1.2}$	4.8
$\mathcal{B}\left(Z \to \phi \gamma \right) \left[\ 10^{-6} \ \right]$	$1.3^{+0.6}_{-0.4}$	0.9
$\mathcal{B}\left(H\to\rho\gamma\right)[\;10^{-4}\;]$	$8.4^{+4.1}_{-2.4}$	8.8
$\mathcal{B}(Z \to \rho \gamma) [\ 10^{-6} \]$	33+13	25

10

Brief Higgs Summary (so far)

We know already a lot on this brand New Higgs particle!!

We continue to look for anomalies, i.e. unexpected decay modes or couplings, multi-Higgs production, heavier Higgses, charged Higgses...

Brief Higgs Summary (so far)

Combination of all Higgs production/decay channels at 13 TeV Check overall consistency of the couplings

The Future: Studying the Higgs...

More LHC Data 2021-2023
LHC upgrade ! 2026-2036
Experiment upgrades!!
Other/new machines?
-> see later

Higgs as a portal

- having discovered the Higgs?
- Higgs boson may connect the Standard Model to other "sectors"

Many questions are still unanswered:
What explain a Higgs mass ~ 125 GeV?
What explains the particle mass pattern?
Connection with Dark Matter?
Where is the antimatter in the Universe?

•What is the origin of neutrino masses?

Physics Beyond the Standard Model?

New Physics inevitable? But at which scale/energy?

A Higgs at 125 GeV Precise measurements of the top quark and the Higgs mass

New Physics?

What stabelizes the Higgs Mass? Many ideas, not all viable any more A large variety of possible signals. We have to be ready for that

New Physics Hunters @ the LHC

The ATLAS experiment

The CMS experiment

...And also LHCb and MoEDAL

Careful with "Discoveries"!

Excess of events at high Q² in ep DIS at HERA, mainly in H1:

- •7 events found with an electron-quark mass of ~200 GeV, expected ~1 event
- •4 events found with expected 2 events in ZEUS -> Leptoquarks?

Searches for BSM Physics

Supersymmetry: a new symmetry in Nature?

SUSY particle production at the LHC

Candidate particles for Dark Matter \Rightarrow Produce Dark Matter in the lab

Detecting Supersymmetric Particles

Supersymmetric particles decay and produce a cascade of jets, leptons and missing transverse energy (MET) due to escaping 'dark matter' particle candidates

Very prominent signatures in CMS and ATLAS

Why SUSY is good for you!!

Dark matter candidate with the right abundance

Finding Wally in 2 dimensions is already tough. What about finding SUSY in 105 dimensions?

WHERE'S SUSY ? "Where's Waity?" (c) Classic Media Distribution Limited. All rights reserved.

Supersymmetry: Gluinos

No significant signal to date

Within the context of the SMS: Exclude with gluino masses ~ 2200 GeV for neutralino masses up to 800 GeV

What is really needed from SUSY?

End 2011: Revision!

N. Arkani-Ahmed CERN Nov 2011

Papucci, Ruderman, Weiler arXiv:1110.6926

LHC data end 2011 Stops > 200-300 GeV Gluino > 600-800 GeV

Moving away from constrained SUSY models to 'natural' models

Natural SUSY survived LHC so far, but we are getting close to push it to its limits!

Cumpulsory Natural SUSY 1500 tL,R,b, 400 120 Unavoidable tunings: $\left(\frac{400}{m_{1}^{2}}\right)^{2}$, $\left(\frac{4m_{1}^{2}}{M_{q}^{2}}\right)^{2}$

Top Squark Search Summaries

Within the context of the SMS: Exclude with masses up to 1100 GeV for neutralino masses up to 500 GeV

Is this getting critical for Natural Models??

The SUSY SEARCH Chart So Far...

Mass scale [TeV]

ATLAS Preliminary

ATLAS SUSY Searches* - 95% CL Lower Limits

"Only a selection of the available mass limits invove states or phenomena is shown. Many of the limits are based on simplified models, 6.1 who has the assumptions matter

