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Outline

Particle physics: the short story
The Large Hadron Collider and the ATLAS Detector
Learning from data: using Machine Learning to
classify events
search for New Physics

Outlook for Machine Learning and Particle Physics
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The Particle Scale

ATOM ELECTRON PROTON
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The Current Picture of Particle Physics

Matter... © + force carriers...
E photon (7)
- W
%_ Z
=1 gluon (g)

e . S

Three Generations of Matter

+ Higgs boson + relativity + quantum mechanics + symmetries...
= “The Standard Model”

e almost certainly incomplete

* no gravity yet

e 25 free parameters (!)

« agrees with ~all experimental observations!
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Open Questions

What 1s responsible for dark matter (and dark energy)?
Why 1s Nature left-right asymmetric? Why three families?

Why does the universe consist almost entirely of matter,
rather than a mixture of matter and antimatter?

Why are there 3 space dimensions and 1 time dimension?
Why is gravity ~10* times weaker than electromagnetism?
Why 1s charge quantised?

Why 25 free parameters?

Theoretical Physicists have proposed a number of alternatives to
the Standard Model that address (some of) these questions:

Supersymmetry, Grand Unified Theories, extra dimensions,...
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Inside the LHC




The ATLAS Detector at the LHC




The ATLAS Detector
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Tile calorimeters

LAr hadronic end-cap and
forward calorimeters

LAr electromagnetic calorimeters

Toroid magnets

Muon chambers Solenoid magnet | Transition radiation tracker

Semiconductor tracker
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Large Hadron Collider




A simulated supersymmetry event

high p.. jets
of hadrons

missing energy from undetected neutralinos
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Simulated event from supersymmetry

ATLAS Atlantis Event: susyevent

Here momentum imbalance
towards upper right
indicates that invisible
particles (here neutralinos)
escaped to lower left
(““missing energy”’).
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Background events

ATLAS Aatlantis Event: myFiles2_8.4.0_3026_799902

This event from Standard
Model top-antitop production
also has high p. jets and
muons, and some missing
transverse energy.

— can easily mimic a
SUSY event.
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Discovering “New Physics”

For each proton-proton collision, record some set of measured
properties (energies and directions of the particles).

Compare the observations to the predictions of different theories

and see how well they agree. w Nobel

prize

If we can find a set of measurements where
the data are incompatible with the Standard
Model and in good agreement with some
alternative, we’ve made a discovery.

But the data are “random”! An
observed disagreement might
be a statistical fluctuation.
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Learning from Data

The term Machine Learning (ML) refers to algorithms that “learn
from data” and make predictions based on what has been learned.

In 1ts simplest sense, “learning” means the algorithm contains
adjustable parameters whose values are estimated using data.
ML can be seen as a part of or related to:

Artificial Intelligence

Pattern Recognition

Statistical Learning

Multivariate Analysis

Development from (mainly) Computer Science, (also) Statistics;
sometimes “Data Science” used to refer to all of above.

In Particle Physics, the most important application 1s the use of
classification to search for New Physics.
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Example of classification: Industrial Fishing

You scoop up fish which are of two types:

Sea
Bass

You examine the fish with automatic sensors and for each one
you measure a set of features:

x, = length x, = area of fins
x,= width xs; = mean spectral reflectance
x, = weight Xg= ...

These constitute the “feature vector” x = (x,,..., X,).

In addition you hire a fish expert to identify the “true class label”
y=0or1 (i.e., 0 =sea bass, 1 =cod) for each fish.
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Distributions of the features

3

2 B K _ blue =class 1
If we consider only two 1- . /
features x = (x,, x,), we T TN . decision
can display the results // boundary

1n a scatter plot.

— red =class 0

Goal 1s to determine a decision boundary, so that, without the help
of the fish expert, we can classify new fish by seeing where their
measured features lie relative to the boundary.

Same 1dea 1n multi-dimensional feature space, but cannot represent
as 2-D plot. Decision boundary is n-dim. hypersurface.
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Classification of proton-proton collisions

Proton-proton collisions can be considered to come in two classes:

signal (the kind of event we’re looking for, y = 1)
background (the kind that mimics signal, y = 0)

For each collision (event), we measure a collection of features:

X, = energy of muon X, = missing transverse energy
x, = angle between jets X5 = Invariant mass of muon pair
x, = total jet energy Xe= ...

The real events don’t come with true class labels, but computer-
simulated events do. So we can have a set of simulated events that
consist of a feature vector x and true class label y (0 for
background, 1 for signal):

(xa y)la (xa y)29 ceeo (xa y)N

The simulated events are called “training data”.
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Separating Signal from Background

What 1s the best “decision boundary”? .
signal events

< -2 — 0 \ — 2 — 4
X X
L background
Complications:
events

The boundary 1s a hypersurface in a space with, say,
tens or hundreds of dimensions.

