

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Little Higgs Models Phenomenology

Guilherme Guedes Supervised by Prof. Nuno Castro and Prof. José Santiago

Supported by research grant: UID/FIS/50007/2019

FCT, COMPETE2020-Portugal2020, FEDER, POCI-01-0145-FEDER-007334

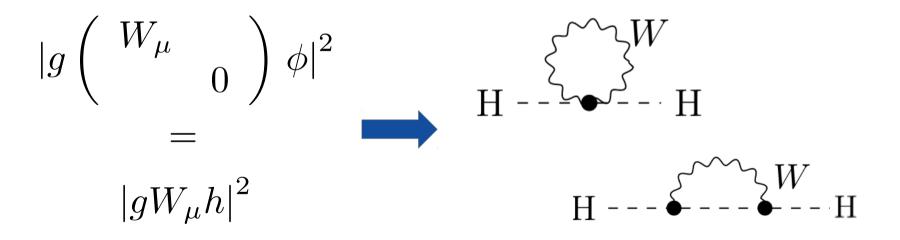
Higgs as a pseudo-Goldstone boson

Goldstone theorem: NGB's arise when a continuous symmetry is spontaneously broken

NGB's *shift* under the broken symmetry:

 $\theta \to \theta + \alpha$

We need to explicitly break the symmetry


Little Higgs models - toy model SU(3)/SU(2)

$$\phi = \phi_0 e^{i\pi/f}$$

Parametrization to get **NBGs interactions** $\phi = \exp\left\{\frac{i}{f}\begin{pmatrix}0 & h\\h^{\dagger} & 0\end{pmatrix}\right\}\begin{pmatrix}0\\f\end{pmatrix} = \begin{pmatrix}0\\f\end{pmatrix} + i\begin{pmatrix}h\\0\end{pmatrix} - \frac{1}{2f}\begin{pmatrix}0\\h^{\dagger}h\end{pmatrix} + \cdots$

Little Higgs models - toy model SU(3)/SU(2)

By gauging SU(2), we get terms:

Little Higgs models - collective symmetry breaking

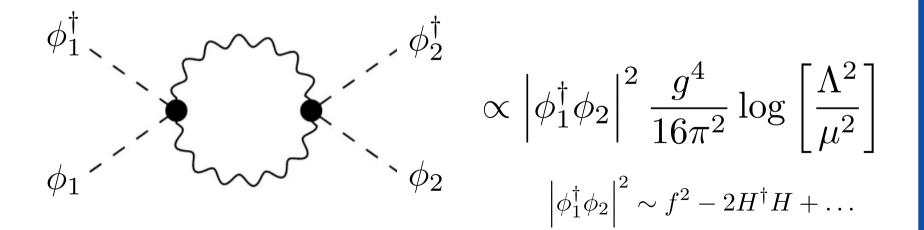
$$\phi_1 = e^{i\pi_1/f} \begin{pmatrix} 0 \\ f \end{pmatrix}$$
 and $\phi_2 = e^{i\pi_2/f} \begin{pmatrix} 0 \\ f \end{pmatrix}$

Let us take $SU(3)xSU(3) \rightarrow SU(2)xSU(2)$:

#NGBs =16-6=10

Next, we gauge **SU(3)**_D

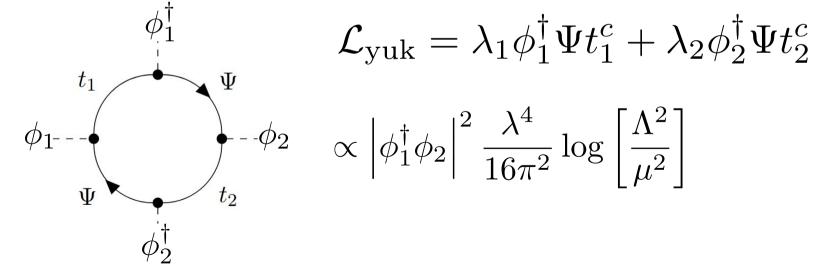
Little Higgs models - collective symmetry breaking


$$\mathcal{L} \sim |g_1 A_\mu \phi_1|^2 + |g_2 A_\mu \phi_2|^2$$

$$\phi_1 \to e^{i\alpha_1^a T^a} \phi_1, \phi_2 \to e^{i\alpha_2^a T^a} \phi_2$$
$$A_\mu \to e^{i\alpha_2^a T^a} A_\mu e^{-i\alpha_2^a T^a}$$

Only with both couplings non-zero the symmetry is broken to SU(3)_D (5 eaten NGBs and 5 pseudo NGBs)