M	Model	s	Signatur	•	2 11 10	"IMa	iss limit					Vr = 13 le Reference
	41.4-47	4,1,0 He constri	2-8 peta 1-2 peta	$\frac{E_T^{max}}{E_T^{max}}$	38.1 36.1	4 (Including) 4 (Including)	6.42	8.75	11	M.	eadoor-Chier eadoor-Chier Que	1712.000000 1711.000001
ŧ	10.1	3.6.41	2-6 juns	$k_{\rm T}^{\rm max}$	as t	1		(popular)		2.0	m(F)=000 GeV m(F)=000 DeV	1712-02582 1712-02582
1	40.2 -squ007	3 n.p mus	4 jets 2 jets	17	28.1 26.1	:			1.2	1.86	1127]1-000 Delt 1127]1-00 Delt	1704-02121
1	$hI, I \rightarrow aq H Z \mathcal{S}_1^{\mathcal{S}}$	4.4.0 3.4.0	7.11 (44	11.	36.1 36.1	2		0.94		1.0	+(7) < 000 GeV +(0)+(7)-200 GeV	1700.0279+ 1708.00781
÷	$M, X {\rightarrow} \Theta_1^{(0)}$	0.1 s.s 3 s.s	93 4 jets	17	79,8 58.1	2			1.25	133	+42 ¹)-200 GeV #33)+437()-300 GeV	WILKE-CONF-pristori 1706/02/01
	h.h., hmDmT		Multiple Multiple Multiple		36.1 36.1 36.1	Ry Parameter Ry Ry	2200	0.8 8.56-0.65 0.7		+6])-3 +(5)-330Ge	#9(1)-3000444 (#94)4(1)-1 00444 (#94)4(1)-896(4(1)-0.8 4 (#9(1)-3000444 (#94)4(1)-1	1708.00006, 1711 00001 1708.00096 1708.00096
11	$h_1h_2,h_1\cdots H_2^{(0)} \rightarrow \partial t H_1^{(0)}$	84,0	6.0	$L^{2,\infty}_{2}$	100	1. / / / / / / / / / / / / / / / / / / /	8.23-0.46	0.6	22-1.38	daniji" jamaj	()-1500au.(n)()-1000au (,1)-1500au.(n)()-1000au	0625940010-04 0625940010-04
ant na	$\begin{array}{l} A_{1}\bar{n}_{1},\bar{\eta}_{2} \rightarrow WAT_{1}^{0} \text{ pr } dT_{1}^{0} \\ A_{1}\bar{n}_{1}, \text{ Weak: Theregoened 5.58} \end{array}$	82.64	D-2 peter 1-2 Multiple	A KT	36.† 36.1	6		0.45-0.24		-(1))(Le	$\label{eq:constraint} \begin{split} & w(t_{i}^{2}) = f G w \delta \\ & A_{i}^{2} m(t_{i}^{2}) = w(t_{i}^{2}) = 0 G w (t_{i}^{2} + t_{i}) \\ & A_{i}^{2} m(t_{i}^{2}) = w(t_{i}^{2}) = 0 G w (t_{i}^{2} + t_{i}) \\ & A_{i}^{2} m(t_{i}^{2}) = 0 G w (t_{i}^{2} + t_{i}) \\ & A_{i}^{2} m(t_{i}^{2}) = 0 G w (t_{i}^{2} + t_{i}) \\ & A_{i}^{2} m(t_{i}^{2}) = 0 G w (t_{i}^{2} + t_{i}) \\ & A_{i}^{2} m(t_{i}^{2}) = 0 G w (t_{i}^{2} + t_{i}) \\ & A_{i}^{2} m(t_{i}^{2}) = 0 G w (t_{i}^{2} + t_{i}) \\ & A_{i}^{2} m(t_{i}^{2} + t_{i}) \\ & A_{i}^{2} m$	1506.08010, 1708.04183, 1711 11525 1708.04183, 1711 11528
14	$h_{T_1}, t_1 \rightarrow a T_1^{a} + cr, c \rightarrow a T_1^{a}$	34,0	2:	17	36.1	6 4 h	1.46	141			eelf)-ctian eelf)-ctian eelf-condition	1905.01640 1905.01046
	$(i,i_1',i_2'{\rightarrow} i_1'+0)$	1.8 1.10	4.5	12	DH.Y	1.	-	6.32-0.06		(m)() -	0 Ball (9), (-0),	(706.0/686
	118 ² m.97	234,8	21	ص	26.1 36.1	11 A		8.6			Heritigen Versitieren Generatieren	1403-5294, 1600-82292 1712-08159
