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Gómez

Introduction

Historical

background

Quark model

Color

The parton

model

QCD

Lagrangian

Feynman rules

Elementary

Calculations

e+e−
annihilation

into hadrons

Renormalization

Strong interactions, Lattice and HQET

Vicent Giménez Gómez
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Introduction

Quantum Chromodynamics (QCD), first introduced by Gell-Mann and

Frizsch in 1972, is the theory of strong interactions. It is a renormaliz-

able nonabelian gauge theory based on the color SU(3) group which

elementary fields are quarks and gluons.

Why is QCD important for Particle Physics?

• Electroweak processes of hadrons necessarily involve strong

interactions.

• A quantitative understanding of the QCD background in

searches for new physics at present and future accelerators is

crucial.

In this lectures we give an introduction to the foundation of perturba-

tive and nonperturbative QCD and some important physical applications:

Deep Inelastic Scattering (DIS) and e+ e− annihilation into hadrons.
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History

The history that led to the discovery of QCD is fascinating. We briefly

comment on some turning points.

Neutron discovery

Since the discovery of the neutron (Chadwick 1932), the strong interac-

tions have been reconigned as a separate force of nature. It is attractive

at intermediate distances and so strong that it overcomes the electric re-

pulsion of the protons in atomic nuclei (typical electromagnetic distance:

electrons in an atom, 10−10 m to be compared with a typical strong-

interaction distance: protons in a nucleus, 10−15 m).

Yukawa model

Yukawa in 1934 proposed that the exchange of pions is the source of

the forces between protons and neutrons

U(r) = ± g

r
e−mπ r

The mass of the pion is just the inverse of the range of the force.
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History (II)

Isospin formalism

Between 1935 and 1938, the charge invariance of strong interactions

was experimentally established. Cassen and Condon invented the for-

malism incorporating this proptery: isospin symmetry. The theory was

completed by Kemmer in 1938 by the introduction of a neutral pion φ3

with the same mass of the charged pions φ1,2. The Hamiltonian of the

strong interactions incorporating the isospin symmetry reads

H = g ψ̄~τψ~φ ψ ≡
(

ψp

ψn

)

On the experimental side, the π± were discovered by Powell in 1947 and

the π0 at Brookhaven in 1950.
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History (III)

The discovery of strangeness

The particles discovered in 1947 by Butler and Rochester were almost

certaintly the decays of K0 and K+ to two pions. Soon after this, it was

discovered the decay of K+ to three pions and a Ξ− to π−p. In 1955

Gell-Mann gave them the name of strange particles because behaved

strangely. In fact, they were produced in collisions on cosmic rays with

rates comparable to those of pions, but decayed many orders of magni-

tud slower than as expected for a decay mediated by strong interactions.

Gell-Mann in 1953 solved the puzzle of new particle decays by making

clever isospin assignements to these particles. Then, isospin conserva-

tion prevented them from decaying into the observed decay modes via

strong interactions, but allowed them to proceed via weak interactions,

which explained their long lifetimes. Isospin assignements worked but

there was still the question: is there any deeper reason for it?
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History (IV)

Strangeness quantum number

In 1954, Nishijima observed that the peculiar isospin assignement of

Gell-Mann can be reformulated in terms of a new quantum number

called ”strangeness” which is conserved in strong interactions but vio-

lated by weak forces. He wrote,

Q = I3 +
B+S

2
hypercharge Y ≡ B + S

In Gell-Mann’s model, each particle is labelled by three quantum num-

bers I, I3 and Y or Q.

The introduction of strangeness was crucial because it opened the way

to unitary symmetry and and the consequent development of the quark

model by Gell-Mann (Nobel prize in Physics in 1969 from the Eight-

fold Way). The peculiar isospin assignments of Gell-Mann, Nakano and

Nishijima are, within the quark model, simply a consequence of the fact

that the strange quark is an isospin singlet.
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Gómez

Introduction

Historical

background

Quark model

Color

The parton

model

QCD

Lagrangian

Feynman rules

Elementary

Calculations

e+e−
annihilation

into hadrons

Renormalization

History (V)

In the annual conference on high energy physics in Pisa in 1955, the

properties of the observed strange particles were stablished. Gell-Mann

predicted the existence of Σ0 (found in 1956), Ξ0 (found in 1959) and,

most remarkably, of Ω− (discovered in 1964), assigned to an isosinglet.

Non abelian gauge theories

In 1954, Yang and Mills created nonabelian gauge theories. QCD,as we

will see, is a non abelian gauge theory based on color SU(3).

Sakata model

The Sakata model (1959) postulated that the hadrons could be consid-

ered to be composite states of p, n and Λ particles. Ikeda, Ohnuki and

Ogawa in 1959 suggested that the triplet of particles transformed in the

fundamental representation 3 of SU(3). They correctly said that the

mesons could be build out bound states of 3 and 3:

3 ⊗ 3 = 8 ⊕ 1

but several of their assigments were incorrect.
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Giménez
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History (VI)

The Eightfold Way and quark model

In 1961, Gell-Mann and Ne’eman, made the correct SU(3) assignments:

baryons and mesons were arranged in what they called the Eightfold

Way.

The Gell-Mann and Zweig proposed that these SU(3) assignments could

be generated if one postulated the existence of new constituents, called

”quarks”, which transformed as a triplet 3. All other higher representa-

tions could be generated beginning by quarks by taking multiple products

of the fundamental representation. In the fundamental representation of

SU(3), the quarks were called up, u, down, d, and strange, s.

The u and d quarks formed an SU(2) isodoublet. The strange quarks

was introduced because in the 1950s, as we said before, it was observed

that strangeness, a new quantun number in addition to isospin, was con-

served by hadronic processes. The SU(3) paradigm explains the new

quantum number because it is a rank two Lie group.
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History (VII)

Quark model

SU(3) representations are labeled by two numbers: third component of

isospin I3 and hypercharge Y = B+ S, where B is the baryon number

and S the strangeness. But these quantum numbers are not indepen-

dent. Nishijima and Gell-Mann proposed the relation

Q = I3 +
Y

2

where Q is the electric charge. To fit the known spectrum, mesons were

postulated to be composite states of a quark and an antiquarrk, and

baryons are composite of three quarks,

3⊗3 = 8 ⊕ 1 3⊗3⊗3 = 10⊕8⊕8⊕1

The theory predicted that the mesons should be arranged in terms of

octets and singlets, whyle baryons should be in octets and decuplets.
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History (VIII)

In order to reproduce the known charges of mesons and baryons, the

quarks are postulated to have fractional charges

Qu =
2

3
Qd = −1

3
Qs = −1

3

Since three quarks make up a baryon, quarks have baryon number 1/3.

More in the next section.

Turning points to be disccussed in the lectures

• The observation of scaling in deep-inelastic scattering (DIS).

• The proposal of color a symmetry of the strong interactions.

• Asymptotic Freedom

DIS made Quantum Chromodynamics (QCD), a quantum theory of fields

with color as a local symmetry, the unique explanation of the strong in-

teractions, through its property of asymptotic freedom.
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State of particle physics in the early sixties

In the early sixties of the last century, QED had been formulated as a

Quantum Field Theory (QFT) to describe electromagnetic interactions.

Many precise QED predictions were confirmed experimentally.

But, the renormalization procedure, an essential ingredient of the per-

turbative treatement of QED, was not universally accepted even among

founding fathers of QFT:

• ”Sweeping the infinities under the rug”

• ”I do not subscribe to the philosophy of renormalization”, R.

Feynman, Solvay Conference 1961.

For weak interactions, the Fermi theory that succesfully described weak

decays, was non renormalizable and hence it was inconsistent at high

energies. This fundamental problem was solved by the invention of the

electroweak theory, a renormalizable gauge theory, at the end of the

sixties.
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State of particle physics in the early sixties

The state of strong interactions was even worst. A rapidly increasing

number of hadrons could be classified by the quark model of Gell-Mann

and Zweig but its dynamics was completely unknown. As perturbation

theory (PT) cannot be used here, many physicists thought that QFT

might not be adequate for the strong interactions.

1 S-matrix approach (Chew et al.): do not look for more funda-

mental constituents of hadrons, all hadrons are equal, forget

QFT, work directly with the S-matrix for strong interactions.

2 QFT is a toy model (Gell-Mann): use algebraic relations be-

tween currents (current algebra), suggested/deduced from a

Lagrangian field theory model but do not take it seriously.

Quarks are purely mathematical entities without any physical

reality.
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The light at the end of the tunnel

Deep Inelastic Scattering and Asymptotic Freedom
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The light at the end of the tunnel

Experiment showed the right path at the end of the sixties: the MIT-SLAC

collaboration found unexpected results in deep inelastic scattering (DIS)

of leptons on nucleons. At low energies, the cross sections were charac-

terized by baryon resonances, at large energies and momentum trans-

fer the nucleons seem to consist of noninteracting partons (proposed

by Feynman). The identification of partons as quarks is natural, but then

how could quarks be free at high energies and yet be permanently bound

in hadrons?

We now know that the strength of the strong (an other) interactions de-

pends on energy because pair creation converts the vacuum in a polar-

isable medium that screens the (color) charge.

There is, however, an all important difference between QED and QCD.

In the former, the effective charge increases with energy but in the later,

due to its nonabelian character, decreases with energy. This is called

asymptotic freedom.
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Quark Model
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Quark model

Introduced by Gell-Mann and Zweig in 1963, it was an attempt to explain

the increasingly complex list of hadrons and resonances discovered in

the new particle accelerators during the 1950s and 1960s.

Previously, it has been well stablished that isospin, based on SU(2), was

a good symmetry of the strong interactions and that strangeness, a U(1)
symmetry, was conserved by them.

These two symmetries was combined in a larger symmetry group, SU(3)
of flavour which was found to be conserved to a good approximation by

the strong interactions.

The quark model is a realization of this symmetry.

In the quark model, mesons and baryons are bound states of quarks,

Mesons (π, K, ρ, . . . ) are bound states of the form qq̄

Baryons (p, n, Λ, . . . ) are bound states of the form qqq
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Quark model (II)

To reproduce the integer spin of mesons and the half-integer spin of

baryons, it was postulated that quarks have spin 1/2. Assuming, as it is

the case for non pathological potentials, that the lowest states have zero

spatial angular momentum, mesons can be classified as

Mesons JP = 0−: spin singlet states with L = 0.

Mesons JP = 1−: spin triplet states with L = 0.

Baryons can in principle have all combinations of three 1/2-spins:

1/2⊗1/2⊗1/2 = 1/2 ⊕ 1/2 ⊕ 3/2. The experimental spectrum con-

tains only one spin-1/2 set of baryons. To eliminate one of the spin-1/2

term in the decomposition above, it was postulated that the baryon spin-

flavour wave-function is totally symmetric. Therefore, the classification

of baryons is

Baryons JP = 1/2+ with L = 0.

Baryons JP = 3/2+ with L = 0.
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Quark model (III)

In addition, three types of quarks were necessary to explain the hadron

spectrum: u, up, d down and s, strange. The heavy quarks c, charm,

b, bottom, and t, top, could not be produced in the accelerators of the

1960s. Since their mass is larger than the ΛQCD ∼ 300 MeV, the scale

that characterizes the strong interactions, their behaviour is significantly

different from the one for light quarks. We will come back to this aspect

of QCD later.

Now, one can start assigning a quark content to each hadron. For ex-

ample, the proton is uud, the neutron udd, . . . , etc. In order to explain

the charge of baryons, the quarks must have a fractional charge: 2/3 for

the u and −1/3 for the d. The quark content of light mesons is ud̄ for the

π−, dū for the π+, uū−dd̄ for the π0 and so on. Pseudoscalar mesons

with strangeness must include the strange quark or its antiquark. Thus,

the quark content of the K+ is us̄ and of the K0 is ds̄, so the s must have

charge −1/3.
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Quark model: flavour SU(3)

Remember that U(N) is the group of N×N unitary matrices, U U† = I.

It is easy to see that det(U) = eiφ, a pure phase. The subset of matrices

of U(N) with det(U) = 1 form a subgroup called SU(N). It follows that

U(N) = SU(N)×U(1)

The flavour symmetry is associated to SU(3) because the additional

U(1) is an exact symmetry of the strong interactions, the baryon number.

Therefore, we arrange the three quarks in a column vector and define

that it transforms under SU(3)f as its 3 irreducible representation, i.e.

as a triplet. Both, isospin and strangeness are included in SU(3)f as

subgroups: isospin is the SU(2) subgroup of transformations acting on

doublets of u and d quarks while strangeness is a U(1) transformation

for the s quark,

(

u

d

)

→ UI

(

u

d

)

, s → Us s with UI ∈ SU(2), Us ∈ U(1)
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Quark model: flavour SU(3) (II)

The hadrons fall into irreducible representations of SU(3)f . In fact, tak-

ing into account that quarks are members of the 3 representation and

antiquarks of the 3̄, the mesons are members of the product

3⊗ 3̄ = 8 ⊕ 1

This accounts for the two mesons octets,

JP = 0−: π±, π0, K±, K0, K̄0, η

JP = 1−: ρ±, ρ0, K∗±, K∗0, K̄∗0, ω

and two singlets: the η′ (JP = 0−) and ω′ (JP = 1−). The flavour wave-

function of the mesons are easily obtained. The only subtlety is with the

neutral states sπ0 and η that are choosen to make the former a member

of the isospin triplet with π± and the later and isospin singlet. The η′ is

also a singlet under SU(3)f .