Little Higgs models - collective symmetry breaking


Contributions to pNGBs must involve **both fields:**

Little Higgs models - collective symmetry in fermionic sector

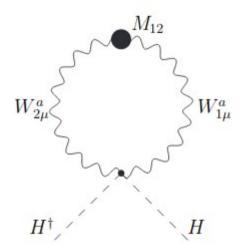
By introducing SU(3) symmetry:

$$\Psi \equiv (t, b, T)$$

Littlest Higgs model:

 ${f SU(5)}
ightarrow{f SO(5)}$

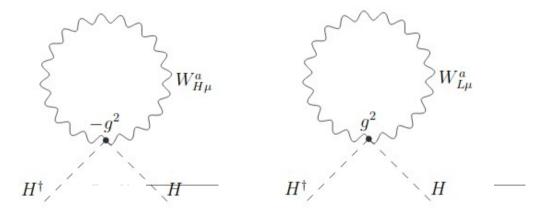
Unbroken $Q_1^a + Q_2^a$ $Y_1 + Y_2$


Broken $[SU(2) \times U(1)]^2$ $Q_{1}^{a} - Q_{2}^{a}$ $Y_1 - Y_2$ $SU(2) \times U(1)$

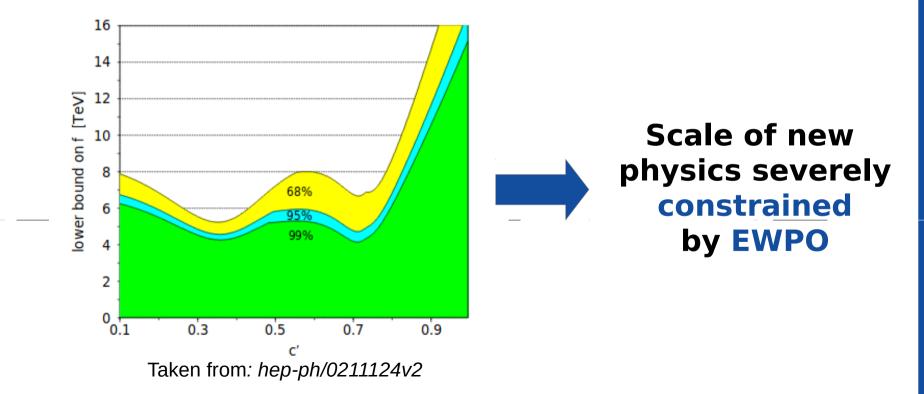
 $\frac{SU(2)_W}{U(1)_Y}$

Heavy gauge bosons 4 eaten goldstones

Littlest Higgs model collective symmetry


 $\frac{1}{4}H^{\dagger}H\left(g_{1}g_{2}W_{1}^{\mu a}W_{2\mu}^{a}\right)$ $+g_1'g_2'B_1^{\mu}B_{2\mu})-$

Both couplings *always* present


Littlest Higgs model collective symmetry

Heavy – light bosons cancellation:

 $\frac{1}{4}H^{\dagger}H\left(g^{2}\left(W_{L\mu}^{a}W_{L}^{\mu a}-W_{H\mu}^{a}W_{H}^{\mu a}-2\cot 2\psi W_{H\mu}^{a}W_{L}^{\mu a}\right)+g^{\prime 2}\left(B_{L\mu}B_{L}^{\mu}-B_{H\mu}B_{H}^{\mu}-2\cot 2\psi^{\prime}B_{H\mu}B_{L}^{\mu}\right)$

Littlest Higgs model - constraints

Littlest Higgs with T-parity gauge sector

$$G_1 \xleftarrow{\mathrm{T}} G_2 \qquad g_1 = g_2, g_1' = g_2'$$

T-even

$$W^{\pm} = \frac{1}{2} \left[\left(W_1^1 + W_2^1 \right) \mp i \left(W_1^2 + W_2^2 \right) \right], \quad W^3 = \frac{W_1^3 + W_2^3}{\sqrt{2}}, \quad B = \frac{B_1 + B_2}{\sqrt{2}}$$

T-odd

$$W_{H}^{\pm} = \frac{1}{2} \left[\left(W_{1}^{1} - W_{2}^{1} \right) \mp i \left(W_{1}^{2} - W_{2}^{2} \right) \right], \quad W_{H}^{3} = \frac{W_{1}^{3} - W_{2}^{3}}{\sqrt{2}}, \quad B_{H} = \frac{B_{1} - B_{2}}{\sqrt{2}}$$

 A, Z, Z_H, A_H

Littlest Higgs with T-parity fermionic sector

$$\mathcal{Q}_1 = \begin{pmatrix} q_1 \\ U_{L1} \\ 0 \end{pmatrix}, \quad \mathcal{Q}_2 = \begin{pmatrix} 0 \\ U_{L2} \\ q_2 \end{pmatrix}$$

