

Joint 9th IDPASC SCHOOL and XXXI INTERNATIONAL SEMINAR of NUCLEAR and SUBNUCLEAR PHYSICS "Francesco Romano" 27 May - 4 June 2019, Otranto (Italy)

Nadia Pastrone

Serra degli Alimini - June 1st, 2019

Whay we can learn impossible to guess....main element surprise....some things look for but see others.....Experiems on pions....sharpening

Enrico Fermi - American Physical Society, NY, Jan. 29th 1954

"What can we learn with High Energy Accelerators?"

Accelerators: microscopes & telescopes

- To explore smaller dimensions: $E = hc/\lambda$
- To discover heavier particles:
 E = mc²

Louis de Broglie

Albert Einstein

To reach higher temperature (early Universe)
 E = kT

Ludwig Boltzmann

Where are we now?

Particle Data Group, LBNL, © 2000. Supported by DOE and NSF

How do we set a strategy?

A. Wulzer

Particle physics is not validation anymore, rather it is exploration of unknown territories *

Physics motivation

What's Next after LHC?

See also lectures by Albert De Roeck and Michelangelo Mangano

Which particles?

- leptons → fundamental particles
- hadrons → made by quarks (fundamental particles)
 - stable (electrons, protons)
 - unstable (muons) → decay in the machine and/or in the detector

Machine options: collision mode

W = Energy available in center-of-mass for making new particles

For fixed target :

... and we rapidly run out of money trying to gain a factor 10 in c.m. energy

But a storage ring , colliding two beams, gives:

Problem: Smaller probability that accelerated particles collide "Luminosity" of a collider

$$L = N_1 N_2 \frac{1}{A} \frac{\beta c}{2\pi R} \approx 10^{29} \dots 10^{34} cm^{-2} s^{-1}$$

C E.J.N. Wilson

Otranto - June 1, 2019

Machine design

 A particle Accelerator is a machine designed to transfer energy to a charged particle beam. In most cases the particle beam extracts energy from an electromagnetic field that is stored or traveling in low losses structures, called cavities. Obviously beam has to live in vacuum.

$$\Delta E = q V$$

Particles are taking energy from the electric field, *E*, and are guided by the magnetic field, *B*, according to the Lorentz equation:

$$\boldsymbol{F}_{em} = q \; (\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})$$

- The charged accelerated particles can be:
 - electrons (& positrons)
 - protons (& antiprotons)
 - ions

- An intense primary beam can be used to produce a secondary beam that could not be accelerated: photons, neutrons, neutrinos, etc.

Circular collider scheme

First e^+e^- collider @ INFN-Frascati

AdA - Anello di Accumulazione (1960)

"Catching data" drawing by Bruno Touschek, probably 1974

Otranto - June 1, 2019

Production cross sections

σ (nb)

Machine parameter: luminosity

Otranto - June 1, 2019

Beam parameter: transverse emittance

- To be rigorous we should define the emittance slightly differently.
- Observe all the particles at a single position on one turn and measure both their position and angle.
- This will give a large number of points in our phase space plot, each point representing a particle with its co-ordinates x, x'.

- The <u>emittance</u> is the <u>area</u> of the ellipse, which contains all, or a defined percentage, of the particles.
- The <u>acceptance</u> is the maximum <u>area</u> of the ellipse, which the emittance can attain without losing particles

Accelerator complex @ CERN

Collider: linear or circular?

Lepton Colliders at High Energies

Use of Superconducting technology

Enabling technology

Accelerator Science and Technology : major advances since the 2013 European Strategy

- Impressive technology progress:
 - 11 T Nb₃Sn magnets for HL-LHC
 - 17 GeV of SRF European X-FEL and N_2 doping for $Q_0 > 10^{10}$
- Expanded frontiers of beams :
 - Absolute* luminosity record 2.1e34 at the LHC (* repeat KEK-B '2009)
 - Record 760 kW p+ beam power on neutrino target at Fermilab
 - Super-KEKB built and being commissioned
- Beam physics breakthroughs :
 - Ionization cooling of muons demonstration MICE at RAL
 - *e*-lens compensation of *pp* head-on beam-beam effects in RHIC
 - Record beam-beam parameter 0.25 in VEPP2000 *e+e-* "round beams"
 - Bunched beam electron cooling in RHIC
 - Plasma acceleration records 2/4/9 GeV in AWAKE/BELLA/FACET
 - 40 nm beam focus attained at the ATF2 (ILC facility)

