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Part1
Adaptive Business Intelligence:
Introduction



The Rise of Data
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Many sources of data, including

= Web & Social Networks.

= |nternet of Things (loT).

= |ndustry 4.0. I
= Smart Cities. =N
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The Rise of Computational Power

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

OurWorld
in Data

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.
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Subjective Popularity

The Rise of Algorithms (including Machine Learning)

"More sophisticated statistical and optimization techniques for fitting

functions (including new/deeper network structures)’
A. Darwiche, Human-level intelligence or animal-like abilities? Commun. ACM 61(10): 56-67 (2018)
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= The Rise of Artificial Intelligence (Al)
https://ai100.stanford.edu

Al has achieved many remarkable milestones, including:
= 1997: IBM’s Deep Blue beats Garry Kasparov in Chess.
= 2011: IBM’s Watson beats two best human players on Jeopardy.

= 2016: Google’s AlphaGo wins Korea's Lee Sedol Go player.




Artificial Intelligence (Al) = Data + Algorithms

Includes several subfields: Machine Learning, Metaheuristics, Knowledge
Representation, ...

Artificial Intelligence
Metaheuristics
(optimization

Machine Learning
(prediction)

Business Intelligence
(decision support)




Artificial Intelligence and Data Related Terms

Artificial

Metaheuristics

Modern Optimization

Intelligence Learning

1950s

Support Intelligence B Adaptive
Systems Analytics/ 5 a%a Business
Data Mining Intelligence
Data
MaChine Science Deep
Learning
1960s 1990s 2000s 2010s



Data-driven Prediction (predictive analytics) M

“The ultimate goal of data mining is prediction - and predictive data
mining is the most common type of data mining and one that has the most
direct business applications.”

http://www.statsoft.com/textbook/data-mining-techniques

Machine Learning: decision trees, neural networks, ensembles, random
forests, support vector machines, deep learning, ...
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Modern Optimization (prescriptive analytics) "

Also known as Metaheuristics Sy

"Related with general purpose solvers that use few domain knowledge,
iteratively improving a solution (or population of solutions) to minimize or
maximize a goal.” http://www.springer.com/gp/book/9783319082622

Metaheuristics: simulated annealing, tabu search, genetic algorithms,
genetic programming, multi-objective optimization (e.g., NSGAI), particle
swarm optimization, ... Search space 3
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Adaptive Business Intelligence (ABI) (Michalewicz et al. 2006)

Adds intelligent adaptive modules to standard Bl systems: Data-driven
Prediction and Modern Optimization.
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Gartner Analytic Ascendancy Model (2013):
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Open Source Tools: R and Python Pﬁ." @

IEEE 2018 computer language ranking:

Language Rank Types Spectrum Ranking
1. Python @ s

o Ut

3. Java @0

8. JavaScript
9. Go @& o
10. Assembly



TPR

R http://lwww.r-project.org, rminer package, R Springer book
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Part 2
Application Examples



Predictive Analytics



Donate a Data Set Cont;

Wine Quality

Prediction: Regression, Support Vector Machines

Machine Learning Repository

Center for Machine Learning and Intelligent Systems

Wine Quality Data Set
Download: Data Folder, Data Set Description

¢ M Od e | i n g Wi n e p refe re n Ces by d ata Abstract: Two datasets are included, related to red and white
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mining from physicochemical

properties”, DSS 2009.

ﬁismn Support Systems (see [Cortez et al., 2009], [Web Link]).
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Responses

Bank Telemarketing

Prediction: Feature Engineering, Neural Networks

“A data-driven approach to predict the T

success of bank telemarketing”, DSS 2014. %

Q |
® Examples of DT, SVM and NN
o] response values:
Sample
g_ size DT SVM NN
5% 8.0% 9.0% 10.4%
10% 15.3% 17.2% 19.2%
< 20% 35.1% 33.6% 35.6%
o 30% 52.2% 50.2% 51.3%
40% 67.7% 65.9% 67.7%
50% 772% 76.1% 78.9%
N 60% 80.0% 84.1% 86.4%
© T gﬁ 70% 83.6% 89.6% 91.4%
. LR
o i
Sl — baseline

[ [
0.0 0.2 0.4 0.6 0.8 1.0
Sample size

®  Repository . Web

Machine Learning Repository
Center for Machine Learning and Intelligent Systems View ALL Data

Bank Marketing Data Set

Download- Data Folder, Data Set Description

Abstract: The data is related with direct marketing campaigns (phone calls) of a Portuguese banking
institution. The classification goal is to predict if the client will subscribe a term deposit (variable y).