21 / 153



Strong

interactions,

Lattice and

HQET

Vicent

Giménez
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Quark model: flavour SU(3) (III)

We can collect all the quark wave-functions in a mesonic matrix wave-

function

M =





u

d

s



 ⊗





ū

d̄

s̄



 =





uū ud̄ us̄

dū dd̄ ds̄

sū sd̄ ss̄





=





1
3
(2uū−dd̄− ss̄) ud̄ us̄

dū 1
3
(2dd̄−uū− ss̄) ds̄

sū sd̄ 1
3
(2ss̄−uū−dd̄)





+
1

3
(uū+dd̄+ ss̄)

=







1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η






+ η′
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Quark model: flavour SU(3) (IV)

The baryons are members of the product

3⊗3⊗3 = 10 ⊕ 8 ⊕ 8 ⊕ 1

plus the constraint that the wave-function is totally symmetric. The states

remaining are

JP = 1/2+: Baryon octet: p, n, Σ±, Σ0, Ξ−, Ξ0, Λ

JP = 3/2+: Baryon decouplet: ∆++, ∆+, ∆0, ∆−, Σ∗±, Σ∗0, Ξ∗−,

Ξ∗0, Ω−

Their quark content is easily worked out given the charges and

strangeness of each particle. We can collect all the quark wave-function

in a barionic one

B =







1√
2
Σ0 + 1√

6
Λ0 Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ0 n

Ξ− Ξ0 − 2√
6
Λ0






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Quark model: advantages and disadvantages

The quark model appears to be a very useful Periodic Table of Hadrons

because using it one can nicely classify the entire hadronic spectrum.

A remarkable success of the quark model was the prediction, including

the mass, of the Ω− = sss baryon. But the model has several problems:

1 a free quark has never been observed. Therefore, is it a real

particle or simply a mathematical entity that realizes the SU(3)f

symmetry?

2 the absence of antisymmetric combinations of spin and flavour

representations in the baryon sector which could led to problems

with the Fermi-Dirac statistics.

3 there are no signs of exotics states like qq̄qq̄ or qqqqq̄.

4 nothing is said about the dynamics of strong interactions. What is

the binding force that hold quarks together? If the glue is a vector

meson, to be renormalizable must be massless but being

massless it should generate a long-range force, like gravity and

electromagnetism.
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The color degree of freedom

After years of black confusion, color came to rescue.
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Evidences for color

Before the invention of QCD there were a number of indications for the

existence of color degrees of freedom.

• spin-statistics problem

• Absence of exotics

• e+ e− annihilation

• π0 → 2γ

• Anomaly cancellation in the SM

• hadronic decays of the lepton τ
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Gómez

Introduction

Historical

background

Quark model

Color

The parton

model

QCD

Lagrangian

Feynman rules

Elementary

Calculations

e+e−
annihilation

into hadrons

Renormalization

Evidences for color: Spin-statistics

As we said before, the spin-flavour wave-function of baryons is postu-

lated to be fully symmetric. But quarks are fermions and their wave-

functions should therefore be antisymmetric with respect to the inter-

change of all degrees of freedom, spacetime and internal. It follows that

the spatial wave-function of a baryon should be antisymmetric.

This is, however, problematic. For every resonable potential, the ground

state of the system of three quarks is expected to be symmetric under

the exchange of any pair of coordinates (L = 0). For example, if we

model the potential with a symmetric harmonic oscillator, the ground

state is a Gaussian invariant under rotations, i.e. with L = 0. Therefore

the total spin of the baryon ~J = ~L +~S = ~S. The baryons have half-

integer spin which implies that their wave-funtion must be antisymmetric.

Now, consider a classical example: the baryon ∆++. Since it has

Sz = 3/2 and its quark content is uuu, its spin-flavour wave function is

|∆++ 〉 = |u ↑, u ↑, u ↑〉

completely symmetric. Therefore, the complete wave-function is also

totally symmetric which violates the spin-statistics theorem.
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Giménez
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A natural solution to this serious problem, proposed by Han, Nambu,

Greenberg and Gell-Mann, independently, consists in assuming that the

quarks possess an additional degree of freedom named color. Each

quark comes in three colors qi, i = 1,2,3 (red, blue and green). Now

it is easy to construct a baryon wave-function antisymmetric under the

exchange of the color of any two quarks,

|∆++ 〉 = 1√
6

εijk |ui, uj, uk 〉

where εijk is the totally antisymmetric tensor with ε123 = 1. The total

wave-function is now antisymmetric because is symmetric under space,

spin and flavour but antisymmetric in color.

Similar problems exist also for the statistics of ∆− and Ω−, composed of

three identical quarks, d and s respectively. The problem is solved the

same way by the introduction of the color degree of freedom.
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Evidences for color: Spin-statistics (III)

For mesons, the color wave-function is

|M(q′q̄)〉 = 1√
3

δij |q′i q̄j〉

Notice that for this scheme to work at least three colors are necessary.

Therefore, each quark field is a triplet,

q =





q1

q2

q3





and it is resonable to expect a new internal symmetry that rotates the

color degrees of freedom among themselves. The associated symmetry

group is SU(3)c. It is important to distinguish it from the flavour SU(3)f

that rotates the flavours among themselves but with the same color.

A quark field carries both indices: qf i, with f = u, d, s and i = 1, 2,3

and transforms as a (3,3) under SU(3)f ⊗SU(3)c.
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Evidences for color: Spin-statistics and confinement

Color solves in an elegant and natural way the statistics problem of the

quark model but introduces new states: the colored hadrons. Indeed, if

each quark/antiquark comes in three colors, this allows for 81 qq̄ combi-

nations only 9 of which have been found. The remaining combinations

are not bound states.

These extra states have not been observed and hence one needs to

postulate that all asymptotic states must be colorless, i.e. singlets

under color rotations. In other words, unobserved hadrons are white,

colorless, combinations of quarks. This is the confinement assumption:

quarks, colored objects, are not observable as asymptotic states. They

are confined in color-singlet bound states.

Notice that the confinement hypothesis rules out the existence of diquark

states but not of states like qqqqq̄. On the other hand, this hypothesis

leads to another question: why are there only color singlet states in na-

ture?
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Evidences for color: Spin-statistics and confinement

A first step towards the answer was taken by Y. Nambu in 1965.

Nambu proposed that quark confinement follows from strong forces

acting between quarks mediated by an octet of gauge fields, Ga,

a = 1, · · · ,8, coupled to the color SU(3) generators, λa. This is the

essence of QCD.

Unfortunately, Nambu assignment of electric charges to quarks was

completely wrong, the Hahn-Nambu model: different colors were

assigned different integer electric charges in such a way that their

color-averaged charge were equal to the fractional electric charges of

the quark model.

The Han-Nambu model should be considered as a precursor of QCD.
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Evidences for color: Absence of exotics

All of the nine mesons predicted by the quark model as bound states

of the form qq̄ have been observed. This suggests an attractive force

between quarks and antiquarks. Also baryons fit nicely in qqq bound

states. If the strong force is purely attractive, why objects of the form

q̄qqq, with fractional charge, have never been observed? The quark

model does not explain why exotic states such 3⊗ 3, . . . , etc are not

observed. Notice that this question cannot be answered within the quark

model because it does not give any indication of what is the binding

force between quarks.

In QCD there is a simple reason: confinement. Only color singlets, mem-

bers of the 1 irreducible representation of the color SU(3), are physical

states. We know that qq̄ and qqq states are invariant under the color

group because the color indices are contracted by invariant tensors. Ex-

otic states are not invariant under the color group and hence they are

absent of the spectrum.
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Evidences for color: e+ e− annihilation

A direct test, actually a quark counting, of the color degree of freedom

can be obtained from the ratio

R =
σ(e+ e− → hadrons)

σ(e+ e− → µ+ µ−)

The hadronic production is mediated by a virtual photon or a virtual Z,

e+ e− → (γ∗, Z∗) → qq̄ → hadrons

We will show that at energies well below the Z peak, the cross-section is

dominated by the photon exchange and the R ratio is simply proportional

the sum of the squares of the quark charges,

R = N
NF

∑
f=1

Q2
f

where N is the number of colors and Qf is the electric charge, in units of

e, of the active quarks at the process energy.
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Evidences for color: e+ e− annihilation (II)

At low energies, below the charm threshold, and assuming N = 3, the

ratio should be R ≈ 2. When we hit the c− c̄ threshold, the ratio rises

to 10/3. When we include the b quark, R ≈ 11/3. This pattern of steps

agrees rather well between thresholds with experiment.
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Gómez

Introduction

Historical

background

Quark model

Color

The parton

model

QCD

Lagrangian

Feynman rules

Elementary

Calculations

e+e−
annihilation

into hadrons

Renormalization

Evidences for color: π0 → 2γ

The neutral pion π0 has the following quark content

|π0 〉 = 1√
2

(

|uū〉 − |dd̄〉
)

Therefore, we can take the divergence of the isospin I = 1, I3 = 0 axial

current as an interpolation field for the π0,

Aµ =
1√
2

(

ūγµγ5u − d̄γµγ5d
)

The Feynman diagram for this decay consists of an internal quark tri-

angle loop, with the pion and the photon attached to the corners of the

triangle. Due to the so-called triangle anomaly (to be discussed below),

the coupling of the axial current with two electromagentic currents does

not vanish, producing the decay of the π0 to two photons.
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Evidences for color: π0 → 2γ (II)

Triangle diagrams for π0 → 2γ

36 / 153



Strong

interactions,

Lattice and

HQET

Vicent

Giménez
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Evidences for color: π0 → 2γ (III)

The result of the calculation is

Γ(π0 → γγ) = N (Q2
u − Q2

d )
2 α2 m3

π

64π3 f 2
π

= 7.73eV ↔ Γexp = 7.7(6)eV

for N = 3; Qu = 2/3; Qd = −1/3 and where fπ = 92.4 MeV is the

coupling of the π0 to the Aµ. The agreement is very good. Notice that

for N = 1, the two values would disagree by a factor of 9.

Moreover, the triangle anomaly is a global flavour symmetry broken by

quantum effects, precisely the triangle loops. In other words, the sym-

metry is present at the classical level but not at the quatum level. It can

be shown that the decay amplitude does not get corrected by strong

interactions.
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Gómez

Introduction

Historical

background

Quark model

Color

The parton

model

QCD

Lagrangian

Feynman rules

Elementary

Calculations

e+e−
annihilation

into hadrons

Renormalization

Evidences for color: Anomaly cancellation in the SM

This is very nice theoretical argument, not based on any experiment,

only on the internal consistency of the SM.

An anomaly is a symmetry of the classical Lagrangian that has not sur-

vived in the passage to the quantum theory. To start with, consider QED.

As a consequence of the gauge invariance of the theory, there exist

some identities valid up to all orders in Perturbation Theory: the Ward-

Takahashi identities. The vector (electromagnetic) and axial currents,

Vµ(x) = ψ̄(x)γµ ψ(x) Aµ(x) = ψ̄(x)γµγ5 ψ(x)

satisfy the equations of motion

∂µ Vµ(x) = 0 ∂µ Aµ(x) = 2 im P(x) with P(x) = ψ̄(x)γ5 ψ(x)

For massless fields, also the axial current is conserved and the action is

invariant under the vector and axial transformations

ψ → eiθ ψ ψ → eiθγ5 ψ
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Evidences for color: Anomaly cancellation in the SM

All this is correct at the classical level. At the quantum level, since the

coupling of the electromagnetic current to the photon field, Bµ is Jµ Bµ, it

is easy to show that the amplitudes involving the vector current only are

gauge invariant. But this is not the case for some amplitudes involving

the axial current. To be specific, consider the triangle diagrams associ-

ated to a VVA vertex and a VVP one. The correspondig amplitudes are

denoted by Tµνλ and Tµν, respectively. Taking derivatives and using the

equations for the divergences of the currents, we get

kν
1 Tµνλ = 0 kν

2 Tµνλ = 0 qλ Tµνλ = 2mTµν

The Feyman integral for Tµνλ is divergent but when it is inserted in the

third equation, the LHS term is finite and equal to the RHS term. How-

ever, when it is inserted in the first and second equations, the result is

divergent and the renormalized expression for Tµνλ satisfies the first and

second equations but not the third. It can be shown that there is no

regularization method compatible with the three Ward Identities.
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Evidences for color: Anomaly cancellation in the SM

This is a disaster for the SM because the Ward Identities are used to

prove the renormalizability of the theory. They allow the cancellation of

the infinities. Any Quantum Field theory should be anomaly free. In the

non abelian case, the regularization of triangle diagrams lead to correct

results for the WI of the vectorial current but not for the axial current.

