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Outline

• Motivations
• Rare event physics
• Underground laboratories

Astro-particle:
- Neutrino physics 
- Rare Nuclear decays 
- Dark matter 
- …

Other:
- Nuclear reactions 
- Gravitational waves 
- Fundamental physics 
- Technology 
- Biology 
- …No mention to:

- Under-water  
- Under-ice
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Cosmic rays

• high-energy radiation (mainly from outside the 
Solar System) 

• impacting with the Earth's atmosphere produce 
showers of secondary particles  
➡ production of many secondaries 

• composition: mainly high-energy protons and 
atomic nuclei 

• spectrum: span several orders of magnitude in 
energy 
➡ highest available energy radiation (research) 

• nuisance for particle physics experiments 
(in particular rare event searches) 
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Underground laboratories:
• Offer a natural and (relatively) cheap shield from cosmic radiation 
• Provide the low radioactive background environment necessary to explore the highest energy 

scales 
- Search for very rare phenomena 
➡ Challenge: background control and reduction.  

• Underground experiments provide an indirect reach to the highest energy scales.  
- mν ~ 50 meV corresponds (see-saw mechanism) to 1016 GeV  

• The higher the energy the more rare are the corresponding phenomena. 
-  extremely low backgrounds.  

• There are important physical and practical differences between the existing facilities.  
- These range from fully developed laboratories to simple underground sites.  

• The muon flux decreases with the thickness of the rock overburden, roughly, but not exactly, 
exponentially. However depth is not the only relevant parameter
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An effective natural shield
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Factors to consider (1/2)

A simple underground cavity is NOT a laboratory
➡ Important differences 
• Depth (μ flux, spallation n flux) 

- Important but “the deeper is not the better” statement.  
- Optimum depth depends on physics 
- Determines only a fraction of the background sources 
- Maximum cavity size decreases with increasing depth, 

costs increase 
• Dimensions 

- Diameter & height of the halls may limit the thickness of 
the shields 

- Depend on rock quality and depth 
• Accessibility (vertical vs horizontal) 
- May limit detector size 
- Costs increase 
- May affect safety
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Factors to consider (2/2)
• Distance from accelerator (>1000 km for 

sign(Δm2)) 
• Support infrastructures (facilities), personnel 

(quantity and quality) 
• Underground area allocation policy, turnover 

of experiments 
• Laboratory vs. observatory 
• Scientific Committee: international vs. local 

(or national) 
• Degree of internationality of the community 
• Outreach and education 
• Safety and security policy 
• Environment 
- Affects temperature and noise 
- Environmental radioactivity 

• Other science (geology, biology, 
engineering, etc.)
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Backgrounds
• In general, every interaction of a particle with the detector risks to contribute some background:

• Underground labs provide an essential protection ….

Neutrons
• Direct nuclear collisions: continuous spectra 

- Create radioisotopes with various signals: discrete 
- Beta-neutron sources: 8He, 9Li, for example 
- Beta-only: 9C, 12B, 12N, for example 
- Gammas: 60Co, for example 
- Q-values of decays could be in right range to 

mimic energy deposition of signal

Muons
• Direct energy deposition in detector 

- Sometimes extremely high 
- Continuous: can deposit any amount of energy 
- Neutrons, radioisotopes

Gammas
• Direct energy deposition in detector 

- Natural radioactivity lines 
- Continuous up to 2.6 MeV
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Muons

Experimental sites must be 
characterized

• angular dependence of the μ flux 
d(θ,φ) 

• seasonal variations of the μ flux 
• energy dependence of n flux 
• seasonal variations of the n flux 
• γ flux 
• Rn activity continuous monitoring

Created by decays of cosmic koans and pions
• Interactions with matter underground: 

- Ionization energy loss: more or less constant 
- Loss from bremsstralung, nuclear 

interactions, EM showers (proportional to E) 
• General solution for energy: 
• Only high-energy muons go deep

⟨E(X)⟩ = (E0 + ϵ)e− X/ξ − ϵ

MACRO @ LNGS
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Neutrons
• From (α,n) reactions and fission (mainly U/Th) in the rocks at 

lower energies (typical < 8 MeV) 
- not difficult to shield 
- depend on geology; however, in practice pretty similar 

fluxes: few 10–2 m–2s–1 
- independent of depth for d > 200 m 

• Interactions of μ’s in the rocks 
- higher neutron energies (several GeV) 
- thicker shields needed 
- flux depends on geology and depth 
- flux 3-4 orders of magnitude smaller than thermal 