V. Shiltsev

...from where we are now

- Higgs factory implementation options: accelerator physics and technology challenges, readiness, cost and power
- 2. Path towards the highest energies: how to achieve the ultimate energy and performance, R&D required
- 3. Promises, challenges and expectations of new acceleration techniques

Higgs Factories

- e+e- linear
 - —ILC
 - -CLIC
- e+e- circular
 - –FCC-ee
 - –СерС
- μ + μ circular
 - $-\mu$ -HF

Requirement: high luminosity *O*(10³⁴) at the Higgs energy scale

Usually, compared to the LHC – which

is, as a machine :

- 27 km long
- SC magnets (8T)
- 150 MW power total
- ~ 10 years to build

Cost "1 LHC Unit" *

International Linear Collider

includes labor cost

Key facts:

20 km, including 5 km of Final Focus SRF 1.3 GHz, 31.5 MV/m, 2 K 130 MW site power @ 250 GeV c.m.e. Cost estimate 700 B JPY* * ± 25% err,

Compact Linear Collider

Key facts:

11 km main linac @ 380 GeV c.m.e. NC RF 72 MV/m, two-beam scheme 168 MW site power (~9MW beams) Cost est. 5.9 BCHF ± 25%

Recent progress: Linear Colliders

- Accelerating gradients demonstrated with beams:
 - ILC 31.5 MeV/m FNAL'17, KEK'19
 - CLIC ~100 MeV/m CLEX@CERN
- Beam focusing

– 40 nm V beam size ATF2@KEK'16

Linear Colliders *e+e-* Higgs Factories

Advantages:

- Based on mature technology (Normal Conducting RF, SRF)
- Mature designs: ILC TDR, CLIC CDR and test facilities
- Polarization (ILC: 80%-30%; CLIC 80% 0%)
- Expandable to higher energies (ILC to 0.5 and 1 TeV, CLIC to 3 TeV)
- ➤ Well-organized international collaboration (LCC) → "we're ready"
- Wall plug power ~130-170 MW (i.e. <= LHC)</p>

Pay attention to:

- Cost more than LHC ~(1-1.5) LHC
- LC luminosity < ring (e.g., FCC-ee), upgrades at the cost:</p>
 - ▶ e.g. factor of 4 for ILC: $x^2 N_{bunches}$ and $5 Hz \rightarrow 10 Hz$
- Limited LC experience (SLC), two-beam scheme (CLIC) is novel, klystron option as backup
- > Wall plug power may grow >LHC for *lumi* / *E* upgrades

Circular e+e- Higgs Factories

FCC-ee CDR (2018)

Key facts:

- 100 km tunnel, three rings (e-, e+, booster)
- SRF power to beams 100 MW (60 MW in CepC)
- Total site power <300MW (tbd)
- Cost est. FCCee 10.5 BCHF (+1.1BCHF for tt)

("< 6BCHF" cited in the CepC CDR)

Challenges of e+e- Ring HF's

Power limited regime. Synchrotron radiation power from both beams limited to 100 MW (P/η=total cite power) → current I is set by power

$$I = \frac{e\rho}{2C_{\gamma}E^4}P_T,$$

• Luminosity determined by bend radius ρ , beam-beam parameter ξ_{y} , beta function at the IP β_{y} * and power

$$\mathscr{L}\gamma^{3} = \frac{3}{16\pi r_{e}^{2}(m_{e}c^{2})} \left[\rho \frac{\xi_{y}P_{T}}{\beta_{y}^{*}}H(\beta_{y}^{*},\sigma_{z})\right]$$

• $\xi_y = 0.13$ new beam-beam instability; while synchrotron radiation $\Delta E_{turn}/E \sim 0.1$ -5% per turn Z to 360 GeV, the beam-strahlung is at IPs only and spreads $\delta E/E \sim 0.1$ -0.2%, but tails upto 10x that $\pm 2.5\%$ determine 18 min beam lifetime ~18 min \rightarrow need large acceptance optics $\beta_y * = 0.8$ -1.6 mm, crab-waist scheme and full energy booster

e+e- Higgs Factories: Circular vs Linear

e+e- Ring Higgs Factories Advantages:

- > Based on mature technology (SRF) and rich experience \rightarrow lower risk
- High(er) luminosity and ratio luminosity/cost; upto 4 IPs, EW factories
- > 100 km tunnel can be reused for a pp collider in the future
- > Transverse polarization ($\tau \sim 18$ min at *tt*) for **E** calibration O(100keV)
- CDRs addressed key design points, mb ready for ca 2039 start
- Very strong and broad Global FCC Collaboration

Strategic R&D ahead :

- High efficient RF sources:
 - Klystron 400/800 MHz η from 65% to >85%
- High efficiency SRF cavities:
 - 10-20 MV/m and high Q₀; Nb-on-Cu, Nb₃Sn
- Crab-waist collision scheme:
 - Super KEK-B nanobeams experience will help
- Energy Storage and Release R&D:
 - Magnet energy re-use > 20,000 cycles
- Efficient Use of Excavated Materials:
 - 10 million cu.m. out of 100 km tunnel

μ+μ- Higgs V. Barger, et al, *Physics Reports* 286, 1-51 (1997) JINST Special Issue (*MUON*)

arXiv:1502.02042

Total site power ~200MW (tbd)

Recent progress: *µ*+*µ*- *Colliders*

- Ionization cooling of muons:
 - Demonstrated in MICE @ RAL
 - 4D emittance change O(10%)
- NC RF 50 MV/m in 3 T field
 - Developed and tested at Fermilab
- Rapid cycling HTS magnets
 - Record 12 T/s built and tested at FNAL
- First RF acceleration of muons
 - J-PARC MUSE RFQ 90 KeV
- US MAP Collaboration → Int'I
- Low emittance (no cool) concept
 - 35 45 GeV $e^+ + e^- \rightarrow \mu^+ \mu^-$: CERN fixed target

Future Energy Frontier Colliders

- All proposals are focused on :
 - (Affordable) Cost and (High) Luminosity
- Usually :
 - Scale of civil construction grows with Energy
 - Cost of accelerator components grows with Energy
 - Requirement site power grows with Energy
- So, the total cost grows with ENERGY
 - Thankfully, not linearly, more like $\cos t \sim \beta E^{\kappa}$, $\kappa \approx \frac{1}{2} \dots \frac{2}{3}$
 - Take ILC as an example: $0.25 \rightarrow 0.5 \rightarrow 1$ TeV 0.69 : 1 : 1.67
 - Still, huge challenge for energies *E* some x10 of LHC
 - Choice of technology (${\it eta}$) and *prior investments* are critical

let's consider Limits of Linear *e*+*e*- Colliders

- Both ILC and CLIC offer staged approach to ultimate *E*
- The limits are set by:

ILC TDR 1 TeV 17 B\$ ±25% CLIC CDR 3 TeV 18.3BCHF ±25%

Cost Electric power required Total length (complication of) Beamstrahlung

Circular *pp* **Colliders**

HE-LHC CDR (2018)

FCC-hh CDR (2018)

Key facts: HE-LHC / FCC-hh* / SppC*

- Large tunnel 27 / 100 / 100 km
- SC magnets 16 / 16 / 12 T
- High Lumi / pileup O(10³⁵) / O(500)
- Site power (MW) 200 / 500? / ?

* follow up after e+e- Higgs factories

Strategic R&D Ahead :

- High field dipoles:
 - Nb3Sn 16 T / iron-based 12 T, wire
 - (see also Akira's talk)
- Intercept of synchr radiation :
 - 5 MW FCC-hh / 1 MW CepC
- Collimation :
 - x7 LHC circulating beam power
- Optimal injector:
 - 1.3TeV scSPS, 3.3 TeV in LHC/FCC
- Overall machine design :
 - IRs, pileup, vacuum, etc
 - Power and cost reduction
 - ⁴⁰ All that might take 12-18 years

Unique opportunities :