Therefore, we must construct our theory in such a way that the axial

WI is algebraically satified. In a theory with one or more vector gauge

bosons coupled to the lefthanded and righthanded fermions as

ψ̄L γµ Ma ψL Wa
µ ψ̄R γµ Na ψR Wa

µ

where Ma and Na are the (matrices representing the) generators of the

gauge transformations, the analysis of the triangular diagrams for Wa →
Wb + Wc, shows that the cancellation of the axial anomalies imposes

the condition

0 = Tr
[

Ma
{

Mb, Mc
}]

− Tr
[

Na
{

Nb, Nc
}]
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Evidences for color: Anomaly cancellation in the SM

In the case of the SM, it is not difficult to arrive at the condition

∑
fL

Qf = 0

For leptons e−, µ−, νe, νµ, the sum of the charges is −2 andf for the 4

quarks, u, d, s and c, is 2/3. It follows that the complete sum does not

vanish. If, however, each quark contributes with 3 colors, we have

∑
fL

Qf = −2 + 3 · 2

3
= 0 ↔ ∑

fL

Qf = −2 + 1 · 2

3
= −4/3 6= 0

If the τ lepton is added, we need new quarks, the bottom and the top.

To sum, the leptonic part of the SM contain anomalies that arise when

a classical symmetry of an action does not survive the process of quan-

tization. In particular, there are certain divergent fermionic triangle dia-

grams that can destroy the WI and hence ruin the renormalizability of the

theory. When quarks are included in the SM, they also produce anoma-

lies but of the opposite sign. The charge assignments in the SM are

precisely the ones that cancel the anomaly.
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Evidences for color: hadronic decays of the lepton τ

The lepton τ can decay through the emission of a W into

τ− → ντ +







e− + ν̄e

µ− + ν̄µ

d + ū

Defining the ratio

Rτ =
Γ(τ− → ντ + hadrons)

Γ(τ− → ντ e− ν̄e)

A similar analysis to the one for Re+ e− but replacing the electromagnetic

current by the charged weak current, gives

Rτ ≈ N
(

|Vud|2 + |Vus|2
)

SEW

{

1 + δ′EW + δpert + δnonpert

}

where the leading and nonleading electroweak perturbative corrections

are SEW = 1.0194 and δ′EW = 0.0010.
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Evidences for color: hadronic decays of the lepton τ

The QCD perturbative corrections are known, as an expansion in

αs(mτ), at the NNNLO, O(α3
s )

δpert =
αs(mτ)

π
+ 5.2

(

αs(mτ)

π

)2

+ 26.4

(

αs(mτ)

π

)3

+ · · ·

and the nonperturbative contributions are estimated to be δnonpert =
−0.014(5). Taking Vud = 0.9773 and Vus = 0.2246 and including QCD

corrections with αs(mτ) = 0.35(3), we get

Rτ ≈ 3.69 to be compared with R
exp
τ = 3.63(1)

in very good agreement with the experimental value.

Notice that this quantity can also be used to precisely determine αs(mτ),

assuming N = 3.
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Deep Inelastic Scattering

Deep Inelastic Scattering (DIS) of leptons on hadrons has had an enor-

mous impact on teh development of the ideas that led to QCD. The aim

of the SLAC-MIT DIS experiment of the 1960s was to understand the

structure of the proton and the neutron. They measured the electric and

magnetic form factors by sending electrons with an energy up to 20 GeV

against a target of hydrogen or deuterium. The energy and direction of

the scattered electron are measured in the detector but the final hadronic

state (denoted by X) is not measured,

e−(k,E) + N(p) → e−(k′,E′) + X(pX)

The lepton interacts with the target through the exchange of a virtual

photon. In the deep inelastic region, the photon absorbed by the target

hadron, blows it apart and it is fragmented into many particles.

They observed a larger number than expected if the proton were ele-

mentary of large angle deflections of the electron. This is a reminiscent

of Rutherford’s experiment.
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Deep Inelastic Scattering

To explain the hard behaviour in DIS, Feynman and Bjorken and

Paschos, independently, proposed the parton model:

the nucleon has to be considered in deep inelastic collisions as a gas

of non interacting pointlike particles, the partons. The electron simply

suffers an elastic collision with a parton. Since a pointlike cross-section

has not the form factor supression of an extended object, we have hard

interactions with large electron angle deflections.
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Gómez

Introduction

Historical

background

Quark model

Color

The parton

model

QCD

Lagrangian

Feynman rules

Elementary

Calculations

e+e−
annihilation

into hadrons

Renormalization

Deep Inelastic Scattering
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DIS kinematics

The kinematic variables used in the DIS are M the nucleon mass, E and

E′ the energies of the incoming and outgoing lepton, lepton masses are

neglected, and the four momenta are

k = E (1,0,0,1) incoming lepton moving in the z direction

k′ = E′ (1, sinθ cosφ, sinθ sinφ, cosθ) outgoing lepton moving along (θ, φ)

P = (M,0,0,0) momentum of the target in the rest-frame of the hadron

q = k− k′ momentum transfer, i.e. momentum of the virtual photon

ν = E−E′
(target rest frame) = (P ·q)/M energy loss of the lepton

y = ν/E = 1 − E′/E = (P ·q)/(P · k) fractional energy loss of the lepton

Q2 = −q2 = 2EE′ (1− cosθ) = 4EE′ sin2 θ/2

x = Q2/2Mν = Q2/(2(P ·q)) = Q2/(2MEy) Bjorken variable

ω = 1/x
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DIS kinematics

The invariant mass of the final hadronic state must be at least that of

the nucleon (conservation of the baryon number). Thus, we have the

inequality

M2 ≤ M2
X = (P + q)2 = M2 + 2P ·qq2 → 0 ≤ x ≤ 1

The lepton energy loss E−E′ must be between zero and E. The physi-

cally allowed kinematical region is

0 ≤ x ≤ 1 0 ≤ y ≤ 1

In the case of a elastic scattering (X = N), we have M2
X = M2, Q2 =

2Mν and x = 1.

The formal definition of the Deep Ineslatic Scattering is

Q2 → ∞ ν → ∞ with x fixed
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DIS kinematics

Therefore, in the deep inelastic limit, all nucleon resonances get pushed

to x = 1,

x =
1

1+(M2
X −M2)/Q2

→ x → 1 as Q2 → ∞

For a fixed value of Q2, a small region around x = 1 of width Λ2/Q2

contains hadronic resonances with masses around that of the nucleon.

Notice that the resonance region is absent in the formal deep inelastic

limit but present in any real experiment. As x → 0 the invariant mass of

the hadronic state increases. Outside the resonance region, M2
X is of

order Q2.

It is also useful the behaviour of the scattering angle θ and of the different

components of q, as Q2 → ∞

θ ∝
M

Q
−→ θ → 0 q0 =

Q2

2Mxy
q3 =

Q2

2Mxy
+ M xy q⊥ ≈ Q

√

1− y

It is interesting to note that q⊥ is of order Q, q0 and q3 are both of order

Q2/M and q0 − q3 is of order M.
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DIS cross section

The matrix element (scattering amplitude) has the structure

iM = (−ie)2

(−gµν

q2

)

〈k′|Jµ
j (0)|k,sl〉〈X|Jν

h(0)|P,λ〉

where Jl,h are the leptonic and hadronic electromagnetic currents, sl is

the polarization of the incoming lepton and λ of the target hadron. The

polarizations of the outgoing lepton and hadron states are not measured.

By squaring M , taking into account the phase space factors and sum-

ming over the polarisations of the outgoing states, we get

dσ =
e4

Q4

∫
d3k′

(2π)3 2E′
4π

(2E)(2M)
Lµν Hµν

where we have defined the leptonic, Lµν and hadronic, Hµν tensors. It is

useful to write de double differential scattering cross section in terms of

x and y,
d2σ

dxdy
=

α2

Q4
2πy Lµν Hµν
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The leptonic tensor

The leptonic tensor is defined by

Lµν(k,k′) = ∑
finalspin

〈k′|Jν
l (0)|k, sl〉〈k, sl|Jµ

l (0)|k′〉

Since the leptons are pointlike fermions, Lµν is simply

Lµν = ∑
finalspin

ū(k′)γν u(k,sl) ū(k,sl)γµ u(k′)

The sum over final polarisations is performed with ∑finalspin u(k′) ū(k′) =
/k
′
+ m with spinors normalised to 2E. The spinor product for the incom-

ing lepton can be written in terms of the spin projector operator

u(k,sl) ū(k,sl) = (/k + m)
1

2

(

1 + γ5 /Sl/m
)

where S
µ
l is the spin vector defined by 2S

µ
l = ū(k,sl)γµ γ5 u(k,sl)
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The leptonic tensor (II)

Notice the unsual normalizatization of Sl by a factor of the fermion mass

m. In the rest frame with spin up, the spin vetor is~Sl = mẑ. It is very

useful in the extreme relativistic limit, where all fermion masses can be

neglected. With this normalization, longitudinally polarised fermions in

the extrem relativistic limit have Sl = hl k, where k is the momentum

and hl = ±1 is the fermion helicity.

The final expression for the lepton tensor is (neglecting the lepton

masses)

Lµν = 2
(

kµ k′ν + kν k′µ − gµν (k · k′) − iεµναβ qα Slβ

)
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The hadronic tensor

The hadronic tensor is defined by

Hµν(P,q) =
1

4π

∫
d4zeiq·z 〈P, λ|

[

J
µ
h(z), Jν

h(0)
]

|P, λ〉

It cannot be computed directly, even in QCD PT, because of nonper-

turbative effects in the strong interactions. What we can due is to de-

compose it using all the symmetries of the theory: parity, time reversal,

charge conjugation and, of course, Lorentz.

The most general polarisation state of a spin 1/2 target in its redt frame

can be written as a density matrix described by an axial vector~Sh

ρ =
1

2

(

1 +~σ ·
~Sh

M

)

Notice the additional mass factor in the definition of~Sh. The four vector

S
µ
h is defined to be (0,~Sh) in the rest frame of the target and is defined

in other reference frames by a Lorents boost.
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Gómez

Introduction

Historical

background

Quark model

Color

The parton

model

QCD

Lagrangian

Feynman rules

Elementary

Calculations

e+e−
annihilation

into hadrons

Renormalization

The hadronic tensor: structure functions

The tensor Hµν(P, q, Sh) for a spin-1/2 target is defined by

Hµν(P, q, Sh) = TrρHµν

The most general tensor decomposition of Hµν (polarised deep ineslatic

scattering from spin-1/2 targets) using parity, time reversal invariance,

hermicity of currents, antisymmetry of conmutator and translational in-

variance, can be written in terms of the so-called structure functions,

Hµν(P, q, Sh) = F1(x,Q
2)

(

−gµν +
qµ qν

q2

)

+
F2(x,Q

2)

(P ·q)

(

Pµ − (P ·q)qµ

q2

) (

Pν − (P ·q)qν

q2

)

+
ig1(x,Q

2)

(P ·q) ε
µν

λσ qλ Sσ
h

+
ig2(x,Q

2)

(P ·q)2
ε

µν
λσ qλ ((P ·q)Sσ

h − (Sh ·q)Pσ)

56 / 153



Strong

interactions,

Lattice and

HQET

Vicent

Giménez
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Unpolarized cross section and structure functions

Notice that as the leptonic current is conserved qµ Lµν = qν Lµν = 0, we

can omit the terms proportional to qµ and qν before contracting with Lµν,

Hµν(P, q, Sh) = −F1(x,Q
2)gµν

+
F2(x,Q

2)

(P ·q) Pµ Pν

+
ig1(x,Q

2)

(P ·q) ε
µν

λσ qλ Sσ
h

+
ig2(x,Q

2)

(P ·q)2
ε

µν
λσ qλ ((P ·q)Sσ

h − (Sh ·q)Pσ)

The cross section for unpolarized target and incoming lepton is

d2σ

dxdy
=

α2

Q4
8πM E

[

xy2 F1(x, Q2) + (1− y)F2(x, Q2)
]
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Bjorken scaling

The early SLAC data indicates that if F1(x, Q2) and F2(x, Q2) are plot-

ted as a function of x, they are nearly independent of Q2. This behavior

is called Bjorken scaling.
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Experimental data for F2

Experimental data for F2(x,Q
2) clearly shows Bjorken scaling
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Scaling violation in F2

Q2 dependence of F2(x,Q
2) is weak but visible

60 / 153



Strong

interactions,

Lattice and

HQET

Vicent

Giménez
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Naive parton model

To explain Bjorken scaling, Feynman introduced the so-called parton

model in which the nucleon is made of free independent point-like

partons (quarks and gluons) of spin 1/2. In the deep inelastic limit,

the inelastic lepton-nucleon scattering, viewed from a frame in which

the nucleon has a very large (infinite) momentum, the photon scatters

off these free on-shell partons. Partons can be any particles with no

internal structure.

Notice that any frame is as good as the infinite momentum one but the

parton model cannot easily formulated in other frames, as the proton

rest frame. The lepton-nucleon center of mass system is at high ener-

gies a good approximation to this frame. In a infinite momentum frame

the transverse momentum of the partons, their masses and the nucleon

mass can be neglected with respect to the longitudinal one. Therefore

the partons carry a fraction ξ of nucleon momentum, p = ξP. More-

over, the corresponding cross section is the incoherent sum of individual

parton cross sections. This is all we need to calculate differential cross

sections.
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The Breit frame

The parton model is, of course, Lorentz invariant but is more easily

formulated in a frame in which the nucleon moves very fast. The most

convenient system is the so-called Breit frame in which the nucleon and

the photon collide head-on along, say, the X axis. The Breit frame of the

hadron is defined by the requirements that the photon energy q0 = 0

and that ~q be antiparallel to the hadron momentum, ~P. Therefore, for

q ≫ M,

P = (
√

p2 +M2, p, 0, 0) ≈ (p, p, 0, 0) q = (0,−
√

Q2, 0, 0)

Following Feynman, each parton carries a fraction of the nucleon

momentum, ξP. Neglecting the quark mass compared to p, we have for

the scattered parton

(q + ξP)2 ≈ −Q2 + 2ξ(P ·q) = 0

and
ξ = x p =

√

Q2/2x q+ξP = (xp,−
√

Q2, 0, 0)

The struck parton scatters with momentum q+xP, in the direction of the

virtual photon.
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Factorization

Assume that in their rest frame, the nucleon is a sphere of radius R.