EW deact	$ \begin{array}{l} I_{1}^{T}I_{1}^{T} & \forall \mathbf{n} \ WW \\ I_{1}^{T}I_{1}^{T} & \sin WK \\ I_{1}^{T}I_{1}^{T} & \forall \mathbf{n} \ I_{1}, p \\ I_{1}^{T}I_{1}^{T} & \forall \mathbf{n} \ I_{1}, p \\ I_{1}^{T}I_{1}^{T}I_{2}^{T}, I_{1}^{T} \rightarrow t_{p} vr(t), I_{2}^{T} \rightarrow t_{p} r(v) \\ \end{array} $	2χ.μ 0.1 κ.μ 3 κ.μ 3 τ	20		109 26.1 109 38.1	11 11 11 11 11 11 11 11 11 11 11 11 11	842	0.66 1.0 0.7%		e(1) =(1)=(1)=(1)=(1)=(1)=(1)=(1)=(1)=(1)=(1)	8071-08 2071-08 20171-08229/11-08712 20170-08299071-08712 20170-08299071-08712	AFLAS.COAF 0019-008 1912-09430 AFLAS.COAF-0019-008 1708-0085
	$I_{1,0}J_{1,0}, I{\rightarrow} O_1^d$	2 r. p 2 r. p	0.98 2.1	17 17	130 36.1	1 0.18		87			ອງດີ-ອາຊີໃນ-6 ອາຊີນ-ອາຊີໃນ-5 GeV	WILKELCOMP anno de 1712 detrie
	RR. R-++G.20	84.0	212	距	36.1 36.1	A 0.150.23		0.29-0.85			8907 -++01+1 8807 -+307+1	1606,04030 1604,04030
Lang-lined periodes	Direct $\hat{s}_{i}^{*}\hat{s}_{i}^{*}$ pixed, long-level \hat{r}_{i}^{*} Stable g R-hadron Measurable 2 R-hadron, $g = \exp[\hat{r}_{i}^{*}]$	Оварр, Н	V jet Mutiples Mutiples	1211	36.1 36.1 36.1	27 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.46			29	Para Won Dara Hagaine m(C) - XH DeV	1712.02118 40. PHYS PUB-2017.018 1991 1109 1099 4459
Audit	UPT pperfect k, k, n -requiring $\Gamma_1^{*}\Gamma_1^{*}/\ell_2^{*} \rightarrow 0.052200747$ $R_1^{*}R_2^{*}R_2^{*}R_1^{*}R_2^{*} \rightarrow 0.0$ $R_1^{*}R_2^{*}R_1^{*}R_1^{*} \rightarrow 0.0$	άμτημη 4 έμε 1	0 jata 6 large A y MARpia MARpia	ij	32 36.1 36.1 36.1 36.1	To TO ALL Data With Association To ALL Data With Association To ALL Data All Data All Data To AL		1.0 1.0		1.8 1.8 2.9	$\begin{array}{c} \mathcal{L}_{Le}^{*}=0.11, \ \mathcal{L}_{Le}(+)(-)=-0.01^{*}\\ =& \mathcal{L}_{Le}^{*}=0.01 \text{ GeV}\\ \text{Larger} \in \mathcal{L}_{L}\\ =& \mathcal{L}_{Le}^{*}\mathcal{L}_{L}^{*}=0.01 \text{ GeV}, \ \text{model} \text{ for }\\ =& \mathcal{L}_{Le}^{*}\mathcal{L}_{L}^{*}=0.01 \text{ GeV}, \ \text{model} \text{ for }\\ =& \mathcal{L}_{Le}^{*}\mathcal{L}_{L}^{*}=0.01 \text{ GeV}, \ \text{for } \text{for }\\ =& \mathcal{L}_{Le}^{*}\mathcal{L}_{L}^{*}=0.01 \text{ GeV}, \ \text{for } \text{for }\\ =& \mathcal{L}_{Le}^{*}\mathcal{L}_{L}^{*}=0.01 \text{ GeV}, \ \text{for } \text{for }\\ =& \mathcal{L}_{Le}^{*}\mathcal{L}_{L}^{*}=0.01 \text{ GeV}, \ \text{for } \text{for }\\ =& \mathcal{L}_{Le}^{*}\mathcal{L}_{L}^{*}=0.01 \text{ GeV}, \ \text{for } \text{for }\\ =& \mathcal{L}_{Le}^{*}\mathcal{L}_{L}^{*}=0.01 \text{ GeV}, \ \text{for } \text{for }\\ =& \mathcal{L}_{L}^{*}=0.01 \text{ GeV}, \ \text{for } \text{for }\\ =& \mathcal{L}_{L}^{*}=0.01 \text{ GeV}, \ \text{for } \text{for }\\ =& \mathcal{L}_{L}^{*}=0.01 \text{ GeV}, \ \text{for }\\ =& \mathcal{L}_{L}^{*}=0.01 GeV$	Squark
	$\Lambda \tilde{n}_1, \tilde{r}_1 \rightarrow q \tilde{r}$	200	2 A DV	2403	36.1	A De lin (), stat le lin ()	alle B	14	845.8	1.4	REPLY - HALAGE ATTA- REPLY - HALAGE AND A CONFLICT	e 5000