• Interactions of μ’s in the shields/detector 
- cannot be shielded 
- decrease with increasing depth 

• induced fast background can be reduced by 
anticoincidence 
- BOREXINO: 4 orders of magnitude 

• metastable nuclides more difficult, can be reduced by 
depth 
- experiment dependent, more severe for high-Z 

materials

• Muon capture: goes as Z4 
• Electromagnetic showers: goes as Z2 
• Spallation via virtual photon exchange 
➡ Secondary neutrons
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Backgrounds
The most general conclusion is that main backgrounds are determined by the energy scale of the 
experiment

MeV
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Underground physics (1/2)
• Deep underground laboratories are the ideal locations to explore the highest energy scales with/

without accelerators and search for extremely rare phenomena 
• Background control and reduction are the main obstacles to advance the effective-high-energy 

frontier 
• Astro-particle physics is the main subject: 

- neutrino properties 
- dark matter search 
- proton decay 
- gravitational waves  

• but multi-disciplinary extensions are possible and have been already devised 
- fundamental physics 
- geology and seismology 
- biology



Neutrinos
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History in brief
• In the 60s, Ray Davis builds the first experiment (Homestake mine) to study solar neutrinos and test the 

solar models of his friend John Bachall. 
• At the end of the 70s the Grand Unified Theories (GUT) developments trigger a lot of interest for the 

experimental investigation on nucleon stability 
- A number of experiments (hosted in underground “labs”)  are funded and start operation: IMB, 

SOUDAN-2 ((USA), Kolar Gold Field (India), NUSEX (Italy), Kamiokande (Japan), Frejus (France) 
- At that time, (atmospheric) neutrinos are the “irreducible background” for these experiments 
- Physicists grasp the nettle and  first studies on atmospheric neutrinos are published 

• The visionary mind of (the Nobel laureate) Masatoshi Koshiba brings the potential of his detector 
(Kamiokande) from the GeV scale to a handful of MeV. A second hera for solar neutrino physics is born 
(direct measurements). 

• In 1987 these same experiments observe neutrinos from SN 1987a 
• In 1998 the Super-Kamiokande collaboration announces the discovery of neutrino oscillations observed as 

a deficit of muon neutrinos in the atmospheric neutrinos. The result is confirmed by the MACRO experiment 
results 

• In the 2000s antropogenic neutrino beams (reactor and accelerator) are used for precision tests of this 
discovery 

• … (to be continued)
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Neutrino oscillations

KamLAND SK Daya Bay

Borexino

T2K

T2K
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Neutrino oscillations
• Data from various types of neutrino experiments: (a) solar, (b) 

long-baseline reactor, (c) atmospheric, (d) long-baseline 
accelerator, (e) short-baseline reactor, (f,g) long baseline 
accelerator (and, in part, atmospheric). 

• (a) KamLAND [plot]; (b) Borexino [plot], Homestake, Super-K, 
SAGE, GALLEX/GNO, SNO; (c) Super-K atmosph. [plot], 
DeepCore, MACRO, MINOS etc.; (d) T2K (plot), NOvA, 
MINOS, K2K; (e) Daya Bay [plot], RENO, Double Chooz; (f) 
T2K [plot], MINOS, NOvA; (g) OPERA [plot], Super-K 
atmospheric.

    (OPERA)          

• Irrespective of the chosen neutrino source, the 
(far) detector is always located underground 



Underground physics - Otranto School 28/05/2019  20

Status of neutrino physics

• three mixing angles: θ12, θ23, θ13 
• three CP phases: 1 Dirac + 2 Majorana 
• three masses: m1, m2, m3  

- absolute neutrino mass: m0  
- two mass splittings: Δm212 Δm312 

• Neutrino mixing: να = ∑
k

Uαk νk (νk are mass eigenstates)
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Status of neutrino oscillations

still missing: 
• CP violating phase δ 
• m0=mmin
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a simple case: 2 neutrino (vacuum) oscillations
να = ∑

k= 1,2
Uαk νk (α = e,μ)