In the Breit frame, due to the large Lorentz contraction, the sphere is

viewed as a flat pancake with tranverse diameter 2R but with longitudinal

one, 4RxM/Q ≪ 2R. The trasverse size of the photon is ∼ 1/Q ≪ 2R.

The photon therefore interact with a tiny fraction of a thin disk and for

sufficiently dilute partons, the photon effectively collides with a single

free quark.

We can derive an explicit formula for the cross section. To do that, we

introduce the parton distribution functions, pdfs, fq(ξ) such that fq(ξ)dξ
represents the probability that a parton carries a fraction of the nucleon

momentum between ξ and ξ + dξ. Provided that these partons are

pointlike r2 ≪ 1/Q2 and dilute fq ≪ Q2R2 the photons will scatter inco-

herently off individual partons. The cross section can then be factorized

as the convolution of the pdfs with the cross section for parton scattering

d2σ(l+N(P))

dxdy
= ∑

q

∫ 1

0
dξ fq(ξ)

d2σ̂(l+q(ξP))

dxdy
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Factorization again

To understand why the partons can be viewed as free, consider again

the Breit frame in which the nucleon is moving very fast. Suppose

the typical interaction time-scale in the nucleon is τ, in the moving

frame, the interaction time becomes τγ, where γ = 1/
√

1− v2 is the

Lorentz dilation factor. When the speed of the proton approaches

the velocity of light v ≈ 1, the interaction time in the nucleon is so

long that the nucleon configurations can be considered esentially frozen.

Alternatively, in the rest frame of the nucleon, the photon interaction time

is of order 1/Q, which is much shorter than the typical hadronic interac-

tion time which is order 1/ΛQCD. Therefore the physics of scattering can

be separated from the bound state physics, and the partons can be con-

sidered as essentially free during scattering. This is called factorization

in QCD.
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Hadronization

The central assumption on which the QPM is based is the separation of

a collision in two distinct stages

1 The hard scattering of leptons on individual partons. During

this scattering the influence of other partons is neglected and

the cross-section of lepton-parton is calculated as if the partons

were as real as leptons.

2 Hadronization. The outgoing quark and the remnant diquark

cannot separate at infinity. Due to the force acting between col-

ored quarks, which starts to be very strong when the separation

is about 1 fm, convert them into observable hadrons.

In the so-called independent fragmentation model, one uses

the so-called fragmentation functions Dh
q(ξ,pT) to describe

hadronization. It describes the probability that a parton q pro-

duces (fragments into) a hadron h carrying the fraction z of the

parton energy and pT transverse momentum.
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Elastic electron-parton scattering

The fundamental process of the QPM is

e−(k) + q(ξP) → e−(k′) + q(ξP + q)

We need its matrix element. One possibility is to obtain it by crossing

symmetry from the one for e+ e− → qq̄.

But it is easier to obtain the contribution of a single unpolarised quark to

the hadronic tensor from Lµν simply making the replacements k → ξP,

k′ → P′ and q → −q, assuming a parton of charge one.

Hµν has an aditional factor of integration over the final particle phase

space. Thus we have

Hµν =
1

4π
Q2

∫
d3P′

(2π)3 2EP′

1

ξ
(2π)4 δ4(ξP + q − P′)

× 2
[

ξPµ P′ν + ξPν P′µ − gµν ξ(P ·P′)
]
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Elastic electron-parton scattering

Using that

∫
d3P′

(2π)3 2EP′
=

∫
d4P′

(2π)4
(2π)δ((ξP + q−P′)2)

=
∫

d4P′

(2π)4

2π

2(P ·q) δ

(

ξ +
q2

2(P ·q)

)

we get

Hµν =
1

2ξ(P ·q)
[

ξPµ P′ν + ξPν P′µ − gµν ξ(P ·P′)
]

δ(ξ− x)

=
1

2ξ(P ·q) [2ξPµ Pν − gµν ξ(P ·q) ] δ(ξ− x)

where P′ has been replaced by ξP + q and the terms qµ and qν have

been dropped.
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Structure functions in the QPM

Comparing with the decomposition of the hadronic tensor in terms of the

structure functions, we obtain

F
(q)
1 =

1

2
Q2

q δ(ξ− x) F
(q)
2 = ξQ2

q δ(ξ− x)

The antiquark contribution can be computed similarly and is identical to

the quark contribution.

Finally, we have to incoherently sum the partonic cross sections. To do

that we introduce the distributions functions q(x) and q̄(x), that represent

the probability to find a quark (antiquark) in the nucleon with momentum

fraction ξ. Integrating, we get

F1(x) = ∑
q,q̄

∫ 1

0
dξq(ξ)xQ2

q δ(x−ξ) = ∑
q,q̄

Q2
q xq(x)

F2(x) = ∑
q,q̄

1

2
Q2

q q(x)
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Bjorken scaling in the Parton model

The main result of the QPM is

F1(x) = ∑
q,q̄

Q2
q xq(x)

F2(x) = ∑
q,q̄

1

2
Q2

q q(x)

In addition, they satisfy the celebrated Callan-Gross relation

F2(x) = 2xF1(x)

which is a consequence of the assumption of spin- 1
2

partons. It is easy

to show that por spin-0 partons, F1(x) = 0.

The important conclusion is that F1,2 are independent of Q2 and depend

only on x. Therefore the parton model explains the scaling naturally.

Notice that in the derivation above no assumptions are made about the

quark interactions. Therefore, this model does not explain the internal

dynamics of the nucleon.
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Scaling violation

Bjorken scaling is satisfied pretty well by the data but systematic

deviation from scaling is also clearly seen in the data: with increasing

Q2, the structure function F2 increases/decreases at small/large values

of x.

This was already known at the beginning of the seventies, before the

invention of QCD.

Scaling violation is due to the radiation of hard gluons generating trans-

verse momenta for the quarks. When Q2 increases, more gluons are

radiated, leading to logarithmic scaaling violations in the structure func-

tions and to scale dependent parton distribution functions qi(x, µ2).

More in the renormalization section.
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Asymptotic freedom

As we said before, the success of the QPM is based on the separation of

time scales in the deep ineslastic limit: the typical time for parton-parton

interaction is much larger than the time for the photon-parton interaction.

The correct theory of strong interactions must be such that it exhibits

strong binding forces over time or distance scales of the order of 1 fm

but is weak, as if the partons were free, over time or distance scales

much shorter.

This necessary property of the strong interactons is exhibited by QCD:

the forces it mediates grows weaker with shorter interaction times.
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Parton distributions

How can we obtain information on the individual parton densities?

We can apply some constraints as flavour conservation of the strong

interactions. In fact, as the proton contains two up quarks, one down

quark and no strange quark, it follows that

∫ 1

0
dξ [u(ξ)− ū(ξ)]= 2

∫ 1

0
dξ
[

d(ξ)− d̄(ξ)
]

= 1

∫ 1

0
dξ [s(ξ)− s̄(ξ)]= 0

Since the longitudinal momentum of the partobns must add up to the

longitudinal moemntum of the proton, we have a momentum sum rule

∫ 1

0
dξξ

[

u(ξ) + d(ξ) + s(ξ) + ū(ξ) + d̄(ξ) + s̄(ξ)
]

= 1

Isospin allows us to relate the parton densities of proton and neutron

un(ξ) = dp(ξ) dn(ξ) = up(ξ) ūn(ξ) = d̄p(ξ) d̄n(ξ) = ūp(ξ) sn(ξ) = sp(ξ)

and similar relations for antiproton parton densities.
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Gauge Invariance (I)

Gauge invariance is the main ingredient of QCD (also of the SM)

Abelian case: QED

We start with the Dirac fermion Lagrangian

L = ψ̄(x) i /∂ψ(x) − m ψ̄(x)ψ(x)

Both the lagranfian and the equation of motion are invariant under global

phase transformations (U(1))

ψ(x) −→ ψ′(x) = e−iQθ ψ(x)

where θ is an arbitrary space-time independent real constant. If the

phase depends on the space-time point, things change. The mass term

remains invariant, as is easily checked, but the kinetic term transforms

as

∂µψ(x) → e−iQθ (∂µ − iQ∂µθ(x))ψ(x)

The procedure for enforcing local invariance is to enlarge the theory by

introducing a spin-1 vector field Aµ.
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Gauge Invariance (II)

The Aµ transforms in precisely the right way to cancel the piece

proportional to ∂µθ(x). Therefore one replace the ordinary derivative ∂µ

by the covariant one Dµ,

Dµψ(x) → (∂µ + iQAµ)ψ(x)

with

Aµ(x) → A′
µ(x) = Aµ(x) + ∂µθ(x)

The covariant derivative transforms covariantly

Dµψ(x) → (Dµψ)′ (x) = e−iQθ(x) Dµψ(x)

and the Lagrangian is now invariant under local U(1) transformations,

L = ψ̄(x)
(

i /D − m
)

ψ(x) = Lfree − QAµ ψ̄(x)γµψ(x)

To sum: the requirement of local gauge invariance has generated an

interaction term between the fermion field ψ and the gauge field Aµ.
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Gauge Invariance (III)

In order to have a propagating gauge field, one adds a kinetic term for

the gauge field

L = −1

4
FµνFµν + ψ̄(x)

(

i /D − m
)

ψ(x)

where the field strength tensor is defined as

Fµν = − [Dµ, Dν ] = ∂µ Aν − ∂ν Aµ

and is automatically gauge invariant.

Finally, setting Q = −e, the electron charge, we obtain the QED lagra-

gian from the free Dirac lagrangian. Notice that a mass term for the

gauge field of the form M2 AµAµ is not allowed because it violates gauge

invariance. Therefore, the gauge field (photon) is stricly massless.
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Gauge Invariance (IV)

Non Abelian case: QCD

Quarks come in three colours with the same mass. Therefore the free

quark Lagrangian for a given flavour can be writen as

L0 =
3

∑
i=1

q̄i(x)
(

i /∂ − mq

)

qi(x)

The largest symmetry of this Lagrangian is a unitary transformation of

the colour indices

qi −→ q′i = Uij qj U U† = U† U = I

Extracting a common phase U(3) = U(1) × SU(3), we have that

the symmetry group is SU(3), the special unitary group of the three-

dimensional unitary matrices with unit determinant.

It is easy to see that SU(3) has 8 independent transformations corre-

sponding to 8 parameters of the Lie group.
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Gauge Invariance (V)

Therefore, in this case we have more room to impose local gauge invari-

ance. Quarks are in the 3 representation and antiquarks in the 3∗. In

this way, both q̄q and qqq contain colour singlets, i.e. hadrons,

3̄⊗3 = 1 ⊕8 3⊗3⊗3 = 1 ⊕ 8⊕ 8 ⊕ 10

Therefore, we must gauge all SU(3) transformations.

Every three-dimensional unitary matrix with unit determinant can be

written as

U(θ1, · · · , θ8) = exp

[

−i
8

∑
a=1

θa

λa

2

]

where θa are eight real parameters and λa are the eight traceless her-

mitian Gell-Mann matrices. The ta = λa/2 are the generators of the

fundamental representation of SU(3) and hence satisfy the Lie algebra

commutation relations

[ ta, tb ] = i fabc tc

with real, totally antisymmetric structure constants fabc.
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Gauge Invariance (VI)

We are ready to impose local gauge invariance of the theory for arbitrary

space-time θa. As for the abelian case, we have to introduce gauge

fields that compensate the extra term in the derivatives. We need 8

gauge fields, G
µ
a(x) and a covariant derivative

(Dµq)i =

(

∂µ δij + igs

3

∑
a=1

Gµ
a (t

a)ij

)

qj

It is convenient to use a matrix notation

Gµ ≡ Gµ
a

λa

2
= Gµ

a ta

As before the covariant derivative transforms covariantly (as the quark

fields)

(Dµq)i → Uij(θa(x)) (D
µq)′i
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Gauge Invariance (VII)

provided the gauge fields transform as

Gµ → G′
µ = U(θa(x))Gµ U†(θa(x)) +

i

gs

(∂µ(θa(x))) U†(θa(x))

For infinitesimal values of the parameters, the transformation law of the

fields components is

Gµ
a → Gµ ′

a = Gµ
a +

1

gs

∂µθa + fabc θb Gµ
c + O(θ2)

which is similar to the electromagnetic case but now, and this is very

important, there is a term proportional to the structure constant. This

relation is a generalization and reduces to the abelian case because

fabc = 0 for an abelian gauge group.

To have propagating gauge fields, we need a field strength tensor, Gµν

defined as

Gµν = − i

gs

[Dµ, Dν ] = ∂µ Gν − ∂ν Gµ + igs [Gµ, Gν ]
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QCD Lagrangian

It transforms covariantly

Gµν → G′
µν = U(θa(x))Gµν U†(θa(x))

Using this result, it is easy to construct a term quadratic in the gauge

field and invariant under gauge transformations

Tr(Gµν Gµν) =
1

2
Gµν

a Ga
µν

where the trace is over the colour.