101

Limits from individual analyses

Excluded squark and gluino mass region

SUSY (as seen from outside HEP...)

November '16 reported by The Economist (!?!):

But not giving up as yet!!! So far 2016 data analysed

Keep the party ready..

2017+2018 (4x more data) is coming !!

http://www.economist.com/news/science-and-technology/21709946-supersymmetry-beautiful-idea-there-still-no-evidence-support-it

We still believe in supersymmetry

J. Ellis

You must be joking

Dark Matter Searches at the LHC

Direct

Indirect

2016-06-20 07:26:47 CEST

 Identifying Dark Matter is one of the most important questions in physics today! •It is likely a new as yet undetected particle •Can it be produced at the LHC?

A High p_T Mono-jet event

A high-p₊ monojet event - SM interpretation $Z \rightarrow vv + jet$

Mono-object Searches in CMS

• Mono-jets: Generally the most powerful

gluon

- Mono-photons: First used for dark matter Searches
- Mono-Ws: Distinguish dark matter couplings to u- and dtype of quarks
 Are Dark Matter weakly interaction
- Mono-Zs: Clean signature
- Mono-Tops: Couplings to tops
- Mono-Higgs: Higgs-portals

MET

Higgs Decays?

Example Monojets

Dark Matter?

Are Dark Matter weakly interacting massive particles (WIMPs?)

Now: LHC Dark Matter Working Group

http://lpcc.web.cern.ch/content/lhc-dm-wg-wg-dark-matter-searches-lhc

Comparison with Direct Detection

No signal seen in any of the "mono"-signals so far Extend limits by search for the mediator

Axial-vector mediator and Spin-dependent direct limits

Vector mediator and Spin-independent direct limits

Mono-jet/V & Dijet searches are typically the most sensitive ones

Extra Space Dimensions

Problem:

$$M_{Pl} = rac{1}{\sqrt{G_N}} = 1.2 \cdot 10^{19} \, {
m GeV}$$

The Gravitational force can become strong!

No signal found yet New Planck scale is larger than 6-10 TeV

Search for Micro Black Holes

Look for the decay producs of an evaporating black hole

-Define S_T to be the scalar sum of all high p_T objects found in the event -Look for deviations at high S_T

Black hole mass excluded up to ~10 TeV depending on model assumptions

Dijet Resonance Searches @13TeV

Search for Di-jet Resonances

Search for dijet resonances based on 2016+2017 data sample

PAS EXO-17-026

Slow increase in mass reach of ~ few 100 GeV

More Luminosity -> test smaller couplings

		Observed (ex	pected) mass limit [TeV]
Model	Final	36 fb ⁻¹	77.8 fb ⁻¹
	State	13 TeV	13 TeV
String	qg	7.7 (7.7)	7.6 (7.9)
Scalar diquark	PP	7.2 (7.4)	7.3 (7.5)
Axigluon/coloron	PP	6.1 (6.0)	6.2 (6.3)
Excited quark	qg	6.0 (5.8)	6.0 (6.0)
Color-octet scalar ($k_s^2 = 1/2$)	gg	3.4 (3.6)	3.7 (3.8)
W'	PP	3.3 (3.6)	3.6 (3.8)
Z'	PP	2.7 (2.9)	2.9 (3.1)
RS graviton $(k/M_{\rm PL} = 0.1)$	qq, gg	1.8 (2.3)	2.4 (2.4)
DM mediator ($m_{\rm DM} = 1 {\rm GeV}$)	PP	2.6 (2.5)	2.5 (2.8)

Are Quarks Elementary Particles?

Rutherford experiment: Unexpected backscattering of a-particles: Evidence for the structure of atoms !! (1911)

Are Quarks Elementary Particles?

Quarks remain elementary particles after these first results

E.g. Di-lepton Resonance

Plot the di-lepton invariant mass A peak!! A new particle!! A discovery!!

Lepton+MET/Dilepton Searches

Search for dilepton resonances (Z'...) or lepton+MET (W'...) searches

Do we see any deviations???

Low Mass Diphoton Spectrum

A search for X-> $\gamma\gamma$ at low mass

An excess is observed in the 8 TeV data (2σ at 97.6 GeV) and 13 TeV (2.9σ at 95.3 GeV) -> Combined gives a 2.8σ local excess at 95.3 GeV

CMS-HIG-17-013

ATLAS-CONF-2018-025

Probably not ⊗ ... ATLAS does not see the same size of effect... Let's see with more data in future...

Search for New Resonances

arXiv:1808.01890 NMSSM Higgs inspired search in mass range 12-70 GeV -Search for bump in muon pair mass spectrum with associated b-jets -SR1: 2 muons + one central and one forward jets ($|\eta| > 2.4$), at least 1 b -SR2: 2 muons + 2 central and no forward jets, at least 1 b

8 TeV Data

90 100 m.... [GeV] Both regions are independent Excess seen in the both regions around 28 GeV

SR1: 4.2 σ local significance (~3.0 σ global sign.) SR2: 2.9 σ local significance

Has new ghost particle manifested at Large Hadron Collider?

ionething terribly new goes burrp in data yer to be confirmed b

The Guardian 31/10/2018

Search for New Resonances

40

20

30

40

20

13 TeV Data

....No significant deviation..

