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Unexpectedly simple data patterns

All quarkonia have identical p; /M-differential cross section shapes,
for p; /M > 2, at mid-rapidity, independently of mass and quantum numbers
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Same production dynamics for S- and P-wave states
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Identical p; /M cross section
shapes for S- and P-wave states
= no sign of dependence of

the production dynamics
on the quantum numbers !
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Small polar decay anisotropies,
with no p; dependences,

for all S-wave states,

despite very different

P-wave feed-down contributions




A model-independent global charmonium fit

We did a simultaneous global fit to mid-rapidity differential cross sections and polarizations
of the charmonium states {(2S), J/¥ and x, ,
Accounting for the momentum and polarization transfer in the feed-down decays

Perturbative calculations of the production kinematics are not used as ingredients anywhere
in the analysis; the fit is exclusively based on empirical parametrizations

The J/Y and Y(2S) cross sections are fitted as a superposition of unpolarized (A4 = 0)

and transversely polarized (Ay = +1) processes: ogjr X [(1 — fp) Jut/p gp]
fp: fractional contribution of the polarized process
Ju 9p: shape functions that describe the p; /M dependence :

2\ =B
1 (pr/M)
(pT/M)<1+B_2 Ty >

The unpolarized and polarized cross sections share y but have distinct 8, and g8,
The g, and g, shapes and relative contributions are constrained by the polarization data

The x., and x_, follow the same parametrization but without separating u and p terms,
given the absence of y_ polarization data



Correlated uncertainties | s ]

A crucial source of correlation between all the points being fitted is the dependence of the
detection acceptances on the polarization

For each set of parameter values considered while running the fit, the expected values of the
polarizations and cross sections are calculated, for all states, as functions of p-.
The values obtained in this way for Ay can be immediately compared to the measured ones.

For the cross section, we first scale the measured cross sections by acceptance-correction
factors calculated for the Ay value under consideration. These correction factors are
computed using the tables published by the experiments for the cross sections of particles
produced with fully transverse or fully longitudinal polarization, as a complement to the
unpolarized assumption used for the default measured values

Also considered in the fit are nuisance parameters from two sources:

1) The ATLAS and CMS integrated-luminosity uncertainties

2) The uncertainties of the branching ratios (B) used by the experiments
to derive the cross sections (o) from the measured values (B x )



Fit results

The fit has 100 constraints (data points)
and 20 parameters:

5 shape parameters,

4 normalizations,

the fraction f,

and 10 nuisance parameters

The x., and x,, p; /M distributions are very similar
to the unpolarized term dominating y production
f, =3.42+£0.05
B(x;) =3.46 £0.08
Bx,) =3.49+£0.10

This very clear observation reflects the fact that
the full chain of feed-down decays is taken into
account, so that the high precision Y data points
contribute to the . results

The polarized term has a weak contribution and
the charmonium states are nearly unpolarized

S“ - '.]I.
& 10= v¥Indf = 28/80 - - JAy direct unpolarized term
S = . - --JAy direct polarized term
£ — bestfit  __.Jp) feed-down term
}_
g 1 = N 3(28) direct unpol. term
‘6 - - (28) direct polarized term
3 B
107" e J/p CMS
- e (2S) CMS
102 o P(2S) ATLAS
- o %_ ATLAS x 0.01
10_3__ o %,ATLAS x 0.01
10‘45—
_||||||||||||||||||||||||||||||||||||
)
. L
08~ o JAp CMS
N o Y(2S) CMS
04 ,
L — bestfit
ol
- M. Aradjo etal
- £PIC 78 (2018) 265
0.8 —
04F
O_I ||||||||||||||||||||||||||||||||||
0 5

10 i5 20 25 30 35
prM



Quarkonium production in the NRQCD approach

In NRQCD several production mechanisms are foreseen for each quarkonium state

What is produced in the hard scattering (and determines kinematics and polarization)
is a QQ state with specific quantum properties

1) short-distance partonic process 2) The quantum numbers change in
produces neutral or coloured QQ the long-distance evolution to the
of any 2S*1L, quantum numbers observed (neutral) bound state

guarkonium

) 1S
(@) Ne s Np ['So ]

b, Y35, ] Xeo s Xpo [*Po |
Xei s Xoa PP1 ] X s X2 PP ]

SLC\ ) \

: 1) short-distance coefficients (SDCs): : : 2) long-distance matrix elements (LDMEs):
[

| py-dependent partonic cross sections | | constant, fitted from data

________________________________________________________



NRQCD hierarchies

Approximations (heavy-quark limit) and calculations
induce hierarchies and links between pre-resonance contributions