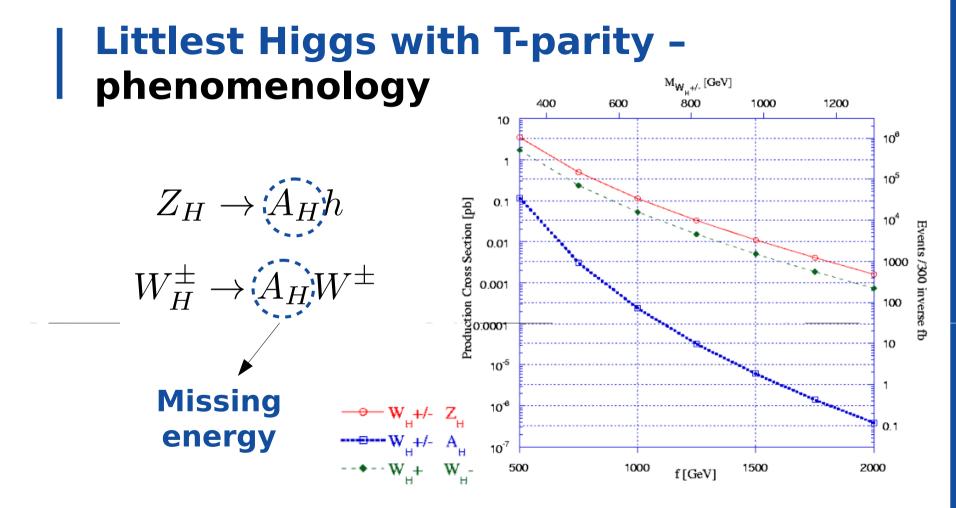
The physical particles now read:

$$q_{\pm} = \frac{1}{\sqrt{2}} (q_1 \mp q_2), \quad U_{L\pm} = \frac{1}{\sqrt{2}} (U_{L1} \mp U_{L2}), \quad U_{R\pm} = \frac{1}{\sqrt{2}} (U_{R1} \mp U_{R2})$$

Littlest Higgs with T-parity – phenomenology

- Pair production for T-odd particles
- Stable DM candidate (no T-violation)
- No contribution to EWPO at tree level

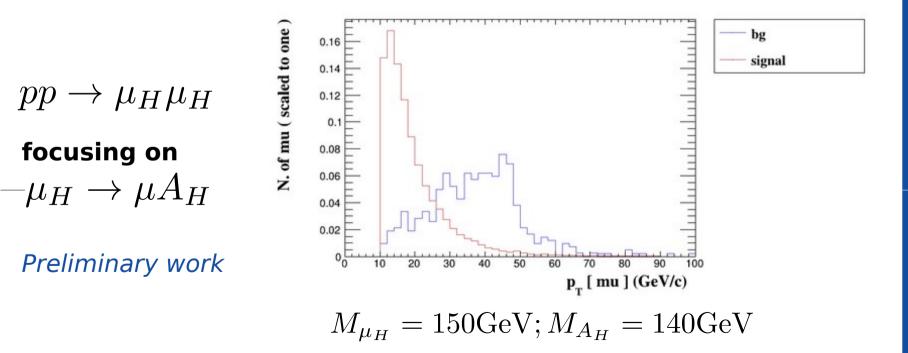
Littlest Higgs with T-parity phenomenology


Implementation of model in Feynrules

Generating events with Madgraph

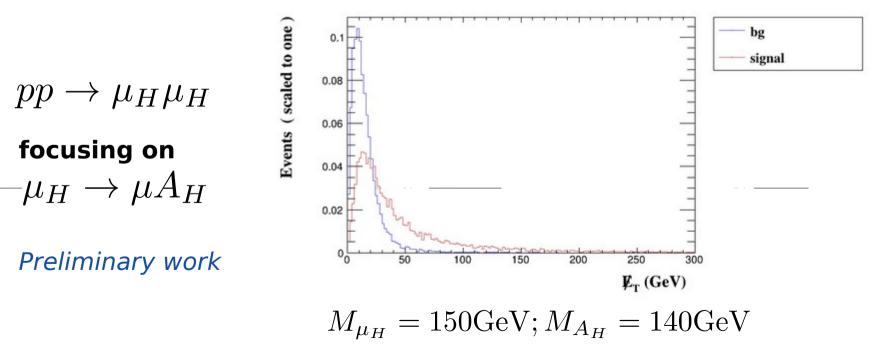
UFO model

Developing analysis with Madanalysis


Littlest Higgs with T-parity – phenomenology

Heavy Lepton Sector

- Not yet thoroughly studied
- Possible source of Lepton Flavour Violation


- Further constraints on model

Littlest Higgs with T-parity phenomenology

Littlest Higgs with T-parity phenomenology

Possible dicriminating variables?

Littlest Higgs with T-parity – prospects

A global approach:

- Collider phenomenology
- Flavour experiments
 - Astrophysical constraints DM candidate

Thanks