- *ion-ion* collisions
- ep/ei collisions
 - ~60 GeV e- Energy Recovery Linac

Key facts: LHeC / FCC-eh

6-9 km tunnel

Energy LHeC

LHeC $\sqrt{s} = 1.3 \,\text{TeV}$ **FCC-eh** $\sqrt{s} = 3.5 \,\text{TeV}$

SRF 800 MHz CW

Luminosity O(10³⁴)

Site power ~100 MW

- Cost ~1.3-1.6 BCHF *
- Key R&D: PERLE @ Orsay \rightarrow

High Energy $\mu + \mu$ - **Colliders**

Advantages:

- µ's do not radiate / no beamstrahlung→ acceleration in rings → *low cost* & great power efficiency
- ~ x7 energy reach vs pp
- Offer "moderately conservative moderately innovative" path to cost affordable energy frontier colliders:

JINST Special Issue (MUON)

- US MAP feasibility studies were very successful → MCs can be built with present day SC magnets and RF; there is a well-defined path forward
- ZDRs exist for 1.5 TeV, 3 TeV, 6 TeV and 14 TeV * in the LHC tunnel * more like "strawman" parameter table

Key to success:

- Test facility to demonstrate performance implications muon production and 6D cooling, study LEMMA e^+-45 GeV + e^- at rest $\rightarrow \mu^+-\mu^-$, design study
 - ⁴² of acceleration, detector background and neutrino radiation

Summary:

- Remarkable progress of the projects/proposals/technologies:
 - esp. ILC, CLIC, FCC-ee, -hh, CepC, μ-Colliders, plasma, ...
 - allow in-depth evaluation of readiness, power and costs
- Higgs Factories Implementation :
 - several feasible options on the table
 - the choice might define high-energy future collider choice
- Highest Energy Future Colliders:
 - demand very high AC power & cost; some options to save
 - each machine has a set of key R&D items for next 7-10 yrs
 - core acceleration technology R&D SC magnets, SRF and plasma – are of general importance and help all - pp/ee/µµ
- We also expect to gain valuable experience from the machines to be built and operated over the next decade
 - (see next slide)

Otranto - June 1, 2019

	Country	Facility	Experience
SuperKEKB	Japan	7+4 Gev e+e- , 8e35	nano-beams scheme
HL-LHC	CERN	x5 LHC luminosity	Nb ₃ Sn magnets, crab cavities
NICA	Russia	<i>ii/pp</i> 11-27 GeV	electron and stochastic cooling
PIP-II	USA	SRF linac to double # v's	CW SRF, >1 MW targetry
ESS	Sweden	5 MW pulsed SRF	SRF, cryo, targetry
LCLS-II-HE	USA	8 GeV CW SRF	efficient SRF, cryo
SuperC-Tau	Russia	2-6 GeV e+e-	crab waist scheme
EIC	USA	20-140 GeV <i>ep/ei</i>	polarization, cool'g

7-10 YEARS FROM NOW

WITH PROPOSED ACTIONS / R&D DONE / TECHNICALLY LIMITED

• ILC:

- Some change in cost (~6-10%)
- All agreements by 2024, then
- **Construction** (2024-2033)

• CLIC:

- TDR & preconstr. ~2020-26
- **Construction** (2026-2032)
- 2 yrs of commissioning

• CepC:

- Some change in cost & power
- TDR and R&D (2018-2022)
- **Construction** (2022-2030)

• FCC-ee:

- Some change in cost & power
- **Preparations** 2020-2029
- Construction 2029-2039
- HE-LHC:
 - R&D and prepar'ns 2020-2035
 - Construction 2036-2042
- FCC-hh (w/o FCC-ee stage):
 - 16T magnet prototype 2027
 - Construction 2029-2043
- μ⁺-μ⁻ Collider :
 - CDR completed 2027, cost known
 - Test facility constructed 2024-27
 - Tests and TDR 2028-2035

Conclusions and outlook

- Future circular lepton colliders are combining concepts and techniques developed, implemented and demonstrated by past and present circular colliders
- All key technologies and concepts are available and will profit from design optimization during project preparation and CE construction phases.
 - Efficient RF power generation and efficient SRF structures, with benefit for many RF applications
 - **Optimized engineering design** for cost efficient construction, availability, maintainability.
- Future hadron colliders are based on high-field Nb₃Sn and/or HTS magnets, whose development represents a challenging R&D requiring long-term planning and funding
- Muon Colliders require a strong international effort on R&D after completing simulation and design studies