P(να → νβ) = 4 sin2 θ cos2 θ sin2(
Δm2

ijL
4E

)
P(να → να) = 1 − P(να → νβ)

Amplitude: vanishes for θ=0 
or π/2, is maximal for θ=π/4)  

Oscillation phase:  vanishes for 
degenerate masses or small L/E)  

a neutrino created with flavor α 
can develop in vacuum a different 
flavor β with periodical oscillation 
probability in L/E 

• Pαβ is is the flavor “appearance” probability. The “disappearance” probability is the complement to 1.  
• The oscillation effect depends on the difference of (squared) masses, not on the absolute masses 

themselves 

Ek = (p2 + m2
k ) ≃ p + m2

k

2p
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exclusion plots
θ14 π/4 π/2

EXCLUDED

Basically obsoleteOctant symmetry: θ → π-θ

• 2ν octant symmetry broken by 3ν and/or maUer effects 
• better to use log tan2θ or sin θ
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exclusion plots

Octant (a)symmetric 2ν contours from PDG Review

• but... patching 2ν approximations in different 
oscillation channels, in order to get a full 3ν picture, 
is no longer a useful approach. 

• btter to go the other way around, from the full 3ν 
case to 2ν limits
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standard 3ν oscillations: results revisited
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standard 3ν oscillations: results revisited

So far established for θ12, θ13, θ23 ,Δm2 and δm2 
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standard 3ν oscillations
• There are three mass states ν1, ν2, ν3 with masses m1, m2, m3 
• For ultrarelativistic ν in vacuum: E=(p2+mk2)1/2 ≃ p+mk2/2p 
• Neutrino oscillations probe the differences ΔE ~ Δmij2 ≡ mi2 - mj2 
• 3 neutrinos means two independent Δmij2, (Δm2, δm2 ) 
• Experimentally, very different scales: Δm2 / δm2 ~ 30 

➡ Difficult to observe both! Current expts sensitive to a dominant one.

➡ δm2 ≃ 7.5 ⋅ 10-5  - “small” or “solar” splitting 
➡ Δm2 ≃ 2.5 ⋅ 10-3  - “large” or “atmospheric” splitting

UU† = 1
U→U* for ν→ν̅
cij = cos θij 
sij = sinθij
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3 ν oscillations: general formalism

να = ∑
k= 1,3

Uαkνk νk = ∑
k= 1,3

U†
αkνα

ν(0)
α ≡ να(x, t = 0) ≡ να = ∑

k= 1,3
Uαkνkeipνxνα(x, t) = ∑

k= 1,3
Uαkνkeipνx− iEkt

Ek = E(νk) = p2
ν + m2

k → Ek ≃ pν + m2
k

2pν

να(x, x) ≃ ∑
k

Uαkνke− i(m2
k /2pν)x

• Let’s consider a 3 ν mixing general scheme

• If the ν is characterised by a momentum pν its time evolution will be described by

where, assuming mk ≪ pν 

• If mk ≪ pν , the ν will travel approximately at the light speed, so that x≃t and
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3 ν oscillations: general formalism

να(x, x) ≃ ∑
β

[∑
k

Uαke− i(m2
k /2pν)xU*βk]νβ

• Replacing now νk in terms of the flavour eigenstates

• After a time t, the original pure flavour state is a superposition of all the flavours 
• We can now easily derive the flavour  transition probability 

P(α → β, x) = [∑
j

U*αje
im2

j x/2pνUβj][∑
k

U*αke
im2

k x/2pνUβk]

= ∑
k

|Uαk |2 |Uβk |2

+ ∑
j≠k

ℜ(UαkU*αjUβjU*βk)cos(
m2

k − m2
j

2pν
x) + ∑

j≠k
ℑ(UαkU*αjUβjU*βk)sin(

m2
k − m2

j

2pν
x)