1) Small quark velocities v in the bound state — “v-scaling” rules for LDMEs

2) Perturbative calculations — some SDCs are negligible:

e I/, B(29)

N S0 38y Popy [3S, ]
S A Y(1S), Y(25), Y(35)
/ // [3P1] Xc1 ' Xp1
T /
/ / Py 7S, [3P2] X2 » Xp2
s S AT
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A °

3) Heavy-quark spin symmetry — relations between LDMEs of different states

51 Xa _ °S1 7 X2 _ 5 S, —>n, = 1S, =1/ atc
*S1 = Xa *S1 = Xp 3 BN, = 5,5 .
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Dominant short-distance cross section contributions
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negative P-wave contributions,
(with large unphysical
polarizations: see next slide),
require proper cancellations
to recover physical result

The variety of kinematic behaviours predicted in NRQCD seems redundant with
respect to the measured universal p; /M scaling and lack of polarization

Curves from H.-S. Shao et al.,
PRL 108, 242004; 112, 182003;
Comput. Phys. Comm. 198, 238
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The polarization dimension

Quarkonium polarization is characterized by A, :
> measured as the polar anisotropy of the decay dilepton angular distribution
> calculated from the transverse and longitudinal cross sections: (o1 — ¢,) / (o1 + G)

Each colour singlet and octet term has a specific polarization associated :

1S, > Ay=0 at LO, NLO, etc; isotropic wave function

38, & Ag=+1 at LO, NLO, etc, at high p;, where the fragmenting gluon is “rea
— Ag>>+1 at NLO and high p; (“hyper-transverse”); it is O at LO...

S, = Ay~ —0.9 atNLO and high p;;itis = +1 at LO (has a small impact)
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Data fit vs. NRQCD: a surprising agreement

The shape functions from the global fit to the data (bands) and their NRQCD theory
counterparts (lines), obtained in completely independent ways,

agree with each other over 8 (!) orders of magnitude:

within uncertainties, NRQCD can reproduce the similarity of the p; /M distributions
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Data fit vs. NRQCD: a surprising agreement

The shape functions from the global fit to the data (bands) and their NRQCD theory
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Striking coincidence or trigger to improve NRQCD?

The seeming success of NRQCD uncovers a strong prediction:
the unmeasured x,, and x_, polarizations must be very different from one another
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Comparison to a previous prediction

In NRQCD, one single parameter determines both
the x,, / x., ratio and the two polarizations

r = mg <0XCO(351[8])> <0XCO(3PO[1])>

Shao et al. derive r =0.27 £ 0.06 from CDF or CMS data
with the following polarization assumptions:
CDF:
= central values using A3 = 0.13 + 0.15 for x_, and x,,
= no correlated variations considered
= uncertainty added in quadrature with all others
CMS:
= central values using Ay = 0 for x_, and x;
= polarization uncertainty from maximum range
of correlated variations of A4(x,,) and A4(x,,)
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Comparison to a previous prediction

In NRQCD, one single parameter determines both
the x,, / x., ratio and the two polarizations

r = mg <0Xco(35:[8])> <0XCO(3PO[1])>

Same theory inputs but
different analyses of the experimental data

B Shaoetil. lead to very different determinations of r
3 Faccioli et al.
Shao et al.,
i « ATLAS PRL 112 (2014) 182003
! * CMs r = 0.27 * 0.06

,
RN NERTE FENTE FRETE PN ST PN NRTEE SR N SN

ol ik gl ) Faccioli et al.,
05 ~ EPJC 78 (2018) 268

r = 0.217 * 0.003

Faccioli et al. use CMS + ATLAS data (averaged)

with acceptance corrections corresponding to the
final polarization prediction (iterative procedure)
and, therefore, no added “polarization uncertainty”




Summary: LHC vs. NRQCD

1)

2)

3)

4)

The mid-rapidity data show a simple universal unpolarized pattern

In particular, it is found that
the p; /M distributions of S- and P-wave states are almost identical

Despite its intrinsic complexity, NRQCD can reproduce this simple scenario

The surprisingly good success of NRQCD uncovers a strong prediction:

the unmeasured x_, and x_, polarizations must be very different from one another
within the p; region covered by the Run 1 CMS data
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Work plan

Determination of Mﬁ()(cl,z): most urgent open question. Analysis is nearing its
conclusion

More analogous polarization measurements, with higher precision and extending over
broader p; ranges, using run 1 and 2 data

Further phenomenological studies including y and +/s dependences: extend analysis
with rapidity-dependent data from LHCb and investigate the role of gluon distribution

functions on the observed scaling
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