Therefore, the SU(3)c invariant lagrangian for NF quark flavours is

LQCD = −1

2
Tr(Gµν Gµν) +

NF

∑
f=1

q̄f

(

i /D − mf I
)

qf

with massless gauge fields, called gluons.

80 / 153



Strong

interactions,

Lattice and

HQET

Vicent

Giménez
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Feynman rules

Following the book by Greiner, Schramm and Stein, the Feynman rules

for each interaction term in the Lagrangian are obtained by varying the

corresponding action integral in momentum space. For example, for the

quark-gluon vertex, the relevant part of the Lagrangian is

L = ψ̄
λa

2
γµ Gaµ ψ

Therefore, we have to calculate

δ3

δψi
γ(p)δψ̄

j

β(p
′)δGbν(k)

[∫
ψ̄l

α(p1)gs

(

λa

2

)

lnm

(γµ)ασ

× Gaµ(p2)ψm
σ (p3)(2π)4 δ4(p1 + p2 − p3) d4p1 d4p2 d4p3

]

Using

δψi
γ(p)

δψ
j

β(p
′)

= δ4(p−p′)δij δγβ
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Feynman rules (II)

the quark-gluon vertex turns out to be

gs

(

λb

2

)

ji

(γν)βγ

The three-gluon and four-gluon vertices, with momentum routing

δ4(k1 + k2 + k3), can be evaluated in an analogous way,

igs frst

[

(kτ
1 − kτ

2 ) gρσ +
(

k
ρ
2 − k

ρ
3

)

gστ + (kσ
3 − kσ

1 ) gτρ
]

and

−g2
s [ feab fecd

(

gαγ gβδ − gαδ gβγ
)

+ feac fedb

(

gαδ gβγ − gαβ gγδ
)

+ fead febc

(

gαβ gγδ − gαγ gβδ
)]
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Feynman rules: propagators

The quark propagator is the same as in QED,

1

/p − m + iε

The gluon propagator is much more subtle because the equation of mo-

tion of the free gluon field cannot be inverted to give the Green function

of the field equation. This problem appears also in Abelian theories as

QED. Consider the free photon Lagrangian

L = −1

4
FµνFµν =

1

2
Aν

(

gµν ∂2 − ∂µ ∂ν
)

Aµ

where we have integrate by parts and discarded a surface term. The

photon propagator is, by definition, the inverse of the operator between

brackets,
(

gµν ∂2 − ∂µ ∂ν
)

Dνλ(x− y) = δ
µ

λ δ(x− y)
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Feynman rules: Gluon propagator

Contracting with ∂µ, we get

0 ·Dνλ(x− y) = ∂λ δ(x− y) → Dνλ is ill-defined !!

In other words, the inverse of Pνλ =
(

gµν ∂2 − ∂µ ∂ν
)

does not exist.

This is very easy to understand because Pνλ is a projector onto trans-

verse modes and satisfies P2 = P. As all projectors, P does not have

inverse because it has a zero eigenvalue corresponding to zero modes

as, for example, ∂µ Λ(x) for an arbitrary Λ. The physical reason is that

D propagates physical and unphysical degrees of freedom because

fields that are related only by gauge transformations Aµ → Aµ + ∂µ Λ
are propagated as well, giving an infinit contributions.

The solution is to fix the gauge; to choose a particular gauge. At the

end of the day, physical observables as the S-matrix will be gauge inde-

pendent. As a first possibility, we impose the Lorentz condition,

∂µ Aµ = 0

84 / 153



Strong

interactions,

Lattice and

HQET

Vicent

Giménez
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Feynman rules: Gauge fixing

This gauge condition can be included in the Lagrangian by using a La-

grange multiplier as

Lfix = L − 1

2λ
(∂µ Aµ)2 = L +

1

2λ
Aµ gµν ∂2 Aν

where λ is some arbitrary gauge parameter. The quadratic term in Aµ is

now,
1

2
Aµ
(

gµν ∂2 − (1−λ−1)∂µ ∂ν

)

Aν

that can be inverted to give the photon propagator

Dµν(k) = − 1

k2

(

gµν − (1−λ)
kµkν

k2

)

The Feynman gauge corresponds to λ= 1 whereas in the Landau gauge

λ = 0.
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Feynman rules: Ghosts

In QED, the gauge fixing term in the Lagrangian does not affect the

physics of the theory because the field χ = ∂µAµ does not interact with

physical degrees of freedom. It obeys a free field equation ∂2χ = 0 and

therefore does not mix with the transverse part of the photon field. In a

non-Abelian theory, there is a complication because the field χa = ∂µ Ga
µ

satisfies a non-free wave equation

∂2 χa + gs f abc Gbµ ∂µχc = 0

Therefore, the unphysical particles χa interact with the physical compo-

nents of Ga
µ, contributing to gluon loops. Therefore, their effects must be

subtracted.

The subtraction is done by the introduction of unphysical ghost fields ηa

that exactly cancel the χa fields.

First done by De Witt, Fadeev and Popov, the so-called Fadeev-Popov

ghost fields obey the same equation as the scalar χa fields but they are

quantized as fermion field.
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Feynman rules: Ghosts

Why must they obey a fermion statistic? Remember that, according to

Fermi-Dirac statistics, each closed loop of ghost fields generates a (−1)
factor. It follows that if for each gluon loop one includes one ghost loop,

the longitudinal part of the gluons is cancelled exactly. The complete

gauge-fixing term is

Lfix = L − 1

2λ
(∂µ Aµ)2 + ∂µ ηa†

(

∂µ ηa + gs f abc Gb,µ ηc
)

From this Lagrangian the Feynman rules for ghosts propagators and ver-

tices can be derived. The ghost Lagrangian repairs the damage done by

gauge fixing. The Green functions are gauge dependent but the observ-

able S-matrix elements are gauge invariant and therefore independent

of λ.
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Experimental group theory

The form of the generators of SU(3), ta depend on the irreducible rep-

resentation. For example, in the fundamental (associated to the quarks)

and adjoint (associated to the gluons) representations, they are

(tF
a )ij =

(λa)ij

2
(tA

a )bc = −i fabc

It is easy to verify that both of them satisfy the commutation relation

[ ta, tb ] = i fabc tc

We know that the vertices are determined by the generators of the sym-

metry Lie group in the representations for quarks and gluons, tF
a and tA

a ,

respectively. In the measurable quantities, like S-matrix elements, the

generators appear in two combinations

Tr
(

tR
a tR

b

)

= T(R)δab ∑
a

(

tR
a

)

ij

(

tR
a

)

jk
= C(R)δik R = F,A
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Experimental group theory

The T(R) is called the Dynkin index for the representation R and C(R)
is the quadratic Casimir for R. It is easy to redive from the definitions the

following relation for a dR-dimensional irreducible representation

dR C(R) = nG T(R)

where nG is the number of independent parameters of the group G. For

SU(N), we have nG = N2 −1 and

R = A (adjoint representation) dA = nG and thus C(A) = TA = N

R = F (fundamental representation) dF = N, TF = 1
2

and thus

C(F) = N2−1
2N

For SU(3), C(F) = 4
3
, C(A) = TA = N = 3. We can determining ex-

perimentaly C(F) and C(A) from a combined jet analisis in e+ e− anni-

hilation at LEP

C(F) = 1.30 ± 0.10 C(A) = 2.89 ± 0.23

in good agreement with SU(3).
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Gómez

Introduction

Historical

background

Quark model

Color

The parton

model

QCD

Lagrangian

Feynman rules

Elementary

Calculations

e+e−
annihilation

into hadrons

Renormalization

Quark-quark scattering

Consider the elastic scattering a tree-level of two quarks with momenta,

flavors and colors as indicated in Fig, averaged over spins (λ) and

colors (c). Two diagrams contribute to lowest order. Working in the

Feyman gauge, the invariant amplitudes for the two diagrams are

Mt = i
g2

s

t

(

ta
ji ta

lk

)

[ ūα(p4)γ
µ uα(p1) ]

[

ūβ(p3)γµ uβ(p2)
]

Mu = i
g2

s

u

(

ta
li ta

jk

) [

ūβ(p3)γ
µ uα(p1)

] [

ūα(p4)γµ uβ(p2)
]

in terms of the Mandelstam variables s, t and u, defined as

s = (p1 + p2)
2 t = (p1 − p4)

2 u = (p1 − p3)
2

Consider first the averaged square of Mt,

〈

|Mt |2
〉

≡ 1

9

1

4
∑
λ,c

|Mt|2 =
1

9

1

4

g4
s

t2 ∑
i,j,k,l

[

ta
ji ta

lk tb∗
ji tb∗

lk

]

Tr
[

/p4
γµ /p1

γν

]

× Tr
[

/p3
γµ
/p2

γν
]
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Quark-quark scattering

The factor 1
9

comes from the color and 1
4

from spin averaging in the initial

state. The color trace has the form

∑
i,j,k,l

,
[

ta
ji ta

lk tb∗
ji tb∗

lk

]

= Tr(ta tb) Tr(ta tb) =
1

4

(

δab
)2

= 2

while the spinor traces read

Tr
[

/p4
γµ /p1

γν

]

Tr
[

/p3
γµ
/p2

γν
]

= 32 ((p1p2)(p3p4) + (p1p3)(p2p4))

= 8
(

u2 + s2
)

Putting all together yields

〈

|Mt |2
〉

=

(

2

9

)

c

g4
s

t2
2
(

u2 + s2
)
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Quark-quark scattering

The other terms can be evaluated similarly. Finally, we get

〈

|M |2
〉

=
1

9

1

4
∑
λ,c

(

|Mt |2 + |Mu |2 + 2M∗
t Mu

)

=

(

2

9

)

c

g4
s

[

2
(

u2 + s2
)

t2
+ δαβ

2
(

t2 + s2
)

u2

+ δαβ

(

−1

3

)

c

4s2

tu

]
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Giménez
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Quark-gluon scattering

This is the simplest process where the gluon selfinteraction vertex ap-

pear. The three Feynman diagrams contributing to lowest order are

shown in Fig. The first two are, except for the color degree of freedom,

exactly the same as in QED.

Ms =
−ig2

s

s

(

ta
lit

b
jl

) [

ū(p2)/ε2

(

/p1
+ /q1

)

/ε1 u(p1)
]

Mu =
−ig2

s

u

(

ta
jktb

ki

) [

ū(p2)/ε1

(

/p1
− /q2

)

/ε2 u(p1)
]

where ε1,2 are the polarisation vectors of the of the initial and final state

gluons. The last and new diagram contains the 3-gluon vertex. Its con-

tribution is

Mt =
g2

s

t
[ fabc (t

c)ij ] Sλµν(q1,−q2,−q1,q2)ε1µε2ν [ ū(p2)γλu(p1) ]

where Sλµν denotes the combination of momenta in the Feynman rule

for the quartic gluon vertex.
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Quark-gluon scattering

The evaluation of the Dirac traces is the sames as in QED. What is new

are the color factors. For example, the color trace in the color average of

|Ms|2,
1

3

1

8
ta
li tb

jl tb∗
jk ta∗

ki =
1

24
Tr(ta tb tb ta) =

2

9

The same color factor appears in |Mu|2. The last diagram, however,

involves the color trace

1

3

1

8
fabc tc

ji fabd td∗
ji =

1

24
fabc fabd Tr[tc td] =

1

24
3δcd

1

2
δcd =

1

2
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Quark-gluon scattering (gauge invariance)

To sum over the initial and final polarisations of the gluons we need the

expression

∑
λ

εµ(λ, q)ε∗ν(λ,q) = −gµν

valid in the Feynman gauge only. In fact, the polarization vectors depend

on the gauge and so do the results for each individual contributions of

squares and interference terms from the diagrams. The full result is,

however, gauge independent.
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Results for quark-gluon processes

Spin and color averaged invariant amplitudes
〈

|M|2
〉

normalized such

that dσ
dt

= 1
16πs2

〈

|M|2
〉

.