• If CP is conserved U is real (orthogonal) and

P(α → β, x) = ∑
k

U2
αkU2

βk + ∑
j≠k

UαkUαjUβjUβk cos(2π
x

Lkj
) Lkj = 2π

2pν

m2
k − m2

j
≡ 2π

2pν

δm2
kj
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3 ν oscillations: general formalism
• The transition probability shows a clear oscillatory pattern as a function of the distance. 
• Lkj is called oscillation length between mass eigenstates k and j 
• A mass eigenstate νk does not oscillate to different eigenstates 
• If x≪Lkj, ν stays in its original flavor 
• If x ≫ Lkj the oscillation pattern will be washed out.  
• Indeed, given the unavoidable Δp spread of any real beam, any component pν will cancel out with a 

component having p'ν = pν +Δpν/2 corresponding to a phase shift ~π. 
• Let's evaluate the corresponding distance X. If L'kj is the oscillation length corresponding to p'ν, our condition 

is:

2π
X
L′�kj

= 2π
X
Lkj

− π → L′ �kj ≃ Lkj(1 + Δpν

2pν
) → X ∼ pν

Δpν
Lkj

P(α → β, x > X) = ∑
k

U2
αkU2

βk ≠ 0

• For x>X  the oscillation disappears and 
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Oscillation experiments
Two categories:

➡ disappearance: measure Pαα 
➡ appearance: measure Pαβ

NB: Pαα is never actually observable

Observable
event rate

Source flux
(production)

Propagation
(flavor 
change)

Interaction Detection

• need to take into account detailed phenomenology 
• specific issues for each of these  ingredients, in all subfields of neutrino physics.
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Vacuum oscillations formula: summary

P(να → νβ) = δαβ − 4∑
i< j

ℜJij
αβ sin2(

Δm2
ijx

4E
)

− 2∑
i< j

ℑJij
αβ sin(

Δm2
ijx

2E
)

Δm2
ij = m2

i − m2
j

Jij
αβ = UαiU*βiU*αjUβj

Δm2
ij

4E
= 1.267(

Δm2
ij

eV2 )( x
m )(MeV(E))

where
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2 neutrino oscillations revisited
• let’s consider Pee in the conditions where δm2 = m22 - m12 ≃ 0 (which essentially means that 
Δm2x/E~O(1) and  δm2x/E≃0 

• this means that the only non zero terms are multiplied by Jₑₑ¹³ = Ue1*Ue3Ue3*Ue1 = |Ue1|2|Ue3|2 
and Jₑₑ23 = Ue2*Ue3Ue3*Ue2 = |Ue2|2|Ue3|2  

• this also means Im(Jee13)=Im(Jee23)=0
P(νe → νe) = 1 − 4( |Ue1 |2 |Ue3 |2 + |Ue2 |2 |Ue3 |2 )sin2( Δm2L

4E
)

= 1 − 4 |Ue3 |2 (1 − |Ue3 |2 )sin2( Δm2L
4E

)

= 1 − sin2 2θ13 sin2( Δm2L
4E

)

• δ is not observable (as well as sign(±Δm2)) and P(νe→νe) = P(νe̅→νe̅) 

• intuitively: U = (23) (13) (12) 
- (23) mixes unobservable flavours (νμ,ντ) 
- (12) mixes degenerate states (ν1,ν2) 
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2 neutrino oscillations revisited
• in the present approximation we are essentially probing Δm132 and the mixing matrix 

elements |Uα3|2.

• the relevant probabilities are
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atmospheric neutrinos
• Cosmic rays hittng the atmosphere can generate secondary (anti)neutrinos with electron 

and muon flavor via meson decays

• primary flux affected by large normaliza<on uncertain<es… 
• … but (an<)neutrino flavor ra'o (μ/e ~ 2) robust within few %
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atmospheric neutrinos
• Observatons over several decades in L/E:

- Same ν flux from opposite solid angles (up-down symmetry)  
- Flux dilution (~1/r2) is compensated by larger production 

surface (~r2) 
- Should be reflected in symmetry of event zenith spectra, if 

energy & angle can be reconstructed well enough

electrons OK
muons: deficit from below

• One‐mass‐scale approximation (for θ13~0):
Pμτ ∼ sin2(2θ13)sin2( Δm2L

4E
)
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Super Kamiokande (S-K)

1st oscillation dip still visible 
despite large L & E 

smearing

• Latest SK data analyses more refined: include 
many bins and syst. in order to “squeeze” 
subleading effects beyond dominant L/E