\sqrt{s} (TeV)		8		13
Event category	SR1	SR2	SR1	SR2
Local significance (s.d.)	4.2	2.9	2.0	1.4 deficit
Ns	22.0 ± 7.6	22.8 ± 9.5	14.5 ± 9.3	-14.9 ± 10.1
Ns observed upper limit at 95% CL	40.4	44.7	36.9	32.2
N _S expected upper limit at 95% CL	18.3	27.6	27.6	35.6
ERCO	0.27 :	± 0.01	0.28	± 0.01
Integrated luminosity, \mathcal{L} (fb ⁻¹)	19.7	± 0.5	35.9	9±0.9
$\sigma_{\rm fid}$ (fb)	4.1 ± 1.4	4.2 ± 1.7	1.4 ± 0.9	-1.5 ± 1.0
Observed upper limit at 95% CL (fb)	7.6	8.4	3.7	3.2
Expected upper limit at 95% CL (fb)	3.4	5.2	2.7	3.5

Are the 13 TeV data a killjoy?

ATLAS results @ 8 TeV?...

LHCb: Tests of Lepton Universality

A few puzzling results from the LHCb experiment...

Comparing the rates of
$$B \to H\mu^+\mu^-$$
 and $B \to He^+e^ H = K, K^*, \phi, ...$

$$R_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi(\to \mu^+ \mu^-))} \left/ \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi(\to e^+ e^-))} \right.$$

Comparison with SM predictions

If confirmed, independent checks will become very important. Belle II? ->in a few years form now

CMS has installed a special trigger to collect an unbiased b-sample which is active since 2018 -> about 10¹⁰ b-pairs collected during 2018 via parked data stream

 $R_{K^*} = \begin{cases} 0.66^{+0.11}_{-0.07} (\text{stat}) \pm 0.03 (\text{syst}) & \text{for } 0.045 < q^2 < 1.1 \,\text{GeV}^2 & 2.1 - 2.3 \,\sigma \\ 0.69^{+0.11}_{-0.07} (\text{stat}) \pm 0.05 (\text{syst}) & \text{for } 1.1 < q^2 < 6.0 \,\text{GeV}^2 & 2.4 - 2.5 \,\sigma \end{cases}$ **LHCb Update eagerly awaited** ③ !!! **Also:** $R_{D^{(*)}}^{r/\ell} = \frac{\Gamma(\bar{B} \to D^{(*)}\tau\bar{\nu})}{\Gamma(\bar{B} \to D^{(*)}\ell\bar{\nu})}$ **?**

Updates from Moriond March '19

R_K result with 2011 to 2016 data LHCb-Paper-2019-009

London

Using 2011 and 2012 LHCb data, R_K was: RK LHCb $R_{K} = 0.745^{+0.090}_{-0.074}(\text{stat.}) \pm 0.036(\text{syst.}),$ 1.5 $\sim 2.6 \sigma$ from SM (PRL113(2014)151601). 1.0 Adding 2015 and 2016 data, R_K becomes: 0.5 $R_{\kappa} = 0.846 \stackrel{+0.060}{_{-0.054}}(\text{stat.}) \stackrel{+0.016}{_{-0.014}}(\text{syst.})$ 0.0 5 10 $\sim 2.5 \sigma$ from SM. 2.0 Updates presented at the 1.5 Moriond winter conference: - LHCb (R_{κ}) - Belle $(R_{\kappa*})$

Effect did NOT become more significant 🐵

Third Generation Leptoquarks

Candidate explanation: Leptoquarks with LQ couplings to second/third generation. LQ -> Check in ATLAS and CMS Example search in the tau-b final state EXO-17-029 CMS Preliminary 2016, 35.9 tb ¹ (13TeV CMS Preliminary 35.9 fb⁻¹ (13TeV) 2.5 ہے Sealar 1.0 700-0 Observed Expected ± 1 σ Y.Z 2.0 Preferred by B-anomaly $\pm 1 \sigma$ 1. C. W Excluded by 1.5 B^0 MS. Preliminary 2016. 35.9 fb⁺/13TeV 1.0 Souther LCD 700 Clar 1. B . B . B OCD mutti 0.5 Scalar LQ $\beta = 1$ 0.01 B^0 20 1000 1200 1400 800 400 600 Leptoquark mass (GeV) Scalar sum p, (GeV

Blue region is preferred by the B-anomalies...