The events of the signal type may not exist in Nature! Goal
1s to see 1f anything “signal-like” 1s present in the real data.
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Mathematics of the decision boundary

A general surface in the
n-dimensional feature space can be
described by an equation of the form:  #(x1,...,z,) = const.

For example, 1f the

L. c1r1 + coxr9g + ...+ ¢, = const.
function 1s linear:

then the surface is linear:

The values of the constants
Ci, Cy,... are adjusted using
the training data.
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Distribution of linear decision function
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Nonlinear decision boundaries

From the scatter plot below 1t’s clear that some nonlinear boundary
would be better than a linear one:

3 L L ]

And to have a nonlinear
boundary, the decision
function #(x) must be
nonlinear in x.
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Neural Networks

A simple nonlinear decision function can be constructed as
n
t(x) =h | wy+ E W;T;
i=1

where / 1s called the “activation function”. For this one
can use, €.g., a logistic sigmoid function,

1 T T T T
08 “
06 -
1
h(u) = T o=u o4 | |
02 “
0 | | | | ; u

4 K 0 2 4
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Single Layer Perceptron

In this form, the decision function 1s called a Single Layer
Perceptron — the simplest example of a Neural Network.

X1

O £(X)

T

output node
Xy

T

input layer
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Multilayer Perceptron

T hidden layer with m nodes

input ~ ¢1(%),..., 9,,(x)
layer

Each line in the graph represents a parameter which must
be adjusted using the training data.
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Distribution of neural net output

Degree of separation between classes now much better than
with linear decision function:

| back- signal
ground
\ |

0.0 0.2 0.4 0.6 0.8 1.0
decision function t
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http://neuralnetworksanddeeplearning.com/chap1.html

Deep Neural Networks

The multilayer perceptron can have be generalized to have an
arbitrary number of hidden layers, with an arbitrary number of
nodes 1n each (= “network architecture”).

A “deep” network has several (or many) hidden layers:

hidden layers

output layer

O\ A"Ia' "
25 L
AN

X
A X

input layer (¢

“Deep Learning” 1s a very recent and active field of research.
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Overtraining

Including more adjustable constants in the decision function makes
it flexible, and 1t may conform too closely to the training points.

The same boundary will not perform well on an independent test
data sample (— “overtraining”).

A

i training sample - 1independent test sample
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More Machine Learning

Many other ways of defining classifiers:
Support Vector Machines,
Boosted Decision Trees,
K-Nearest Neighbour,

There are lots of free software tools, especially with Python:

scikit-learn.org

and many online courses; here’s a good one (K. Markham):

www.dataschool.io/machine-learning-with-scikit-learn/

and here 1s a website for experimenting with neural networks:

playground. tensorflow.org
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The Higgs Hi9gsH] the HiggsML challenge

May to September 2014
MaChlne \When High Energy Physics meets Machine Learning

Learning
Challenge

higgsml.lal.in2p3.fr

Highly popular competition
to foster exchange of 1deas
between Machine Learning
and Particle Physics

The Challenge: optimise

search for Higgs boson decay
to pair of tau leptons

Advisory commitiee

. . AL -4 Isabelle Guyon - Chalearn Thorsten Wengler - Atlas-CERN Joerg Stelzer - Atlas-CERN
G. Cowan / RHUL Physics Learning from data 12 / : y ; .

(lgire Adam-Bou AL Andreos s-CERN Marc Schoenauer - INRIA



Searching for Higgs — tau leptons

J EXPERIMENT
Run Number: 209381, Event Number: 72873013
Date: 2012-08-28 04:17:16 CEST
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G. Aad et al. [ATLAS and CMS Collaborations], JHEP

1608 (2016) 045 doi:10.1007/JHEP08(2016)045

[arXiv:1606.02266 [hep-ex]].

Coupling strength of Higgs to other particles

LI | T T mrrrrry

> b ! LR | ! orr
E |§ 1F ATLAS and CMS
14 : ‘< - LHC Run 1
Probability of Higgs ;
decay to a pair of particles ©
y- b : P el> 107 E
of a given type 1s b :
proportional to the square
of the “coupling strength”. 02k _
: ATLAS+CMS
Excellent agreement with ' > -
o Y R SM Higgs boson
predictions of Standard 107 M, ] it :
Model observed. 7] 68% CL
[ 195% CL
10_4: T NPT | b1l 3
10~ 1 10 10?
Particle mass [GeV]
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https://www.wolfram.com/mathematica/new-in-10/highly-automated-machine-learning/