Strong constraints on the 
parameters (Δm2, θ)
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Long BaseLine experiments (LBL)
K2K, T2K (JP), MINOS, NOvA (USA), OPERA (CERN): reproduce atmospheric νμ physics 
in controlled conditions
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 38

LBL results
• Results in muon neutrino disappearance mode Pμμ

T2K

K2K

NOvA

• 1st oscillation dip observed in 
energy spectrum (equivalent to L/E 
spectrum since L is fixed).
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OPERA

OPERA hybrid detector

Five “τ needles” found! 
(consistent with expected signal)

Finding needles in a haystack…
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LBL results
• Dominant  

• Dip position and depth determine Δm2 and θ23  
• Osc. parameters consistent among atm and LBL experiments  
• Old‐fashioned way to present mass-‐mixing constraints

Pμτ = sin2(2θ23)sin2( Δm2L
4Eν

)

• Since θ13>0 (SBL reactors) μ→e flavor appearance in 
LBL experiments is expected  

• T2K & NOvA: e-like event rate consistent with reactors θ13

P(νμ → νe) ≃ s2
23 sin2 2θ13sin2( Δm2L

4E
)

P(νμ → νμ) ≃ 1 − 4c2
13s2

23(1 − c2
13s2

23)sin2( Δm2L
4E

)
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LBL updates
• Not yet established if θ23 is maximal.  
• If not … first or second octant? (“octant ambiguity) 
• Next frontier in LBL/Atmospheric: probe subleading 

effects related to octant, matter, hierarchy, δCP, δm2, θ12, 
…
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δm2 driven oscillations

• Let’s analyse the condition δm2 x/4E ~ O(1) , Δm2 x/4E ≪ 1 
• LBL reactors with relatively low E and solar neutrinos

Pee ≃ cos4 θ13[1 − sin2 2θ12 sin2( δm2x
4E

)] + sin4θ13

P3ν
ee = c4

13P2ν
ee (δm2, θ12) + s4

13

• which means …

• and the probed region is

• however oscillations 
are disturbed by 
matter effects 

Hflavor = 1
2E

U
m2

1
m2

2
m2

1

U† +
Vee Veμ Veτ

Vμe Vμμ Vμτ

Vτe Vτμ Vττ
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Vαβ the matter matrix

Z

p,n,e
Z

p,n,e Z

p,n,e

0
0
0

0 0

0

�
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0

0

e
W

+Vαβ = 

• Proportional to 
identity: unobservable

• Observable in νe 
oscillations

• The relevant term is the νe-νμ  difference which is proportional to VCC, the charged current  
interaction energy:                              where Ne is the electron number densityVCC = 2GFNe

Hflavor = 1
2E

U
m2

1
m2

2
m2

1

U† + [
A 0 0
0 0 0
0 0 0]

• The ν  propagation Hamiltonian 
becomes: 

where A = 2 2GFNeE
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ν oscillations in matter
• ν oscillations in matter depend on the local electron density 
• In the 2ν limit (θ13=0) and Ne=const 

P2ν
ee (mat) = 1 − sin2 2θ̃12 sin2( δm̃2x

4E
)

sin2 2θ12 → sin2 2θ̃12 = sin2 2θ12

(cos 2θ12 − A
δm2 )2 + sin2 2θ12

δm̃2 = δm2 sin2 2θ12
sin2 2θ̃12

A = ± 2 2GFNe

• ν oscillations in constant density matter have a vacuum structure with the simple replacement:

where the minus sign in A holds for ν ̅
• When A/δm2 ~ cos2θ12 ν oscillations resonate (nothing changes for ν)̅ 
• Three limiting cases: A/δm2 ≪ 1 : (δm̃2, θ̃) ≃ (δm2, θ)

A/δm2 ≃ cos 2θ : (δm̃2, θ̃) ≃ (δm2 sin 2θ, π/4)
A/δm2 ≫ 1 : (δm̃2, θ̃) ≃ (A, π/2)

vacuum-like

resonant
matter dominance
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ν oscillations in solar matter
• the adiabatic approximation holds, θ slowly varying from the production point to the vacuum 

value at the exit  from the sun: θ̃12(x) → θ12  
• Two limiting cases: 