Process
〈

|M|2
〉

/g4

qαqβ → qαqβ
2
9

[

2(s2 +u2)

t2
+ δαβ

(

2(t2 +s2)

u2 − 1
3

4s2

ut

)]

qαq̄β → qαq̄β
2
9

[

2(s2 +u2)

t2
+ δαβ

(

2(t2 +u2)

s2 − 1
3

4u2

st

)]

qg → qg
(

1− us

t2

)

− 4
9

(

s
u
+ u

s

)

− 1

gg → qq̄ 1
6

(

u
t
+ t

u

)

− 3
4

(

1− ut

s2

)

+ 3
8

qq̄ → gg 64
9

M(gg → qq̄)

gg → gg 8
9

[

− 33
4
−4
(

us

t2
+ ut

s2 +
st

u2

)]

− 9
16

[

45−
(

s2

ut
+ t2

us
+ u2

ts

)]

The cross-section for ud → ud is just like in eµ → eµ but replacing

α → αs and including a factor of 2/9. The uū → d d̄ annihilation cross-

section is obtained from ud → ud by crossing t ↔ s in the amplitude.
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Gómez

Introduction

Historical

background

Quark model

Color

The parton

model

QCD

Lagrangian

Feynman rules

Elementary

Calculations

e+e−
annihilation

into hadrons

Renormalization

Hadron production in e+ e− collisions

One of the most fundamental quantities of QCD. Consider all diagrams in

which a virtual photon with momentum q and Lorentz index ν produces

a set of n hadrons with momenta {p1, · · · , pn}. Let Tν(n, q, {pi}) be the

amplitud for the sum of all these diagrams. The matrix element for the

full process is,

M = [ v̄(q2)eγµ u(q1) ]
−gµν

q2
Tν(n, q, {pi})

Summing over all types of hadrons in the final state and integrating the

phase-space, we get the total cross-section

σ =
1

2s

1

4

e2

s2
Tr(/q2

γµ
/q1

γν)Hµν(q)

where we have define the so-called hadronic tensor

Hµν(q) = ∑
n

∫
dPSn Tµ(n, q, {pi})T∗

ν(n, q, {pi})
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Hadron production in e+ e− collisions

To construct Hµν there are only two Lorentz covariant two-index tensors

gµν and qµqν with coefficients which depend on q2 and the masses of

the final state hadrons. For energies well above all hadron masses, we

can write

Hµν(q) = A(q2)gµν + B(q2)qµqν

Gauge invariance implies that Hµν must satisfy qµ Hµν = qν Hµν = 0,

giving a relation between both form factors

A(q2) = −q2 B(q2) → Hµν(q) =
(

qµ qν − q2 gµν

)

B(q2)

It is easy to show that B has to be dimensionless, and hence a constant.

We arrive at the conclusion that the cross-section to produce any number

of hadrons is proportional to that to produce a muon-antimuon pair,

Rhad ≡ σ(e+ e− → qq̄)

σ(e+ e− → µ+ µ−)
= constant
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Review e+ e− → µ+µ−

The amplitude for e−(q1)e+(q2) → µ−(p1)µ+(p2) can be calculated

applying the QED Feynman rules to the only possible diagram a

tree-level,

M = v̄(q2) ieγµ u(q1)
−gµν

(q1 +q2)2
ū(p1) ieγν u(p2)

Summing over unmeasured polarisations, the square of the matrix

element is (s2 = (q1 + q2)
2)

∑ |M|2 =
(4πα)2

s2
Tr
[

/q2
γµ
/q1

γν
]

Tr
[

/p1
γµ /p2

γν

]

Finally, integrating over the two-body pahse space, we get

σ =
1

2s

1

4

e2

s2
Tr(/q2

γµ
/q1

γν)H
(µ)
µν (q)

with

H
(µ)
µν (q) =

∫
dPS2 Tr

[

/p1
γµ /p2

γν

]

=
(

qµ qν − q2 gµν

)

B(µ)

In the last step, we have used the same symmetry arguments than be-

fore for the hadronic tensor. Thus, B(µ) is a constant.
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Gómez

Introduction

Historical

background

Quark model

Color

The parton

model

QCD

Lagrangian

Feynman rules

Elementary

Calculations

e+e−
annihilation

into hadrons

Renormalization

Hadron production in e+ e− collisions

To calculate the constant we need a model of the production of hadrons.

The quark parton model, provides us with it. The handwaving argument

is as follows. The photon is highly virtual and therefore it is produced

and decays to quarks in a small space-time volume. The time scale is

t∼ 1/
√

s. On the other hand, the wavefunction of a hadron with mass mh

has a spatial extent of order ∼ 1/mh and this is the order of magnitud

of the time that the confinement of a quark pair into the hadron takes

t ∼ 1/mh. Thus, for high energies the confinement time is much larger

than the pair production time, and hence cannot affect the annihilation

cross-section which should be

σ(e+ e− → hadrons) ≈ σ(e+ e− → quarks)

= σ(e+ e− → qq̄) + σ(e+ e− → qq̄g) + · · ·

and it is calculable using perturbative QCD.
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e+ e− → qq̄

The calculation is very similar to that for e+ e− → µ+ µ−. The only dif-

ference is the color structure. As the photon is color blind, the couple

of a photon to a quark contains a trivial color matrix, δij. Summing over

colors and averaging over incoming colors (1 in this case since electrons

are not coloured), we obtain

σ(e+ e− → qq̄) = σ(e+ e− → µ+ µ−) × Q2
q × ∑

i,j

δij δji

= σ(e+ e− → µ+ µ−)
(

Q2
q N
)

Summing over the final state quarks, we get the ratio

Rhad ≡ σ(e+ e− → qq̄)

σ(e+ e− → µ+ µ−)
= N ∑

q

Q2
q
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Hadron production in e+ e− collisions

Therefore

Rhad = N ∑
q

Q2
q

(

1 + O(
mh√

s
)

)

where the sum is over all quark flavours that are kinematically allowed,√
s > 2mq.

Ignoring effects close to threshold, such as formation of bound states,

we can expect a plot of Rhad over
√

s to present a series of steps at

twice the quark masses and flat in between. We can, in principle, read

off the number of colors, the quark masses and their charges from this

plot.
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Ratio R

To lowest order,

R = N ∑
q

Q2
q

The sum extends to all the quarks which are kinematically allowed. Let

us discuss this result.

Below charm threshold, E ∼ 3 GeV

R = N
(

Q2
u + Q2

d + Q2
s

)

= 3
(

4
9
+ 1

9
+ 1

9

)

= 2

Between charm and beauty threshold, 4 < E < 10 GeV

R = N
(

Q2
u +Q2

d +Q2
s +Q2

c

)

= 3
(

4
9
+ 1

9
+ 1

9
+ 4

9

)

= 3.33

Above beauty threshold but well bellow the Z peak, 11 < E < 80 GeV

R = N
(

Q2
u +Q2

d +Q2
s +Q2

c +Q2
b

)

= 3
(

4
9
+ 1

9
+ 1

9
+ 4

9
+ 1

9

)

= 3.67

The ratio R performs a counting of the degrees of freedom involved at a

given energy.

103 / 153



Strong

interactions,

Lattice and

HQET

Vicent

Giménez
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Ratio R

This prediction is valid far from the thresholds of quark creation, i.e. far

from cc̄ and bb̄ resonances, because hadronisation effects are important

in these regions and affect substantially the recombination of partons. In

the resonance region, R has peaks and valleys and our estimate must

be compare with an average over an energy interval of say 1 GeV.

In the low energy region the prediction is not accurate. Two reasons

explain this results

1 hadron production is still affected by light resonances

2 perturbative corrections are large

3 R depends strongly on (unknown) higher order corrections

As a reference value, consider E = 34 GeV. At this energy, Rexp = 3.9,

a 6.3% higher than the theoretical prediction, Rth = 3.67. Possible rea-

sons:

1 the effect of the Z resonance has not been included

2 radiative corrections (at least to O(αs)) have not been considered
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Ratio R at the Z peak

Not only a virtual photon can mediate the annihilation of the e+ − e−

pair, but a Z0 contributes at high energies.

e+ + e− → γ∗, Z∗ → q + q̄

It can be shown that at the Z peak (E = MZ), the total cross section is

σ =
4πα2k2

3Γ2
Z

(

a2
e + v2

e

) (

a2
q + v2

q

)

where ΓZ is the width of the Z, k =
√

2GFM2
Z/(4πα) = 1.40 and af

and vf are the vector and axial vector couplings of the Z to the fermion f

af = I3 f vf = I3 f − 2Qf sin2 θW

with θW the Weinberg angle and I3 the third component of the weak

isospin: I3 = 1/2 for neutrinos and u-type quarks with Q = 2/3, and

I3 = −1/2 for charged leptons and d-type quarks with Q = −1/3.
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Ratio R at the Z peak

The ratio R reads

R = 3
∑q=u,d,s,c,b a2

q + v2
q

a2
µ + v2

µ

= 20.095

A comment is in order here. Strictly speaking, we have to add the

real photon emission from the initial e+ − e− state, the so-called

bremsstrahlung. It is the same for the muonic and hadronic channels

and hence cancels in the ratio R.

This theoretical results compared very well with the experimental value

Rexp = 20.767 ± 0.025. The 4% difference can be reduced including

radiative corrections.

106 / 153



Strong

interactions,

Lattice and

HQET

Vicent

Giménez
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Radiative corrections for the ratio R

Remember that R is a completely inclusive quantity and neglecting quark

masses, it depends on
√

s only.

Since the pair qq̄ is create by the electromagnetic current, that is con-

served, the radiative corrections should be UV finite. This does not

mean that in intermediate steps of the calculation, we get UV divergent

results but the final sum of all contributions must be finite. For example,

the UV divergence in the vertex diagram is cancelled by the one in the

external legs.

Consider the emission of a gluon in the e+e− annihilation. There are two

diagrams corresponding to the emission by the quark or the antiquark

legs. Remember that the quark-gluon vertex is igs γµ ta and the only

difference with respect to the Abelian case is the presence of the matrix

ta that produces a factor CF in the amplitude. Therefore, we can take the

result of the photon emission in QED and simply replace α with CF αs to

obtain the QCD result (see Project B of the Peskin and Schroeder).
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e+ e− → qq̄g

We define the energy fractions,

x1 =
Eq

EB

x2 =
Eq̄

EB

x3 =
Eg

EB

where EB =
√

s/2 is the beam energy. Conservation of energy and

momenum gives

x1 + x2 + x3 = 2 1− xi =
1

2
xjxk

(

1− cosθjk

)

i 6= j 6= k

θ12 + θ23 + θ13 = 2π

The kinematical region is

0 ≤ xi ≤ 1 xi + xj ≥ 1 i 6= j

It is easy to see that a parton has the beam energy as the maximum

energy when the other two are colinear and a parton pair has the beam

energy as the minimum energy and the total energy as the maximum

energy.
108 / 153



Strong

interactions,

Lattice and

HQET

Vicent

Giménez
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Feynman diagrams for e+ e− → qq̄g
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Three jets differential cross section

The differential cross section for having a quark with an energy fraction

x1 and an antiquark with energy fration x2 is

1

σ0

dσ

dx1 dx2

= CF

αs

2π

x2
1 + x2

2

(1− x1)(1− x2)
with σ0 =

4πα2

s
∑
q

Q2
q

Unfortunately, when in order to obtain the total cross section we integrate

in the following region

0 ≤ x1, x2 ≤ 1 1 ≤ x1 + x2

there are singularities when the quark energy fractions reach their max-

imum, x1,2 → 1, individually (single pole) or simultaneously (double

pole). The final result is an infinite total cross section.
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Infrared singularities

These infrared divergencies are due to the singular behaviour of the

quark propagator that emits the gluon (even for massive quarks)

1

(p2 + p3)2 − m2
q

=
1

2(p2 ·p3)
=

1

s(1− x1)

There are two singular kinematical configurations:

Soft gluon singularity:

even for mq > 0, Eg → 0, when the gluon is emitted with

very small energy, yields x1 → 1.

Collinear singularity:

when the gluon-(anti)quark angle, θ → 0; i.e. the gluon

is emitted at a very small angle: x1 = 1 is also possible

for p3 ‖ p2.
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Regularization of the three-jet total cross section

Among the different methods to regularize the cross section (momentum

cutoff in the gluon transverse momentum, gluon mass regularization,

. . . etc), dimensional regularization is the most convenient because it is

consistent with all the symmetries of QCD and can be used to regularize

both UV and infrared divergencies.

The total cross section can be regularized performing the integration in

the kinematical region in D = 4− 2ε dimensions. Doing so, the singu-

laties will appear as double, 1/ε2 and single, 1/ε poles. The result is

σ(e+e− → qq̄g) = σ0
CF αs

2π
H(ε)

[

2

ε2
+

3

ε
+

19

2
−π2 +O(ε)

]

where

H(ε) =
3(1− ε)2

(3−2ε)Γ(2−2ε)
H(0) = 1
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e+ e− → qq̄ at one loop

At leading order, in αs, qq̄ is the only process that contributes to

e+ e− → partons with amplitude M0. At one-loop, however, there

are three additional diagrams that include quark-leg selfenergy and

one-loop correction to the quark-photon vertex. Their amplitudes,

M1, are down by a factor αs with respect to the tree-level diagram.

Therefore, the cross-section is two powers of αs down and hence

negligible at the order we are working.

This is, however, incorrect because there is an O(αs)-interference

between the one-loop amplitude and the tree-level one. The reason is

that since both processes have the same final state, one must add their

amplitudes M = M0 αs M1 and hence |M|2 contains the interference

αs Re(M∗
0 M1) that contributes at order αs.

The one-loop diagrams are individually both infrared and UV divergent.