Machine Learning for handwriting recognition

Initial feature vector = set of pixels of an 1image

(222 § 25, b8, Q0. 22,747, G5, [ 1,
?-.3.0-oo,3-.3,¢'-.9,6-.6,2_-.2,9-.8,Z_-.z,
0"°'l!"" é-oG,I-ol,\-ol,']-o'l,g-oa,s-oS,
D0 K4, 747, f26, (J20, 222, G 5,
3-03,/-01,5-05,6-06,.\-07,5-05,1"-04, l—ol,
7-09,3-03,6-06,8-08,0-00,9-09,3-03,
0-.0,3-.3,7-.7,4,-.4,A-.4,}-.3,8-.a,°-.o,
4-.4:,‘-.1,}-.3,7-.7,6-.6,4-.4,747,2-.2,
7-07,)-02,5-05,242,&-00,949,848,6'49,
'-08,/41,646,‘1‘*4,?*8,5*5,6*8.

O~ g6 F1. 44, 55 T8, ff+4,
3-03.\-01, 5--05,‘-01,?-09,(7-09. ?-09, 2-02,

Gt o7 a2, | G5, 202, Qe )]
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Y. LeCun

Scene parsing/labeling with
Convolutional Neural Nets

[Farabet et al. ICML 2012, PAMI 201 3]

Deep Learning and the Future of AI, seminar at CERN by
Yann LeCun: https://indico.cern.ch/event/510372/
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Summary and Outlook

We are continuing to learn about the fundamental particles of
Nature with the Large Hadron Collider

Precision measurements of Higgs boson properties
Search for supersymmetry

Search for micro black holes, gravitons, W', Z/
(extra dimensions)

Machine Learning 1s or soon will be ~everywhere:

G. Cowan / RHUL Physics

Huge interest in Particle Physics, many interdisciplinary
Initiatives, opportunities for under- and post-grad students.

Lots of accessible software tools (e.g., scikit-learn)

Huge impact on society
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Extra slides
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Muon
Spectrometer

Hadronic
Calorimeter

The dashed tracks
e are invisible to
’roto = the detector

Electromagnetic
Calorimeter

Solenoid magnet

Transition
Radiation

Tracking Tracker
Pixel /SCT detector

How ATLAS works




Simulated “Monte Carlo” Data

Once we define a theory of £ = v, (z P —m; — g’;’;j ) bi

particle physics, we should in 0 -

in principle be able to work out ~ 2,3 Zz: Vit (A=) (T Wy + T W) ¥
the probability for any possible e 3" T i Ay

data outcome: i

i

Prob(data | theory) 2cosew Z“ (9 —947°) Vi Zy

But the calculations are too difficult. Instead we can create
computer programs that “generate” simulated data using
random numbers (the Monte Carlo method).

We have separate Monte Carlo programs that generate events
corresponding to different theories:

Standard Model, Supersymmetry, extra dimensions,...
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421 (pi0)
422 n0
423 pi-
424 gamma
425 gamma
426 pi+
427 (pi0)
428 pi-
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Training data

The most widely used Machine Learning algorithms used in
Particle Physics involve “supervised learning” — this requires
samples of data where the type of event is known.

Nature does not provide labels for the real data, so for this we use
the simulated (Monte Carlo) data.

So for two event types (signal and background) we have
simulated events each with a feature vector and true class label.
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A simple example (2D)
Consider two variables, x, and x,, and suppose we have formulas

for the joint pdfs for both signal (s) and background (b) events (in
real problems the formulas are usually notavailable).

f(x,]x,) ~ Gaussian, different means for s/b,
Gaussians have same ¢, which depends on x,,
f(x,) ~ exponential, same for both s and b,

fxp, x5) = flxyfx,) fxy):

1 2 1022 1
—(a:l _ﬂ's) /20’ (11,‘2) —332/)\
I1,T9|S) = e e
f( : 2| ) 2‘710(1172) A\
1 (1 —11: )2 /202 1 _
f(z1,z9|b) = o~ (@1—pp)?/20%(z2) = ,—z2/A

V2o (xq) A

0(:132) = O’()e_"m/€
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Joint and marginal distributions of x,, x,

o 8
x

6  background”

= — signal

----- background
0.75 -

05 r

0.25
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0.75 ]

05 r

0.25 r

— signal

background

Distribution f(x,) same for s, b.

So does x, help discriminate
between the two event types?
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Contours of constant decision function

Exact likelihood ratio Linear boundary
(theoretical optimum)



Contours of constant decision function (2)

Multilayer Perceptron Boosted Decision Tree
1 hidden layer with 2 nodes 200 iterations (AdaBoost)

Training samples: 10° signal and 10° background events