- E ≤ O(few MeV): A/δm2 ≤ 1 and θ̃12(x) ≃ θ12 
Pee≃ c124 +s124=1-sin22θ12/2 octant symmetric averaged vacuum probability 

- E ≥ O(few MeV): A/δm2 ≥ 1 and θ̃12(x) ≃ π/2 
Pee≃ sin2θ12 octant asymmetric matter dominated probability 

•

1 − 1
2 sin2 2θ12

sin2 θ12sin2 θ12vacuum

matter

Pee

EO(few MeV)

• the Pee transition from “low” to “high” E is a 
signature of the matter effects in the sun 

• it allows to determine the octant the mixing 
angle θ12
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Solar neutrino production
• Sound and important science with reliable roots: (von 

Weizsäcker, Bethe), Fowler, Bahcall!  Oscillations: from 
Pontecorvo to MSW.  

• pp chain: Precise measurements of fluxes of B, Be (+NC & 
shape for B) and pp, pep (initial) -  require to check all SSM 
inputs – nuclear/plasma/atomic/astro-physics 

• CNO cycle: known since 1937, still to be probed. The only flux 
heavily revised of Bahcall’s SSM. Important for metallicity issue. 
Borexino has a chance; and then?
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Solar neutrinos
• Radiochemical: count the decays of unstable 

final state nuclei. Low energy threshold, but 
energy and time info lost/integrated  

37Cl + νe → 37Ar + e  - Homestake  
71Ga + νe → 71Ge + e - GALLEX/GNO, SAGE  

• Elastic scattering: events detected in real time 
with either “high” threshold (Čerenkov, directional) 
or “low” threshold (Scintillators)  

νx + e → νx + e (CC) - SK, SNO, Borexino  
• Interactions on Deuterium: CC events detected 

in real time; NC events separated statistically; 
neutron counters 

νe + d → p + p + e (CC) - SNO 
νx + d → p + n + νx (NC) 

• All CC-sensitive results indicated a νe 
deficit when compared to solar model 
expectations 
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Solar neutrino results
• Single experiments:

- large uncertainties 
- no unmistakable evidence for ν osc

matter solutions

vacuum solutions

• 2002: one global solution found 
by combining all solar data 
(“large mixing angle” or LMA).

• LMA: evolution is adiabatic 
in solar matter. 

• Earth: small day/night (D/
N) effects, seen at ~3sigma
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Borexino synthesis

1 − 1
2 sin2 2θ12

sin2 θ12sin2 θ12vacuum

matter

Pee

EO(few MeV)

• the Pee transition from “low” to “high” E is a 
signature of the matter effects in the sun 

• it allows to determine the octant the mixing 
angle θ12

• all solar contributions are singled out 
• matter effects are evidenced
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KamLAND

• Direct observation of δm2 oscillations!  
• Get precise δm2 value from dip/peak position

• 2002: electron flavor 
disappearance observed 

• 2004: half-‐period of oscillation 
observed 

• 2007+: one period of oscillation 
observed
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solar + KL: 3ν interpretation
• Dominant 3ν oscillatons  
• Include subleading θ13 effects in solar+KamLAND combination 
• Hints for θ13 > 0 (as early as 2008 ... established by reactors in 2012)

P3ν
ee = c4

13 P2ν
ee(δm2, θ12) + s4

13
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ν oscillations global results
• νμ→ντ  oscillations (Δm23, θ23)  

- Atmospheric:Super-K, IceCube, 
ANTARES… 

- LBL: K2K, MINOS, OPERA, T2K, NOvA, … 
• νe→(νμ+ντ) oscillations (Δm12, θ12)  

- Solar: SNO, Super-K, Borexino, … 
- Reactor: KamLAND 

• θ13 experiments   
- LBL: MINOS, T2K, NOvA, … 
- Reactor:DayaBay, RENO, Double Chooz

• Basic structure for 3 flavor oscillations has been understood! 
• Information for Physics Beyond the Standard Model (at very high energies) !

δm2 2.3%
Δm2 1.6%
sin2θ12 5.8%
sin2θ13 4.0%
sin2θ23 ~9%

• Current 1σ errors
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2018 update

δCP
0 2 4 6

Si
gn

ific
an

ce
 (σ

)

• Normal ordering (NO) favored at ~(1 ~ 2) sigma level 
• Some favored δCP region(s).