Dimensional regularization can be used to regularize the three dia-

grams.
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Cancellation of infrared divergences

The important results are that the UV divergences cancel when the two

self-energy diagrams are added to the vertex correction. Infrared diver-

gences, however, do not cancel and one obtains

σ(e+e− → qq̄) = σ0
CF αs

2π
H(ε)

[

− 2

ε2
− 3

ε
−8+π2 +O(ε)

]

If we recall the expression for three-parton cross-section,

σ(e+e− → qq̄g) = σ0
CF αs

2π
H(ε)

[

2

ε2
+

3

ε
+

19

2
−π2 +O(ε)

]

and taking into account that the total cross section is the sum of the two,

we get

σ(e+e− → hadrons) = σ0

[

1 + CF

αs

2π

3

2

]

= σ0

(

1 +
αs

π

)

Moreover, it can be shown that this result is scheme independent.
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Ratio R at NNNLO

The QCD corrections to R are know up to order α3
s . The renormalization

procedure introduces a renormalization-scale dependence into αs and

the coefficients functions beyond the first one

Re+e−(s) = R
(0)
e+e−

[

1 + c1
ᾱs(

√
s)

π
+ c2

(

ᾱs(
√

s)

π

)2

+ c3

(

ᾱs(
√

s)

π

)3
]

where R
(0)
e+e− = N ∑q Q2

q. In the MS scheme, the coefficients are

c1 = 1

c2 = 1.986 − 0.115Nf

c3 = −6.637 − 1.2Nf − 0.005N2
f − 1.240η

with η = 0.303 for Nf = 5.
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Scale dependence of R at NNNLO

As we know, the knowledge of the running coupling constant at a given

energy scale µ is sufficient to know it at any other scale,

ᾱs(s) =
αs(µ)

1 + β0
α(µ)
4π log(s/µ2)

Inserting this relation in the expression for the ratio R at order α2
s , we

find

Re+e−(s) = R
(0)
e+e−

[

1+ c1
αs(µ)

π
+

(

c2 − c1
β0

4
log(

s

µ2
)

) (

αs(µ)

π

)2

+ · · ·
]

In principle R is independent of the arbitrary scale µ but the unavoidable

truncation of the perturbative series introduces a scale dependence.

There is no unique prescription for the optimal value of µ. The obvi-

ous choice to avoid large logarithms is µ =
√

s. This choice turns out to

be very reasonable and sufficient to understand phenomenology.
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Measurements of αs

The experimental measurement of Re+e− gives one of the best measure-

ments of αs. For example, the LEP combined value of the ratio R at the

peak of the Z is

Re+e−(MZ) = 20.767(25) to be compared with R
(0)
e+e−(MZ) = 19.984

Simply using the one-loop order result with µ=MZ , we obtain αs(MZ) =
0.124(4), close to the four-loop result, αs(MZ) = 0.119(3).
Another test to QCD is to perform measurements at other scales and

evolve them to a single scale using the scale dependence of ᾱs. For

example, PETRA measurement of R at 34 GeV is

Re+e−(34 GeV) = 3.88(3) to be compared with R
(0)
e+e−(34 GeV) = 3.69

Using the leading order result, we obtain αs(34GeV) = 0.162(26).

Finally using the one-loop RGE, we convert this result into αs(MZ) =

0.134(18), in good agreement with the LEP value.
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Running of αs
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Renormalization

But, what is renormalization?

1 In order to cut the high-momentum modes of the theory, a cut-

off Λ is introduced. Thus an amplitude A(pi,e0,m0;Λ) is finite

and depends not only on the momenta (pi), the (bare) electric

charge (e0) and the mass (m0), but also on Λ. The amplitude

diverges as Λ → ∞, i.e. as the cutoff is removed. This step is

called regularization.

2 One defines physical parameters e(µ) and m(µ) with the help

of measurable quantities as cross sections. They depend on

an arbitrary renormalization scale µ.

3 One writes e0 and m0 in terms of e(µ) and m(µ) to a given order

of PT. Then, the limit

lim
Λ→∞

A(pi,e0(e,m,Λ),m0(e,m,Λ);Λ) = Â(pi,e(µ),m(µ))

is finite.
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Divergent Feynman integrals

Perturbative calculations of cross-sections are perfomed in QCD using

the Feynman diagram formalism. The higher order corrections can be

quite large due to the not-so-small value of αs, say, ∼ 0.1.

Diagrams beyond the leading order and usually divergent. For example,

consider quark selfenergy in QCD (but the conclusion is valid also for

QED). The integral of the Feynman diagram is

Σ(p) = g2 CF

∫
d4k

(2π)4

(−2)(/p−/k) + 4m

k2 [ (p− k)2 + m2 ]

When kµ → ∞, the asymtotic behaviour of the integral is

Σ(p) ∼ g2 CF

∫
dk

(2π)4

k3 2/k

k4
∼ g2 CF

∫ ∞

0
dk ∼ lim

k→∞
k

This is called a UV (ultraviolet) divergence.
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Divergent Feynman integrals

Actually, due to symmetry, it can be shown that

Σ(p) ∼
∫ ∞

0

dk

k
= lim

k→∞
logk

To cope with the divergencies, integrals have to be regularized, for ex-

ample, using dimensional regularization. Next, a renormaliztion pro-

cedure is applied to absorb all divergencies arising from Feynman di-

agrams at all orders, into a refefinition of fields, masses and coupling

constants.
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Regularization of loop integrals

We need to give a definite mathematical meaning to Feynman loop inte-

grals in order to isolate their UV divergent parts and eliminate it through

the procedure of renormalization. The procedure of regularization con-

sists in cutting the high-momentum components of the particles in the

loop. There are many methods to do that,

1 Hard cutoff The range of integration in loop integrals is cut from

above by introducing a cutoff.

2 Lattice Discretize the space-time by introducing a lattice spac-

ing a. Therefore, 1/a autoimatically plays the role of a momen-

tum cutoff. The prize to pay is thatn Lorentz invariaance, but

not gauge invaariaance, is lost and the calculations are much

more involved.

3 Dimensional regularization Extend the dimension of the

spacetime to, in general, complex values, D = 4+2ε in such a

way that for ε 6= 0, the integral is well defined. THe ultraviolet

divergences appear at ε = 0 as poles of the Gamma function.
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Dimensional regularization: formal definition

Dimensional regularization is currently the standard procedure for

regularizing QFT. The basic observation is that in standard QFT only

logarithmic divergences appear and they vanish if the dimension is

smaller than 4. Therefore, by defining a generalized integration in

noninteger D dimensions, the divergences will appear as poles in D−4

which are relatively easy to isolate. Let us define mathematically what

we will call a D-dimensional integral,∫
dDk f (k)

The first step is to perform the so-called Wick rotation,i.e. to continue to

imaginary loop momentum and energy: k0 → i k0
E and~k →~kE,

k2 = (k0)2 − (~k2) → −k2
E = −

(

(k0
E)

2 + (~kE)
2
)

These Euclidean vectors satisfy that k2
E is large as (kE)µ → ∞ and hence

UV divergencies are more easily analized. Minkowsky vectors, however,

due to their non Euclidean metric, can have a small k2 = (k0)2 − (~k)2

even when k0 and |~k| both become large.
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Dimensional regularization: formal definition

Mathematical conditions:

1 Linearity

∫
dDkE

[

α f (k
µ
E) + βg(k

µ
E)
]

= α

∫
dDkE f (k

µ
E) + β

∫
dDkE g(k

µ
E)

2 Invariance under finite pµ shifts

∫
dDkE f (k

µ
E) =

∫
dDkE f (k

µ
E +p

µ
E)

3 Scaling ∫
dDkE f (λk

µ
E) = λ−D

∫
dDkE f (k

µ
E)
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Dimensional regularization: master formula

It can be shown that vector like integrals can always be reduced to scalar

integrals because the former are completely specified by their contrac-

tions with few linearly independent vectors.

Therefore, we need to analyticaly continue scalar integrals only. The

master most important d-dimensional integral is

∫ ∞

−∞
dDkE f (k2

E) =
2πD/2

Γ(D/2)

∫ ∞

0
dkE kD−1

E f (k2
E)

Peculiar property: ∫
dDkE

(

k2
E

)z

= 0 ∀z

This is very easy to demostrate using the scaling axiom but in reality is

a definition consistent with the axioms and motivated by the following

argument,

∫
dDkE

(

λk2
E

)z

= λ2z

∫
dDkE

(

k2
E

)z

= λ−D

∫
dDkE

(

k2
E

)z
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Dimensional regularization: basic formula

Using the master formula, the following basic integral can be evaluated

∫
dDkE

(

k2
E

)α

(

k2
E + m2

)β
= πD/2 (m2)α−β+D/2 Γ(α+ D

2
)Γ(β−α− D

2
)

Γ(D
2
)Γ(β)

This is an important formula since any integral appearing in the calcula-

tion of a Feynman graph can be brought into this form.
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Dimensional regularization: reduction to

basic-formula integrals

Steps for reducing any Feynman integral:

1 Feynman parametrization

The integral of a Feynman integral contains products of propa-

gators associated to the internal lines of the loops. By means

the Feynman parametrization this product of N momentum de-

pendent factors can be written as a unique propagator, using

the identity

N

∏
i=1

1

a
ni
i

=
Γ(n)

∏N
i=1 Γ(ni)

∫ 1

0

∏N
i=1 dxi x

ni−1
i

(

∑N
i=1 ai xi

)n δ

(

1 −
N

∑
i=1

xi

)

with ai arbitrary complex numbers, n = ∑N
i=1 ni and xi the so-

called Feynman parameters.
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Dimensional regularization: reduction to

basic-formula integrals

2 Momentum shift

Shift the momentum variable of the loop, say, kµ such that the

linear term in the denominator vinishes and you get an integral

like ∫
dDkE

f (k
µ
E)

(

k2
E + m2

)β

3 Reducing to scalar integrals

Use that pairs of momentum components can be contracted to

give kµ kν → gµνk2/D and that terms with remaining individual

components kµ vanish when inverted kµ → −kµ. The resulting

expressions are sums of terms of the form of the basic formula.

For example, consider

∫
dDk

kµ kν kλ

(k2 +2(k ·p)+m2)
= F1(p

2)gµν pλ + F2(p
2)gµλ pν

+ F3(p
2)gνλ pµ + F4 pµ pν pλ
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Dimensional regularization: reduction to

basic-formula integrals

3 Reducing to scalar integrals

The ”form factors” Fi depend on p2 only and can be calculated

by contracting with gαβ and/or pα.

4 Expand the Γ functions

Taking D = 4± 2ε and using the useful property Γ(z+ 1) =
zΓ(z), all divergencies can be related to Γ(ε),

Γ(ε) =
1

ε
− γ +

1

2

[

γ2 + ζ(2)
]

ε2 + · · ·

and can be easily isolated. In the expansion above, γ is Euler’s

constant, γ= 0.5772157, and ζ(s) the Riemann’s Zeta function,

ζ(2) = π2

6
.
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Power counting

We will determine which diagrams are UV divergent in QCD using

power counting.

The UV behaviour of a Feynman diagram is found by the limit of loop

momenta to infinity.

Type Feynman rule Power of k

Loop integration
∫

dDk
(2π)D =

∫
kD−1 dk
(2π)D dΩD D

Quark propagator
/k
k2 ∼ 1

k
−1

Gluon propagator 1
k2 −2

Ghost propagator 1
k2 −2

Quark-gluon vertex ta γµ 0

Three-gluon vertex ∝ kµ 1

Four-gluon vertex fabc gαβ 0

Ghost-gluon vertex ∝ kµ 1
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Superficial degree of divergence

Denoting by nL, the number of loops, V3 the number of triple gluon ver-

tices, Pq,g,G the number of quark, gluon and ghost propagators, respec-

tively, and VG the number of ghost-gluon vertices, the superficial degree

of divergence is defined by

d = DnL + V3 − Pq − 2Pg − PG + VG

The superficial degree of divergence of a diagram is the difference

between the number of momenta in the numerator and the number of

momenta in the denominator.

If d ≥ 0 the diagram is UV divergent: d = 0, logarithmically, d = 1,

linearly and so on.

If, however, d < 0, the diagram is UV finite.
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Superficial degree of divergence

Using some topological relations between the number of external and

internal lines and vertices, it is not difficult to arrive at the formula for the

superficially degre of divergence of a Feynman diagram in QCD,

d = 4 − 3

2
FE − BE

where FE(BE) is the number of external fermionic (bosonic) lines in the

Feynman (sub)diagram. Some comments are in order here:

1 Ghost lines count as bosonic lines.

2 Notice that the counting must be applied to every subgraph.

3 The actual behaviour of the corresponding integral might be better

due to cancellations coming from symmetries.
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Divergent subdiagrams

Using the formula above, it is easy to find the divergent diagrams in

QCD and their superficial degree of divergence

Diagram FE BE d deff

Quark selfenergy 2 0 1 0

Gluon selfenergy 0 2 2 0

Ghost selfenergy 0 2 2 0

Quark vertex 2 1 0 0

Triple gluon vertex 0 3 1 0

Quartic gluon vertex 0 4 0 0

Quartic ghost vertex 0 4 0 < 0

Quartic ghost-gluon vertex 0 4 0 < 0

Therefore, all UV divergences in QCD appear in one of the above 8

diagrams. The idea of the renormalization program is to absorb them in

the redefinition of field normalizations, masses and couplings. Only then

all amplitudes will be UV finite.
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Renormalized Lagrangian

To eliminate all divergent parts in divergent diagrams, we add to the

initial Lagrangian of QCD

L = −1

4
Ga

µν Gµν
a + ψ̄

(

i /D − m
)

ψ − 1

2λ
(∂µ Aµ )2

+ ∂µ ηa∗ ∂µ ηa − g∂µ ηa∗ fabc Abµ ηc

where

Ga
µν = ∂µ Aa

ν − ∂ν Aa
µ + ig f abc Ab

µ Ac
ν

Dµ = ∂µ + igAa
µ ta

some counterterms corresponding to each superficially divergent dia-

gram in the theory

L(x) → L(x) + Lct(x)

For example, for the quark mass term we have

m ψ̄ψ → m ψ̄ψ + c4 m ψ̄ψ
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Renormalized Lagrangian (II)

We choose c4 in such a way that it cancels exactly the pole in 1/ε of this

term in the Lagrangian. This can be extended to each divergent term

in the Lagrangian by defining the so-called renormalization constants

(RCs), Zi = 1 − ci. The renormalized lagrangian is

L = −Z3YM

1

4
(∂µ Aa

ν − ∂ν Aa
ν)(∂

µ Aν
a − ∂ν Aν

a)

− Z6
1

2λ
(∂µ Aµ

a)
2

+ Z2F i ψ̄ /∂ψ

− Z4 m ψ̄ψ

+ Z1F g ψ̄γµ ta ψAa
µ

− Z1YM

1

2
gfabc (∂µ Aa

ν − ∂ν Aa
µ)A

µ
b Aν

c

− Z5
1

4
g2 fabc fade Ab

µ Ac
ν A

µ
d Aν

e

+ Z̃3 [∂µ η∗
a] ∂µ ηa

+ Z̃1 gfabc [∂µ η∗
a] ηb Aµ

c
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Renormalization schemes

In DR, all the counterterms are power expansions in α of the form

ci =
∞

∑
n=1

n

∑
m=1

C
(n)
i,m

1

εm

( α

π

)n

The ci are chosen in such a way that they cancel the 1/ε terms. But

finite parts are arbitrary. We have some alternatives:

MS scheme: subtract exactly the poles in 1/ε; nothing more.