Stock Market

Prediction: Text mining, Sentiment Analysis

“Stock market sentiment lexicon acquisition

using microblogging data and statistical

measures’, DSS 2016. ...
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New microblog financial lexicon:
https://github.com/nunomroliveira/stock market lexicon
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$FIVE settin up well for a big breakout in the coming weeks.
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Thats why it rallied kinda late. You might want to exit now
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Sentiment values

Stock Market

Prediction: Kalman Filter, Regression

“The impact of microblogging data for stock market prediction:
Using Twitter to predict returns, volatility, trading volume and survey

sentiment indices”, ESWA 2017.
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Adaptive Business Intelligence (ABI)



Design of Earthworks

Leveling or shaping of a target area: need
to manage construction equipment

@
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EXCAVATION FRONT

Spreaders Compactors
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ABI approach: =

Prediction of compaction equipment conditions for a particular soil type (regression, Neural

Network)
Optimization: Assigning compactors to embankment areas (multi-objective, NSGAII
algorithm) - - E——— 5
8 | %° Mv Compaction NN (Comp_rate) g g _ g ]
100 200 30(()) " r‘:l()eod 500 600 700 8 | % |
S R A I s IS IS e 35 40 45 50 MO 120 10 40 150 160
Phase 1 Phase 2 Phase 3 Duration Duration
ﬁ -
. . . . . Expert
M. Parente, P. Cortez, A.G. Correia, An evolutionary multi-objective Systems

optimization system for earthworks, Expert System with Applications, 42:6674- | 5

An Intolmatloncl

6685 2015. i




Design of Online News
Assisting users in the writing of online news: how to improve popularity?

Mashable -  socaimeba - Teck * BUSINESS ~  ENTERTANMENT ~  WORLD ~  LFESTYLE WATERCOOLER ~  VIDE Mashable - SOCALMEDIA ~ TECH ~ BUSINESS ~ ENTERTAINMENT ~ WORLD ~ LIFESTYLE ~  WATERCOOLER ~

- Paris will go car-free for a day in
September to combat pollution

Tech FOLLOW MASHABLE >

Apple patent envisions fuel cell battery
that could power a smartphone for 1 4k

©
SHARES

weeks .

1.4k oot
n
SHARES -

Paris will try a car-free day as a part of a ¢

IMAGE: ALAIN APAYDIN/SIPA USA/ASSOCIATED PRESS

In an effort to curb the amount of air pollution and smog in the city, Paris will go car-free for
- one day this month.
IMAGE: FLICKR, KARLIS DAMBRANS g
On Sept. 27, the streets of France's capital will be closed to motor vehicles from 11 a.m. to 6
n Quick, what's your No. 1 qualm about smartphones? Chances are, you said “battery life." BY KIMBERLY p.m, with the exception of a few main thoroughfares, which will operate with speed limits of
Most smartphones today, even high-end ones, barely last a day of heavy use. TRUONG about 20 mph.




ABI approach:

@ python

Prediction of news shares based on text and multimedia features (classification, Random

Forest)

Optimization: Searching for more popular news features (stochashc hill-climbing)

Data

| .

I

|

[ URLs Article Data Feature |, ' | Popularity
:Retrieval Retrieval | | Selection | | Extraction Estimation
|

|

|

|

| Separation

Model

Training
and

Selection

Prediction

Performance impact of the stochastic probability parameter

Online News Popularity Data Set

Download: Data Folder, Data Set Description

Abstract: This dataset s ummarlze a heterogeneous set of features about articles
published by M shable in a period f two years. The goal is to predict the number of
shares in al netwo k s (popu I rity).

- C0
K. Fernandes, P. Vinagre and P. Cortez, A Proactive Intelligent Decision Eﬁ;??@h’&%?m
Support System for Predicting the Popularity of Online News, EPIA 2015. 0Nl ARTIFICIAL

INTELLIGENCE



Mobile Marketing: PROMOS - Prediction and optimization of
advertising campaigns for mobile devices

Prediction and Optimization: Big Data, Classification, Modern Optimization
http://promos.dsi.uminho.pt/

https://www.olamobile.com/pt/projeto-portugal-2020/

Mobile Product Audience

Revenues

~
7
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& 2
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Texlti Ie I n d UStry: Em Centro de Computacao Grafica
http://www.ccg.pt/my-product/texboost/

ENGINEERING
PROCESS,

MATURITY
& QUALITY

TexBoost
less Commodities
more Specialities

(3-year project, funded by Portugal
2020/Adi, total of 9.2 MEUR)

ABI approach (for PPS1 textile digitalization and dematerialization):
Prediction of textile properties based on design features
Optimization: searching for best textile design features



DTx Digital Transformation Colab
“aims to contribute to make Portugal a reference in the

exploitation of digital transformation”
Cyber-Physical Systems (CPSs) and ABI <

http://www.dtx-colab.pt/

m
"
E;j Centro de Computacao Grafica

N
).

ENGINEERING
PROCESS,
MATURITY

& QUALITY



My contacts:
email: pcortez@dsi.uminho.pt
URL: http://www3.dsi.uminho.pt/pcortez
"\m .. Linkedin: https://pt.linkedin.com/in/paulocortez
e fwitter: @PauloCortez4

Thank you!