Super Kamiokande (SK) T2K Noνa



Underground physics - Otranto School 28/05/2019  54

Oscillations future: Hierarchy and CP phase
• The search for CPV, hierarchy, octant, 

and other subleading (non)standard 
effects in vacuum and in matter is 
motivating new big experimental 
projects, both underground and 
underwater/ice 

DUNE 

Km3/ORCA
IceCube/PINGU

Hyper-Kamiokande
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Next generation neutrino CPV experiments

DUNE Hyper-K 

Have neutrinos and anti-neutrinos different oscillation properties?

Baseline 1300km - Large matter effect 
(Good for MO)

295km - Small matter effect

Beam energy ~ Multi-GeV ~ Sub-GeV
Detector technology Liq. ArTPC Water Cherenkov
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Supernovae neutrinos
Rich physics scenario

• Astrophysics 
- Massive stars dynamics and evolution 
- Neutrino sources in different stages of life 

• Neutrino oscillations 
- Vacuum (propagation) and matter (source, 

earth) effects 
- Collective effects (ν-ν interactions) 

• Neutrino non oscillation variables 
- Timing, pointing, lifetime

Vacuum oscillations depend on 
neutrino mass matrix M Overall 

minus sign for antineutrinos

MSW effect depends on 
ordinary matter density L, 

i.e. mainly electron density

Collective effects 
depends on the 
neutrino density

• 7 dimensional problem 
- 3 momentum (E, θp, φp) + 3 space (r, θ, φ) 

+ 1 time (t)

Δm2

2E

2GFNe

2GFNν

SN oscillations
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SN core collapse
• The evolution of isolated Fe core stars (SNII) terminates with 

the collapse of the nucleus 
• The Gravitational energy is released in ν and ν ̅: Eb =3⋅1046 J 

- Larger than the EM radiation of the host galaxy 
- ν and ν ̅with all flavours are produced in the core 
- <E(νe)> ≈10 MeV ≠ <E(νe̅)> ≈12-15 MeV 
- <E(νμ,ντ)> ≈ 20-25 MeV, (uncertain values) 

• Propagating states are the eigenstates in matter

SN frequency
• 3-4 per century in our Galaxy 
• 0.3-0.4 /yr < 5 Mpc 
• Good perspectives for 1Mt WC

Net result: 
• |θ13|2 < few 10–4 → adiabatic condition 
• Δm2>0 → harder νe spectrum 
• Δm2<0 → harder νe̅ spectrum 
• 1 to multi kton, complementary, detectors 
• Existing detectors: (mainly sensitive to ν)̅: 

LVD, SK, BOREXINO, ICECUBE

• Observable effects on 
- total flux 
- energy spectrum 
- time evolution of spectra
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Supernovae neutrinos
• 1st simulation of a 27 Msun star by Garching group

Janka, Melson, and Summa (2016)

Spectrum of 
emitted neutrinos

Flux of outgoing 
neutrinos
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ν oscillations
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SN detectors
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Collective effects
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• ϕe-ϕX critical “crossing” 
- system becomes unstable 
- flavor conversion of νe (νe̅) to νx (νx̅)  

in certain energy intervals as an 
effect of the interaction with other 
neutri- nos and antineutrinos

• Portions of the energy 
spectra get 
exchanged

• Occurs for both 
orderings and there 
can be multiple 
spectral splits
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DSNB
Diffuse Super-nova Neutrino Background:

• Even if a SN explosion is a rare event in our Galaxy, neutrinos of the past 
explosions form an isotropic flux 
• Is it detectable? 

➡ ν ̅+ p → e + n 
• Best limit from SuperKamiokande 
• Close to theoretical expectations 
• Background limited 

SK doped with Gd
• Tag n to suppress background  

- n capture cross section on Gd: 49 kbarn 
- γ cascade 8 MeV 
- Low threshold possible 
- 0.2 % of GdCl3 ⇒90% tag efficiency 

• 5 ev./yr almost backgroud free 
• tests with 1 kt WC near detector of K2K

KamLAND

Super-Kamiokande

Experimental upper limits on DSNB
➡ Maybe close to DSNB detection