Exotica Searches: Limits

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Statue: March 2010

ATLAS Preliminary

Sta	itus: March 2019	25			1000	0205	$\int \mathcal{L} dt = 0$	3.2 – 139) fb ⁻¹	$\sqrt{s} = 8, 13 \text{ TeV}$
	Model	1.7	Jets†	Emass	JL dt[ft	o~']	Limit		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD OBH ADD BH nigh $\sum p_T$ ADD BH multiet RSI $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ \rightarrow$ Bulk RS $G_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ y \\ \hline \\ 2 \ y \\ \hline \\ 2 \ y \\ \hline \\ q q q \\ q q \\ q \\ q \\ q \\ q \\ q \\$	1-4i -2i $\geq 2j$ $\geq 3j$ -1 2J $\geq 10, \geq 1J$ $\geq 20, \geq 3$	Yes 	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Mo Ma Ma Ma Ma Gan mas Gan mas Gan mas Sen mas Sen mas	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 2.3 TeV 2.3 TeV 2.3 TeV 2.8 TeV 1.8 TeV 1.8 TeV	$\begin{array}{l} n=2\\ n=3\text{HLZ NLO}\\ n=6\\ m=6,\ M_0=3\text{TeV, rot BH}\\ n=6,\ M_0=3\text{TeV, rot BH}\\ k/M_m=0.1\\ k/M_m=1.0\\ k/M_m=1.0\\ f/m=1.5\%\\ \text{Tire (1,1), } \mathcal{B}(A^{(1,1)}\rightarrow\text{tr})=1 \end{array}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02585 1707.04147 1808.02360 ATLAS-CONF-2019.01 1804.10823 1803.09676
Gauge bosons	$\begin{array}{l} \text{SSM}~Z^* \rightarrow \ell\ell \\ \text{SSM}~Z^* \rightarrow \tau\tau \\ \text{Leptaphobic}~Z^* \rightarrow bb \\ \text{Leptaphobic}~Z^* \rightarrow t\tau \\ \text{SSM}~W^* \rightarrow tr \\ \text{SSM}~W^* \rightarrow \taur \\ \text{HVT}~V^* \rightarrow WV \rightarrow qqqq \text{ mod} \\ \text{HVT}~V^* \rightarrow WH/ZH \text{ model B} \\ \text{LRSM}~W_R^* \rightarrow tb \end{array}$	2 e.μ 2 r - 1 e.μ 1 e.μ 1 τ iel B 0 e.μ muti-chano muti-chano	2b ≥1b,≥1J - 2J 8	- - Ves Ves -	139 36.1 36.1 36.1 79.8 36.1 139 36.1 36.1	2' mass 2' mass 2' mass 2' mass W' mass W' mass W' mass W' mass W' mass	5.1 TeV 2.42 TeV 2.1 TeV 3.0 TeV 5.6 TeV 3.7 TeV 4.4 TeV 2.93 TeV 3.25 TeV	$\Gamma/m = 15k$ $g_{V} = 3$ $g_{V} = 3$	1903.06248 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018-01 1801.06992 ATLAS-CONF-2019-00 1712.06518 1807.10473
õ	Cl aqqq Cl ff qq Cl ttt	2 σ.μ ≥1 σμ	2 j ≥1 b,≥1	j Yes	37.0 36.1 36.1	A A A	2.87 TeV	21.8 TeV 9 ⁷ _{L4} 40.0 TeV 9 ⁷ _{L4} C ₁₁ = 4 4	1703.09127 1707.02424 1811.02305
DM	Axial-vector mediator (Dirac D Colored scalar mediator (Dirac $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t_{\chi}$ (Dirac D	M) 0 e,μ cDM0 0 e,μ 0 e,μ M) 0-1 e,μ	$\begin{array}{c} 1-4 \\ 1-4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	Myand Myand My My	1.55 TeV 1.67 TeV 700 GeV 2.4 TeV	$\begin{array}{l} g_{e}{=}0.25, \ g_{e}{=}1.0, \ m(\chi) = 1 \ {\rm GeV} \\ g_{e}{=}1.0, \ m(\chi) = 1 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \\ y = 0.4, \ d = 0.2, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