Accelerator Technologies advanced in Particle Physics

Туре	Acclerator	Op. Years	Beam Energy (TeV)	B [T]	E [MV/m]	Pioneering/Key Technology
CC hh	Tevatron	1983-2011	2 x 0.5	4 T		Superconducting Magnet (SCM)
	HERA	1990 -2007		4.68 T		SCM, e-p Collider,
	RHIC	2000 ~		3.46 T		SCM
	SPS LHC HL-LHC	1981-1991 2008 ~ Under constr.	2 x 0.42 2 x (6.5 >> 7)	(NC mag.) 7.8T>8.4 11~12		P-bar Stochastic cooling SCM (NbTi) at 1.8 K, SRF SCM (Nb ₃ Sn), SRF, e-cooling
CC ee	TRISTAN	1986-1995	2 x 0.03		5	SRF (Nb-bulk), SCM-IR-Quad (NbTi)
	LEP	1989-2000	2 x 0.55		5	SRF (Nb-Coating) , SCM-IRQ
	KEKB Super-KEKB	1998~2010 2018 ~	0.002+0.008 0.004+0.007		5 5	Luminosity, SRF Crabbing, SCM-IRQ Luminosity, Nano-beam, SCM-IRQ
LC ee	SLC/PEP-II	1988/98~200 9	2 x 0.5			Normal conducting RF
	(Eu-XFEL)	(2018 ~)	(0.0175)		(23.6)	SRF (Nb-bulk)
						47

Technical Challenges in Energy-Frontier Colliders proposed

		Ref.	E (CM) [TeV]	Lumino sity [1E34]	AC- Power [MW]	Value [Billion]	В [T]	E: [MV/m] (GHz)	Major Challenges in Technology
C C hh	FCC- hh	CDR	~ 100	< 30	580	24 or +17 (aft. ee) [BCHF]	~ 16		High-field SC magnet (SCM) - <u>Nb3Sn</u> : Jc and Mechanical stress Energy management
	SPPC	(to be filled)	75 – 120	TBD	TBD	TBD	12 - 24		High-field SCM - <u>IBS</u> : Jcc and mech. stress Energy management
C C	FCC- ee	CDR	0.18 - 0.37	460 – 31	260 – 350	10.5 +1.1 [BCHF]		10~20 (0.4 / 0.8)	High-Q SRF cavity at < GHz, Nb Thin-film Coating Synchrotron Radiation constraint Energy efficiency (RF efficiency)
	CEPC	CDR	0.046 - 0.24 (0.37)	32~ 5	150 – 270	5 [B\$]		20 (~ 40) (0.65)	High-Q SRF cavity at < GHz, LG Nb- bulk/Thin-film Synchrotron Radiation constraint High-precision Low-field magnet
L C	ILC	TDR update	0.25 (-1)	1.35 (- 4.9)	129 (– 300)	< 5.3 > [BILCU]		31.5 – (45) (1.3)	High-G and high-Q SRF cavity at GHz, Nb- bulk Higher-G for future upgrade Nano-beam stability, e+ source, beam dump
	CLIC Otranto	CDR - June	0.38 (- 3) 1, 2019	1.5 (- 6)	160 (- 580)	5.9 [BCHF]		72 – 100 (12)	Large-scale production of Acc. Structure Two-beam acceleration in a prototype scale Precise alignment and stabilization, timing

Technical Challenges in Energy-Frontier Colliders proposed

FCC integrated project technical schedule

FCC integrated project plan is fully integrated with HL-LHC exploitation and provides for seamless further continuation of HEP in Europe.

Now drafting the Briefing Book....

Expect Shortage of Expert Accelerator Workforce

- "Oide Principle": 1 Accelerator Expert can spend intelligently (only) ~1 M\$ a year
- + it takes significant time to get the team together (XFEL, ESS)
- Scale of the team: 10B\$/10 years=1 B\$/yr → need

K.Oide (KEK)