MS scheme: the poles always come in the combination

1

ε̂
≡ 1

ε
− log4π + γ

Therefore, we can subtract 1/ε̂ poles instead of 1/ε.

MOM scheme: to regularize an amplitude, subtract its value with all

momenta taken in the arbitrary Euclidean point

p2 =−µ2,

AR(p
2;µ2) = A(p2,ε) − A(p2 = −µ2,ε)
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Renormalization constants

A long but straightforward calculation in dimensional regularization yields

Z3YM = 1 − α

π

[

−T(R)

3
NF +

C2(G)

4

(

13

6
− λ

2

)]

1

ε̂

Z6 = 1

Z2F = 1 +
α

π
λ

C2(R)

4

1

ε̂

Z4 = 1 +
α

π
(3 + λ)

C2(R)

4

1

ε̂

Z1F = 1 +
α

π

1

4

[

(3 + λ)
C2(G)

4
+ λC2(R)

]

1

ε̂

Z1YM = 1 − α

π

1

4

[

−4T(R)

3
NF +

(

17

12
− 3λ

4

)

C2(G)

]

1

ε̂

Z5 = 1 +
α

π

1

4

[

4T(R)

3
NF +

(

−2

3
+ λ

)

C2(G)

]

1

ε̂
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Slavnov-Taylor identities

Z̃3 = 1 − α

π

C2(G)

4

3−λ

4

1

ε̂

Z̃1 = 1 +
α

π

1

4
λ

C2(G)

2

1

ε̂

It is easy to show that they satisfy the so-called Slavnov-Taylor identities

Z3YM

Z1YM

=
Z̃3

Z̃1

=
Z2F

Z1F

=
Z1YM

Z5

Z6 = 1

Using the so-called BRST symmetry of the QCD Lagrangian, a resid-

ual gauge symmetry after the fixing of the gauge, it is shown that the

Slavnov-Taylor identities are valid at all orders in Perturbation Theory.

These identities are used to demonstrate the renormalizability of QCD

because they imply subtle cancellations between divergencies at differ-

ent orders of PT.
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Bare and renormalized fields and couplings

Now, we define the bare, φ0, and renormalized, φR, fields and couplings

in the form
Aa

µ0 =
√

Z3 Aa
µR g0 = Zg gR

ηa
0 =

√

Z̃3 ηa
R m0 = Zm mR

ψ0 =
√

Z2 ψR λ0 = Zλ λR

We will drop the renormalized index because the renormalized couplings

and fields are the same as the ones in the renormalized Lagrangian.

They are finite and the fields give rise to finite amplitudes in D = 4. Both

bare and renormalized quantities are defined in a D-dimensional space.

The lagrangian in terms of bare quantities has the same form as the

initial one (before adding the counterterms).

It is easy to find that

Zg = Z1YM Z
−3/2

3YM = Z̃1 Z̃−1
3 Z

−1/2

3YM = Z1F Z
−1/2

3YM Z−1
2F = Z

1/2

5 Z−1
3YM

Zm = Z4 Z−1
2F

Zλ = Z−1
6 Z3YM
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The mass scale in dimensional regularization

The great advantage of DR is that all symmetry properties, including

local gauge invariance, are preserved, except for dilation invariance be-

cause only in D = 4 dimensions the coupling constant is dimensionless,

and chiral invariance, due to the difficulties in the definition of γ5 in D

dimensions.

Taking into account that the action must remain dimensionless, it is easy

to find the canonical dimensions of the parameters and fields

[ψ(x)] =M
3
2+ε

[

Aa
µ

]

= [ηa] =M1+ε [g] =M−ε [λ] =M0 [m] =M

Therefore, to preserve a dimensionless coupling constant, an arbitrary

mass scale parameter µ must be introduced and all expressions in DR

should be considered as power series in gµε or α = (gµε)2

4π .
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Renormalization constants of the coupling, mass

and gauge parameter

Using the expressions for the renormalization constants, we find the very

important results

Zα = Z̃2
1 Z̃−2

3 Z−1
3YM = 1 +

α

π

[

11

12
C2(G) − T(R)

3
Nf

]

1

ε̂

Zm = Z4 Z−1
2F = 1 +

α

π

3

4
C2(R)

1

ε̂

Zλ = Z−1
6 Z3YM = 1 − α

π

[

−T(R)

3
NF +

C2(G)

4

(

13

6
− λ

2

)]

1

ε̂

where α = (gµε)2/(4π).
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Renormalization Group Equation

Consider a dimensionless physical observable R which depends on a

single large energy scale Q ≫ m, where m is any mass. Taking the limit

m → 0, it is clear, by dimensional analysis, that R should be independent

of Q.

On QFT this is not true. To calculate R as a perturbative series in

the renormalized coupling constant α(µ) = g2(µ)/4π, we have to

renormalize the theory to remove UV divergences. This introduces a

second mass scale: the renormalization point, µ. Therefore, R is a

function of the ratio Q2/µ2 and the renormalized coupling: R is not a

constant.

But µ is arbitrary. Any physical observable must be independent of µ.

Therefore,

µ2 d

dµ2
R

(

Q2

µ2
,α(µ)

)

=

[

µ2 ∂

∂µ2
+ µ2 ∂α

∂µ2

∂

∂α

]

R = 0
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Beta function

Introducing the beta function

β(α) = µ2 ∂α

∂µ2

we get the Renormalization group equation,

[

− ∂

∂t
+ β(α)

∂

∂α

]

R(t,α) = 0

where t = log
(

Q2

µ2

)

.

This equation can be solved by defining the characteristic function, also

called running coupling, ᾱ(Q),

t =
∫ ᾱ(Q)

α(µ)

dx

β(x)
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Beta function

In fact, it immediately follows that

∂ᾱ(Q)

∂t
= β(ᾱ(Q))

∂ᾱ(Q)

∂α
=

β(ᾱ(Q)

β(α)

and hence

R(
Q2

µ2
, α(µ)) = R(1, ᾱ(Q))

all scale dependence in R comes from the running coupling constant.
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Calculation of the beta function

We expand the beta function as

β(α) = −β0

(

α2

4π

)

−β1

(

α3

(4π)2

)

− ·· ·

Writting the renormalization constant Zα in the form

Zα = 1 +
∞

∑
n=1

Zα,n(α)

εn

and recalling that α0 = Zα(α)α(µ)µ2ε and the bare coupling constant

α0 is independent of µ, it is not difficult to arrive at the equation we will

use to calculate β(α),

β(α) = −α
∂Zα,1

∂α

Therefore, the beta function, in minimal subtraction renormalization

schemes, is determined by the residue of the pole 1/ε.
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Calculation of the beta function

Using our expression for Zα, we get at one-loop (and two-loops)

β0 =
11

3
C2(G) − 4

3
T(R)Nf

β1 =
34

3
C2(G)2 − 20

3
C2(G)T(R)Nf − 4C2(R)T(R)Nf

Gross and Wilczek, and independently Politzer, compute the one-loop

beta function for QCD in 1973 (they received the Nobel Prize in 2004).

Previously, in 1971, ’t Hooft computed the one-loop β-function but did

not publish it. He wrote the formula on the blackboard at a conference

and his PhD supervisor, Veltman, told him that it was not interesting.

In 1974, Caswell and Jones, calculated β1. In 1980, Tarasov, Vladimirov

and Zharkov computed the three-loop beta function in QCD. Van Ritber-

gen, Vermaseren and Larin, after computing more than 50.000 Feynman

diagramas, calculated the four-loop beta function in 1997.
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Beta function in QCD at four-loops

Using the color factors in SU(N),

T(R) = 1/2 C2(G) = N C2(R) =
N2 −1

2N

for N = 3, we find the following numerical results for the beta function of

QCD,

β0 = 11−0.66667Nf

β1 = 102−12.6667Nf

β2 = 1428.50−279.611Nf + 6.01852N2
f

β3 = 29243.0−6946.30Nf + 405.089N2
f + 1.49931N3

f
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Running coupling constant in QCD

The running coupling constant ᾱ(Q) can be calculated solving the equa-

tion

∂ᾱ(Q)

∂t
= β(ᾱ(Q)) = −β0

(

ᾱ2(Q)

4π

)

−β1

(

ᾱ3(Q)

(4π)2

)

+ · · ·

Neglecting β1 and higher coefficients, the solution is simply

ᾱ(Q) =
α(µ)

1 + α(µ)
4π β0 log(Q2/µ2)

The behaviour of ᾱ(Q) for large Q is determined by the sign of β0. If

the number of active flavours is Nf < 33/2, β0 > 0 and therefore the

running coupling constant decreases, ᾱ(Q) → 0 as Q → ∞. This is

asymptotic freedom and we say that QCD is asymptotically free.

Thus for large Q we can safely use PT. The knowledge of R(1, ᾱ(Q)) at

a given order allows us to predict the variation of R with Q.
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Running coupling constant in QED

From our expressions for QCD, as a subproduct, we can find both the

beta function and the running coupling constant for QED. The necessary

modifications to make are due to color factors,

C2(G) = N → 0 C2(R) → 1 T(R)Nf → 1

Then the value of β0 is

βQED
0 = −4

3

that have the opposite sign with respect to QCD.

QED is therefore not asymptotically free because the coupling increases

at large Q. This result can be explained using the charge screening

concept. In fact, the observed electron charge is distance-dependent

due to the vacuum polarisation. At short distances (high momenta) we

see more of the bare charge and hence the effective coupling increases.

At large distances (low momenta), however, the screening is larger and

the effective charge decreases.
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Polarisation
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Antiscreening

Due to polarisation effects, the QED vacuum behaves as an ordinary

medium with electric dipoles and a dielectric constant ε > 1. This

produces a screening effect.

In QCD, the vacuum polarisation gives anti-screening due to the non-

Abelian character of the gluon field. Due to gluon-gluon couplings (three

and four gluon vertices), the test charge is surrounded by gluons of the

same charge. The vacuum behaves as a hypothetical medium with di-

electric constant ε < 1. The measured color charge will be

q(c) =
q
(c)
0

ε
→ q(c) > q

(c)
0

This is an anti-screening effect that compensates the screening at short

distances (large momenta) producing a decreasing of the effective cou-

pling. And the other side round: the coupling constant increases at large

distances. Asymptotic freedom means that the measured charge ap-

proaches zero at an infinitesimal distance.
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The Λ parameter

Perturbation theory allows us to know the evolution of ᾱ(Q) with Q,

but its absolute value has to be obtained from experiment. One usu-

ally choose as the fundamental parameter the value of the coupling at

Q = MZ , a reference scale large enough to be in the perturbative region.

It is also useful to express ᾱ(Q) in terms of a parameter with dimension

of energy, Λ, defined by

log

(

Q2

Λ2

)

= −
∫ ∞

ᾱ(Q)

dx

β(x)
=

∫ ∞

ᾱ(Q)

4πdx

β0 x2 (1 + β1/β0 x/(4π) + . . .)

At leading order, i.e keeping only the first coefficient β0,

ᾱ(0)(Q) =
4π

β0 log(Q2/Λ2)

Notice that, if PT were the whole story, ᾱs(Q) → ∞ as Q → Λ. The

parameter Λ sets the scale at which ᾱs(Q) becomes large.
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The Λ parameter

In the next-to-leading order, i.e. including β1,

4π

ᾱs(Q)
+

β1

4π
log

(

β1
4π

ᾱs(Q)
4π

1 + β1
4π

ᾱs(Q)
4π

)

= β0 log

(

Q2

Λ2

)

An approximate solution to second order in 1/ log(Q2/Λ2) can be ob-

tained (Particle Data Group)

ᾱ(Q) =
4π

β0 log(Q2/Λ2)

[

1 − β1

4πβ0

log log
(

Q2/Λ2
)

log(Q2/Λ2)

]

Note that Λ depends on the number of active flavours and on the renor-

malization scheme: ΛMS = 2.66ΛMS.
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