Ę	Scalar LQ 1 ⁴⁴ gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1.2 μ 2 τ 8-1 e.μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LO mass LO mass LO ⁿ imass LO ⁿ imass	1.4 TeV 1.56 TeV 1.03 TeV 970 GeV	$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(\mathrm{LQ}_{2}^{c} \rightarrow bv) = 1 \\ \mathcal{B}(\mathrm{LQ}_{2}^{c} \rightarrow tr) = 0 \end{array}$	1902.00377 1902.00377 1902.06103 1902.06103
Heavy quarks	$ \begin{array}{l} VLQ \ \mathcal{TT} \rightarrow \mathcal{Hr}/\mathcal{Zt}/\mathcal{Wb} + \mathcal{X} \\ VLQ \ \mathcal{BB} \rightarrow \mathcal{Wt}/\mathcal{2b} + \mathcal{X} \\ VLQ \ \mathcal{BB} \rightarrow \mathcal{Wt}/\mathcal{2b} + \mathcal{X} \\ VLQ \ \mathcal{T}_{h/3} \ \mathcal{T}_{h/3} \ \mathcal{T}_{h/3} \ \mathcal{T}_{h/3} \rightarrow \mathcal{Wt} + \\ VLQ \ \mathcal{Y} \rightarrow \mathcal{Wb} + \mathcal{X} \\ VLQ \ \mathcal{B} \rightarrow \mathcal{Hb} + \mathcal{X} \\ VLQ \ \mathcal{QQ} \rightarrow \mathcal{Wq}\mathcal{Wq} \end{array} $	muti-chann muti-chann X 2(SS)/≥3 e, 1 e,μ 0 e,μ, 2 γ 1 e,μ	el ai ≥ 1 b. ≥ 1 ≥ 1 b. ≥ 1 ≥ 1 b. ≥ 1 ≥ 4 j) Yes 4 Yes 1 Yes Yes	36.1 36.1 36.1 79.8 20.3	T mast B mass T _{2/3} mass Y mass B mass Q mass	1.37 TeV 1.34 TeV 1.64 TeV 1.65 TeV 1.21 TeV 590 GeV	$\begin{split} & \text{SU(2) doublet} \\ & \text{SU(2) doublet} \\ & \mathcal{B}(T_{0,0} \rightarrow \mathcal{W}t) = 1, \ c(T_{0,0},\mathcal{W}t) = 1 \\ & \mathcal{B}(Y \rightarrow \mathcal{W}t) = 1, \ c_{\mathcal{W}}(\mathcal{W}t) = 1 \\ & s_{\mathcal{W}} = 0.5 \end{split}$	1606.02343 1808.02343 1807.11883 1812.07343 AFLAS-CONF-2018-02 1509.04261
Excited	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton t^* Excited lepton v^*	1γ 3 e.μ 3 e.μ. τ	2) 1) 1 b, 1)	1111	139 36.7 36.1 20.3 20.3	a" mass a" mass b" mass 2" mass V" mass	6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only ω^{\prime} and d^{\prime} , $\Lambda = m(q^{\prime})$ only ω^{\prime} and d^{\prime} , $\Lambda = m(q^{\prime})$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.5 \text{ TeV}$	ATLAS-CONF-2019-00 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{++} \rightarrow \ell \ell$ Higgs triplet $H^{++} \rightarrow \ell r$ Multi-charged particles Magnetic monopoles	1 e.μ 2μ 2,3,4 e.μ (S 3 e.μ.τ	≥ 2 j 2 j 5) -	Yes 	79.8 36.1 36.1 20.3 36.1 7.0	N ⁴ maas Ne mass H ⁴⁺ mass H ⁴⁺ mass mate-targed periode mass monupole mass	560 GeV 3.2 TeV 870 GeV 400 GeV 1.22 TeV 1.34 TeV	$\begin{split} m(W_{\rm ff}) &= 4.1 \ \text{TeV}, \ g_L = g_{\rm ff} \\ \text{DY production} \\ \text{DY production}, \ \mathcal{B}(H_L^{**} \to \ell \tau) &= 1 \\ \text{DY production}, \ q &= 5e \\ \text{DY production}, \ g &= 1 g_{\mathcal{O}}, \ \text{spin} \ 1/2 \end{split}$	ATLAS-CONF-2016-02 1609-11105 1710.09748 1411.2921 1812.03673 1509.08059

"Only a selection of the available mass limits on new states or phenomena is shown. +Small-radius (large-radius) jets are denoted by the letter j (J).

A Global View! Generic Searches

Model independent search

- Divide events into exclusive classes
- •Study deviations from SM predictions in a statistical way

Object	jet	b-jet	electron	muon	photon	$E_{\rm T}^{\rm miss}$
Label	$_{j}$	b	e	μ	γ	$E_{\rm T}^{\rm miss}$
$p_{\rm T} \ ({\rm min}) \ [{\rm GeV}]$	60	60	25	25	50	200

2.5 fb^{-1/}13 TeV (>700 classes) \rightarrow Checking for bumps in invariant and effective mass of objects

No significant deviation found

Beyond what is expected from statistics

Are we leaving no stone unturned?

- The LHC BSM searches are indispensable and should be continued in the new energy regime and with increasing statistics (higher mass, lower couplings)
- But if we still do not see more than a 2 sigma at the end of run-3, the HL-LHC will be likely mostly a precision physics machine, searching for subtle deviations
- Are we looking at the right place? Time for more effort in thinking of complementary searches?

Are we looking at the right place?

Searches for Long Lived Particles

Present coverage?

LHC-wide organized study -> https://indico.cern.ch/e/LHC_LLP_October_2017

Increasing interest and effort: Look for unusual signals in the detector from long-lived particles

> Example disappearing tracks ->
> Search for charginos, almost degenerate with neutralinos (eg AMSB models)

Search for Heavy Neutral Leptons

Neutrino portal: vMSM (Neutrino Minimal Standard Model) Minimal extension of the SM fermion sector by Right Handed HNLs: N1, N2, N3.

-> HNL hunting also focus of the SHIP experiment proposal

Multi Charged Particles

Use central tracker and de/dx measurement to search for particles with electric charges of 2e to 7e

arXiv:1812.03673

Exclusion between 50 GeV and 980-1220 GeV

LHC Community White Paper

Web page: https://indico.cern.ch/event/649760

Searches for long-lived particles at the LHC: Second workshop of the LHC LLP Community

- 17 Oct 2017, 16:00 → 20 Oct 2017, 18:00 Europe/Zurich
- Giambiagi Lecture Hall (ICTP, Trieste, Italy)
- Albert De Roeck (CERN), Bobby Samir Acharya (Abdus Balam Int, Cent, Theor, Phys. (77)), Brian Shuve (ELAC National Accelerator Laboratory),
 James Beacham (One State University (US)), Xabler Cid Vidal (Universityde de Santago de Compositeta)

Next workshop: 27-29 May 2019 CERN

White paper — chapter statuses and roundtable [draft <u>here</u> (18 Oct)]

- Simplifed models First draft done!
- Experimental coverage First draft essentially done!
- Triggers, upgrades, HL- / HE-LHC opportunities
 First draft in progress
 —> discussion today [live doc!]
- Re-interpretations / recommendations
 First draft imminent!
- Backgrounds First draft imminent!

Dark showers First draft (summarizing status and advertising for

White Paper being finalized

Input from ATLAS, CMS, LHCb, proposed specialized experiments and theory Completed March 2019 (~ 300 pages)

arXiv:1903.04497

Monopole Searches: MoEDAL @ 13TeV

2016 data analysis base on 222 kg Aluminium to "stop" the monopoles and search for them with a SQUID precision magnet (2.11fb⁻¹) arXiv:1712.09849

Mass limits [GeV]	$1g_{\rm D}$	$2g_{\rm D}$	$3g_{\rm D}$	$4g_{\rm D}$	$5g_{\rm D}$
MoEDAL 13 TeV					
2016 exposure)					
OY spin-0	600	1000	1080	950	690
$OY \text{ spin}-\frac{1}{2}$	1110	1540	1600	1400	-
DY spin-1	1110	1640	1790	1710	1570
DY spin-0 β -dep.	490	880	960	890	690
DY spin- $\frac{1}{2}\beta$ -dep.	850	1300	1380	1250	1070
DY spin-1 β -dep.	930	1450	1620	1600	1460

LHCb

MoEDAL

•Limits for different monopole charges

•First monopole search result @LHC at 13 TeV No signal (yet)..

New: ATLAS Monopole Search

arXiv:1903.08491

Use high ionization in the transition radiation tracker and pencil-like energy deposit in the ECAL

Results interpreted via Drell-Yan production for Dirac charges 1 and 2

LHC Monopole Searches

Monopoles Stopped in the Beampipe

ADR et al., Eur. Phys .J. C72 (2012) 2212

Test performed with pieces of material from the LHC from 18 m away from the interaction region

Want to use the 2012 CMS beampipe! MoEDAL officially got it since 18/2/2019!! A beampipe analysis effort has been put into place in MoEDAL -> The analysis preparation effort is starting now

Proposals for New Experiments @LHC

CODEX-b: searches for long lived weakly interacting neutral particles

MATHUSLA: searches for long lived weakly interacting neutral particles

FASER: searches for long lived dark photons-like particles

Recent also AL3X (re-use of ALICE for LLP)...

LHC Outlook and Plans

Summary

- Measurements of Standard Model processes show good agreement with predictions. Precise measurements require precise calculations.
- New Higgs measurements at 13 TeV. So far the Higgs is very consistent with Standard Model expectations. All main decay and production channels now observed
- No sign of new physics in the 13 TeV data so far... This starts to cut into the 'preferred regions' for a large number of models, like SUSY. Naturalness? ... There are a few 3-sigma effects...
- Dark Matter and lonmg lived particle searches are being explored in a systematic way.
- New physics in the flavour sector? New TH para
- The LHC is continuing to explore the Terascale. significant deviation to show the way!! Collected 13 TeVAnd hopefully one day soon now:

