Lectures on Machine Learning

DAT ~IN(ASTROJPARTICLE * * -
4] PHYSICS and COSMOLOGY.

“School 25, 26,27 MARCH 2019 2 A

il B £ Ccostogleaer 4 -2

~) Tommaso Dorigo, INFN-Padova
(e e Braga, March 25-27, 2019

Lecture 3
Neural networks and HEP examples

Higosi the HiggsML challenge

May to September 2014

When High Energy Physics meets Machine Learning

Contents - 3

Lecture 3: NNs and HEP applications
— Neural networks
— Playing with NNs

— Advanced techniques
 INFERNO
* DNNs
* Convolutional NNs
* Genetic algorithms

— Practical tips

— Machine Learning in HEP
* Generalities
* kNN for H>bb
* Clustering for HH theory space benchmarking
* Higgs Kaggle challenge

— Conclusions

NEURAL NETWORKS

Neural Networks - introduction

An artificial neural network (ANN) is a program that simulates the behaviour of a series of
neurons and their connections

ANNs are capable of producing very flexible functions of the feature space variables

At the heart of the ANN there is an architecture of nodes organized in layers. Every "neuron”
of a layer receives inputs from some of (or all) the neurons of the previous layer

Neural networks are extremely powerful tools for supervised learning tasks, such as
classification and regression.

4 neurons 2 neurons 1 neuron

X, b p b s

T T
1he ou are

weights Wi
by the th

Looking inside

Each neuron may emit a strong or weak signal, in response

to the combined stimulus coming from its inputs =2

activation functions parametrize the response signal. - [
i

The signal is transmitted to the neurons connected to it in

the next layer.

Mathematically, the behaviour of every neuron is

described by two parameters (a bias and a weight). The

training phase of the ANN (learning) consists in finding

parameter values which minimize a loss function

-~

Ll al=]

3
@ =8

) 5

5 3

5

S

)

For binary classification problems, the loss function may be simply the fraction of

misclassified events. From that one can construct a binary cross entropy.

The crucial step in the minimization phase is "back-propagation".

Training events are used to compute the loss function. During back-propagation the

contribution of each neuron (with associated weight and bias) to the loss is computed. This
way one may estimate how the loss would change if those parameters were changed. The
iteration of the procedure allows to obtain optimal values, with different convergence

strategies possible (e.g. "gradient descent").

1)

2)

Multi-class NN classification in 2 steps

convert the output label P() - gra
into a class probability,

using the softmax function) ' o '

cat dog car truck cow bicycle cat dog car ftruck cow bicycle

minimize the cross-entropy label of nods | label of nod |
loss between the output

probabilities and the target.

The cross-entropy loss is

computed as the KL

divergence,
p (X) predicted distribution target distribution
= p(x) log 1 1
q (X) 0.75 0.75
g(x) 05 p(z) 05
0.25 025
0 0
cat dog car ftruck cow bicycle cat dog car truck cow bicycle

label of node |

The Perceptron

The perceptron is the simplest NN

The idea is to try to create a mathematical model of a single
neuron, as a "node" which receives several inputs, sums them,
and gets "activated" if the sum surpasses a fixed threshold

The perceptron task is to select between two classes based in the Ao(u)
inputs it receives. The inputs are combined linearly:

=iy

cv

Above, x is a vector of inputs, and w is a "weight vector”, b is a
constant bias. The output is calculated as

=172

o a ®
L
The predicted class here depends on the sign of u. As wand b G @ 3 ey
define a hyperplane in the feature space: El -
wix +b =0, j
by adjusting their values one can achieve ideal classification if the & b +wlx =0
classes are linearly separable

Predictor variable

Learning w and b

Suppose we have training data {x;}, i=1...N for the two classes, labeled as such:
y; = +iESiGin C,
y, = -1"feri in C,

To simplify the math, we include b in the weight vector, adding a 0" component to
x=[1,Xy,...,X,] and w={b,w,...w_}.

If for an event i we write u; = w’x;, then (due to how we defined y) u;y; is >0 (<0) if
the event is classified correctly (incorrectly). We can then write an error function, if we
define M(w) the set of misclassified events:

e(w) = —z wlxy;
ieM

We can minimize this function to find the optimal weights. This is done by iteratively
stepping in the right direction:

w(k + 1) = w(k) — Ve(w(k)) = {W(k) if i¢ M}

This way, the weights get adjusted to reduce the misclassification error.

The smooth output: logistic sigmoid

1

In neural networks, rather than a

discontinuous score as in the perceptron,
the response of a neuron is modeled by a

continuous, differentiable function

Bos

The simplest of these is the sigmoid.

oar

o2

In logistic regression, one assigns a
probability to events based on the
distance from the boundary, using the
logistic sigmoid function:

hix;w) = w' x

ply = 1|x) = a(h(x,w))
B 1
o 1+€—WTX

Logistic Sigmoid

1] x)

py=

© 1

= Fitted decsion boundary
oog Predicted probability

[M.Kagan]

Meaning of the sigmoid

If we express the posterior probability of x to be in class C, as a
sigmoid,

p(x|Cy)p(Cy) N (1) = 1
p O TENRUIRES o T reu

p(Cylx) =

we can compute the inverse of o as

o £ logp(cllx)
£ =g p(Cz|x)

u = log

This is called logit function, and corresponds to the log of the relative
posterior odds.

The feed-forward neural network

We can put together these elements to
create a non-linear function of the
inputs, which can learn much more
complex separation boundaries than a
hyperplane

A feed-forward NN is composed of
nodes connected by forward links.
There is >=1 hidden layer, and one
output layer

— for binary classification, all you need
is one node in it

The nodes need not all be connected,
but there must be no circular reference
— the value of a node must be a
deterministic function of what comes
before

N
e

YA

bias terms

LO (input)

L1 (hidden)

L2 (output)

Calculation of the function

The FFNN is a complex, differentiable function of the inputs, and it offers a
simple solution to the problem of optimizing its parameters.

For a formal treatment let us define:

* 2z betheinputs to nodei(i=1,...Z, where Z is the number of inputs for
that node; z,=1). For layer O (input layer), z;=x; is the vector of inputs.

[When we need to specify it, we add an index j for the node and an index m for the
layer, so z.. is the i" input to the j*" node of the mt" layer]

ijm
* W;, be the vector of weights for that node (with wg; =b, , the bias
term).

The rule is that at each node the inputs are summed with a linear
weighting, to obtain the activation of that node, a (a;,, when needed):

Z
qos 2 i s i=1...Z inputs for a node
i=0 j=1...) nodes of a layer

m=1...M layers

Adding nonlinearity

Nonlinearity is introduced by choosing a suitable continuous differentiable
function of a to model the behaviour of the node. A common choice for inner

layers is

10}

h(a) = tanh(a) J
whose derivative is e Vo NS
h'(a) =1 — h(a)?

For the output layer, as we saw, the sigmoid is the common choice for binary
classification (one output). For K classes, one uses the soft-max
generalization, which retains the interpretability of outputs as posterior

probabilities:

eak

o = oa(ay) = W
"=

Calculation/2

Let us consider a 3/2/1 architecture, and compute

activations in the hidden layer as bias terms
3

(for each node j:) Ajq = z Wij1Xi LO {input) L1 {hidden) L2 {output)
i=0
The output layer receives as inputs the sum of j=1, j=2 activation functions
Zj.= h(ajl) = tanh aj;
The activation in the output layer is then

2
a = Wi12Zj (node 1 of layer 2)
(=0
and the output is the activation function (a sigmoid) of the above:

o =ol(a)

-1
2 3
= {1 + exp [—sz - Z Wj12 tanh (Wojl o= Z Wijlxi)]}
j:]_ =l

Backpropagation:
where the magic happens

Consider the two-class case, with binary output y,,=1/0 for signal and
background, and the 3/2/1 2-layer network of the previous slides. If
a(x,w) is the activation on the output node, the output is

1
1+ e—a(xw)

o(x,w) =

This means that p(C, |x)=o(x,w), and p(C,|x)=1-o(x,w) so we can write
syntetically
p(y[x) = o(x,w)¥ [1-0(x,w)]*Y

We have a differentiable model of the class probabilities, so we may
write the —log(L) for a training dataset {x,)...Xy} as

e(W) 1 Z7I¥=1[yn log On(xn» W) + (1 = yn) log(l — On(xn: W))]

This is called (binary) cross entropy; it is the most commonly used loss
for classification.

Finding the weights

To find the optimal weights, we need to minimize the BCE loss. We are
helped by noting that the loss is decomposable in per-event
contributions e_, which are a function of the weights. We need to only
find the gradient of the error function with respect to each weight:

en(w) = —{yn log oy, (xp, W) + (1 — y)log[1 — 0, (xp, W)}

We take the derivative of e, WRT the weight for the it" input to node j
in layer m, w;:

de, de, Oaj, ey~
= — BRim<ijm N
an]m Oa]m an]m

v

de . : /
where e,, .., = — and we have used the activation /

njm 0 jm

nm—l bias terms

ajm = Zi—O Wiijijm LO (input] L1 (hidden)

L2 (output)

Finding the weights/2

We work our way from the output layer M to the previous ones. While for the
output layer the error caused by event niis e_,,,=0,-y,, for nodes at layer m=M-1

we should write

aen an+1 aen aaq,mﬂ_z:"mﬂ aaq,m+1

S €ng,m+1

enjm L

q=1 aaq’m+1 aa]m

(At layer m+1=M there is
only one node, but this
formula works for any layer)

To evaluate derivatives we proceed thus:

aaq,m+1 Remember: g
Toq, . / G =) WigmZijm
. i=
jm
< Nm aZiq,m+1 B | Nm ah(aim) — n
= i Wigm+1 0 "o \ Wigm+1 9 = Wigm+1 (ajm)
=1 ajm 1=1 ajm

Hence we find
NMm+1

= /
enjm = h (ajm) Z : ij,m+1enq,m+1
q:

Finding the weights/3

The formulas of the previous slide allow us to work our way back
recursively through the NN, using the chain rule.

For tanh() activation in inner layers the error contribution of event n due
to weights in node j of layer m is written
! NMm+1
Cnjm = [1 o h(ajm)]Z) Wqjm+1€ngm+1
q:
The weight updating process is iterative, and modulated by a learning
rate n:

W(k+1) = Wk =" 7’]\78(Wk)

One may choose to use the whole training set to evaluate the gradient
(batch learning), or to update weights at each new event evaluation
(online learning). They have different applications and properties.

Online learning is better fit to jump out of minima, but the learning may
take longer.

Choices of Activation function

We want it non-linear, otherwise hidden layers do nothing; it must be monotonic to
ensure convergence of the optimization problem; and smooth. Often also preferable to
have rapidly changing for input close to zero, slowly changing for large input

1

Sigmoid Leaky RelLU

1 max(0.1z, x)
14+e—*=

o(x) =

tanh

Maxout
tanh(x) max(wix + by, wix + by)
RelLU ELU

max(0,) {Z(eﬂ: —1) i i 8

Learning rate

Above we mentioned the learning rate — the

parameter n controlling how fast the sdechu
f(x) A /

parameters of the learner are updated

In a NN the weights, on which depend the L

strength of the response of an activated

node, are adjourned by back-propagation tieabon:4

——Conyergence /

For NNs n is one of the crucial parameters in
the search of optimality

Advanced techniques have been devised to
overcome the difficulty. These include slowly T

: . . Final
decreasing n, scheduled modulations in n, Vakia

momentum, etcetera.

Regularization

We have already encountered the concept in general. In ANNs,
regularization is similarly applied by adding to the loss a penalty term

e L1 loss:
e L2 loss: (AKA "weight decay")

A different method is called "dropout™: during training, a random set
of nodes is removed at each pass.

* prevents collective effects conditioning the training

[M.Kagan; see
(b) After applying dropout. arX|V12070580]

Playing with NNs

Let us play a little

A wonderful web page allows us to fiddle with the
architecture and hyperparameters of a NN, training it to
solve simple 2D problems.

https://playground.tensorflow.org/

Tinker With a Neural Network Right Here in Your Browser.

Don't Worry, You Can't Break It. We Promise.

D Epoch Learning rate Activation Regularization Regularization rate Problem type
>l
000,000 0.03 Tarh None 0 Classification
DATA FEATURES + — 2 HIDDEN LAYERS QUTPUT
Which dataset do Which properties Test loss 0.569
you want to use? do you want to Training loss 0.548
feed in? = A= A=

4 neurons 2 neurons
! L4 3
[Ct [}
Ratio of training to

test data: 50%
—e

Noise: 0
[
Bal

tch size: 10
—e

https://playground.tensorflow.org/

Exercises with simple NNs

1) We take the first proposed dataset
in the web site

What will be able to do if we use only
one input (e.g. the first one from top) ?

Epoch Learning rate Activation Regularization
000,541 0.03 Tanh None
FEATURES + — 2 HIDDEN LAYERS
Which properties do
ou want to feed in? Y= Y =
2 1

OUTPUT

Test loss 0.247
Training loss 0.217

-

000,238

FEATURES

Right: a much more complex
network does not perform any
better, but takes much longer
and requires tuning

Problem type

Classification

.

Left: the simplest
possible NN quickly
converges to the
optimal result

0 Classification

OUTPUT

- Answer: you can't do better than about 0.25, independently
of the chosen architecture / hyperparameters

2) What if we use both the x and y inputs? What changes
when we go from a 2-nodes hidden layer to one with more ?

FEATURES + =— 2 HIDDEN LAYERS

<
00s’ & .
L) @
e & e °
(X @
° Y
LI
- '\f...‘_. e
'.oo. M ey
®9 ‘.‘. o
°* B 2S5
. ‘ . ® oo ®
° "o gyw
000,385 0.03 Tanh None 0 ° @

FEATURES 4+ = 2 HIDDEN LAYERS

Lo

Top: two nodes
in the hidden
layer. The test
loss is 0.21

Bottom: three
nodes vastly
outperform the
2-node NN; the
classification
becomes
perfect in this
case

Epoch

000,534

FEATURES

Which properties do
you want to feed in?

Learning rate

0.03

_+__

2 neurons

Activation Regularization
Tanh None
+ — 2 HIDDEN LAYERS
+ —
1 neuron

Xa

g |
o

Epoch

000,385

FEATURES

Which properties do
you want to feed in?

—
L]
i D L L

Learning rate

0.03
+ -
3 neurons

»

s
--""’
Activation Regularization
Tanh None
+ — 2 HIDDEN LAYERS
+ -
1 neuron

-
—

- -
- -
- e
-

-

Regularization rate

0

OUTPUT

Test loss 0.210
Training loss 0.191

e]

Problem type

Classification

Regularization rate

0

QUTPUT

Test loss 0.003
Training loss 0.001

__...-._-;-_-_-_-_-.'.—.-_1D-----------|
-

Problem type

Classification

2b) What happens if we add more inputs, but keep just two nodes in
the hidden layer?

—> A 3/2/1 architecture, and let's use a tanh activation, with 0.03
learning rate.

What test loss can you get ? What inputs did you pick?

FEATURES + — 2 HIDDEN LAYERS

Which properties do
you want to feed in?

-3

+ - + -

Z neurons 1 neuron

p

| The oulputs are
]
This
-

% | mixed with varying
weights, shown
by the thickness of
X12 4 This is the outp the lines.
from one neuron
Hover fo see it
a

With 3 inputs the classification becomes perfect even
with only two nodes in the hidden layer. Why?

FEATURES

Which properties do

you want to feed in?

XX,

HIDDEN LAYERS

+
+ -
2 neurons
,,,,,]
3

This is the oulput
from one neuron.
Hover fo see it

OUTPUT

Test loss 0.001
I & Training loss 0.001

1 neuron

--:I............

frixed witn varying
wea’gh ts, shown
hv the thickness of

Colors shows -

data, neuron and ! L ;
. -]

weight values.

[showtestdata [Discretize output

3) Now let's try using two inputs and three nodes in the HL, but change from
tanh to relu the activation function.

What do we expect will change?

3 neurons 1 neurcn

l,

e L

Epoch Learning rate Activation Regularization Reqularization rate Problem type

000,506 0.03 RelU None 0 Classification

FEATURES + — 2 HIDDEN LAYERS OUTPUT

Which properties do Test loss 0.003
you want to feed in? raining loss 0.003
y + - Y Training loss 0.003

3 neurons 1 neuron

X S p
1 -.-."ﬁr.‘ “"- -
P

%

Ll
“' ‘“-"""-—-
---ﬂ S e

-.
0 .
oy >
oL _\”a 5
L}
L Ui e
2] eSS - . -’u.'..)
e fimas b= g 0z e
P the lines.) . .. N 0
A esOn, G
O
L] s '.. ry Ll
. (0
O
ger.
0

We get a more spikey decision boundary, an effect of the sharp nature of
"relu”

Question: why 6 sides? How many edges do you expect in the decision
boundary if you use 4 neurons?

8? Not necessarily!...
Why?

Epoch Learning rate Activation Regularization Regularization rate

000,297 0.03 - RelU - - 0 v

FEATURES + — 2 HIDDEN LAYERS OUTPUT

Test loss 0.002
Training loss 0.001

Which properties do

you want to feed in?
+ — + —
4 neurons 1 neuron
TR - .
\\\M"“\ : .--""'--:-”::’f‘- .
SN _—
"\ "'""-..___ - 7

X . A —— e e Pl

2 -, L} -~ 4

\“‘-..,\\\ g /” The outputs are
- ’ mixed with varying
A . - /, .

- \\ \ - y weights, shown

£ ——
X, N\ "'"---Q-"'" rd by the thickness of

\\ \\ /z’ the lines.
, -
LAY -
NN, -

2 "'..:‘-..___ ___...--"'

X_ " e
«
I."
X X, \ This is the output

from one neuron.
Hover fo see it
larger.

Problem type

Classification

Here is a pathological case:

we seem to fail to obtain the wanted result from these three neurons!
Maybe we can intervene to drift away from the local minimum?

The application
allows you to do this
manually, by clicking

on the link FEATURES + = 2 HIDDEN LAYERS ouTRUT
connecting the first o s ae na et

hidden node from « I~ 3]

the top to the -
output one,
modifying the
weight

Epoch Learning rate Activatio Regularization Regularization rate Problem type
000,330 0.03 ReLU Nons 0 Classification

Let us go back to the tanh activation

And take the 4th dataset:

This problem is much more complex. We can start with only two inputs
X,Y

Try this at home. What result do you get ? Do you need many layers? How
long does the training requires to converge ?

Using only x,y inputs it is harder to get to a good result...

But why? After all, {x,y} are a complete set — a sufficient statistic!

By sweating over this simple problem you will come to learn that in
order to give the NN the needed flexibility to learn the correct non-

linear combinations of the given features, you need to train for a much
longer number of epochs.

Note that a NN can perfectly

FEATURES + — 3 HIDDEN LAYERS OUTPUT
. . Which properties TesF !oss 0.103
well emulate, with appropriate et DE + T T
r inin Wh r m in i n 8 neurons 5 neurons 2 neuron: i .
TIZINING Wi g POMENLIS gl e N B S C
i) * o2 V4 &
of the inputs, without your need L I N Ay
to input it to it. W U
p \\“ ‘?‘\“ .Df—-.;' ‘%:l:," ":::D - "/- "II
\\i}“\ N D o ," ,l::"'i: D ,o" l"
. . iy \‘_ R N = ’/
But this points clearly to a SRS
. \“Ti \‘_D-g’__j_}. .;_.__:::D 4
conclusion: Y/
“‘lt R et / ! 3
2 V) e Colrsshows -
a N X \\‘ ’/ (] weights, how'; g al la, neuron an ‘1 [‘| J
A bit of feature engineering \Wy/ e i s
is worth many long hours spent Db ot
training a very flexible network!

D Show test data D Discretize output

Final Challenge

Try this at home.

Take the fourth dataset, and use a tanh activation. Use ==
4 inputs of your choice, 2 hidden layers, and a maximum
total of 6 nodes in the hidden layers

What test loss do you get ?
(Hint: you should get a loss close to zero)

Extra: if you can get a good score, can you do it with one
less node?

My solution

Epoch Learning rate Activation Regularization Regularization rate Problem type
003,879 0.03 - Tanh - None - 0 ~ Classification -
FEATURES + — 2 HIDDEN LAYERS QUTPUT
Nhich properties Test loss 0.008
do you want to Training loss 0.007
: D & D & gloss
feed in?
4 neurons 1 neuron
X, ------------------:-.l. SRR EEEEEEEEE
n"eess HO @ o
oo”” % i)

p . .
o7 P4 The aufputs are
‘ Q’ 4 mmxed willh varying

&
2 . - --l"' ;' weights, showit
X1 = ,’ by the thickness
' " of the lines
o

This is the output
from ore neuron.
Havar fo ses it
larger

XX,

sin(X,)

Colors shows
data, neuron and F
weight values.

sin(X,)

ADVANCED TECHNIQUES

NNs everywhere

The ascent of deep learning

in the XXI century has
brought to the design and
development of many
specialized architectures
optimized to different tasks

We can give only a peek, as
it is more fruitful to make
sure you have gotten the
gist of the basic concepts

A mostly complete chart of

P— Neural Networks

Input Cell odar - asimeninstitute

£ Noisy Input Cell Perceptran (F) Feed Forward (FF} Radial Basis Network (RBF)
Hidden Cell =
b e s

O Frobablistic Hidden Cell
&) spiking Hidden Cell

@ outputceu

Recurrent Neural Metwork (RNN) Long / Short Term Memaory (LSTM) Gated Recurrent Unit {GRU)
‘ o fa

NNy
@ natch input Output celt "‘
Sorinol
@ socorantcan
@ wemary ceu AutnEncader(AE) Variational AE [VAE) Denoising AE (DAE)

Hopfield Network (HM) Boltzmann Machine (BM) Restricted BM (RBM)

Deep Convalutional Network {DCN)

Generative Adversarial Netwaork (GAN) Liguid State Machine (LSM) Extreme Learning Machine (ELM) Etho State Metwork (ESH)
808
o . vy
’ R P K g~

D% (‘}' éf _‘_‘,;’ /A 2 '\A \.

{ o g,

AEZA-A
Deep Residual Netwaork (DRN) Kohonen Metwork (KMN) - Support Viector Machine (SWM] Neursl Turing Machine (WTM]

oo enTan en’s Koo caon

http://www.asimovinstitute.org/neural-network-zoo/

The multi-body problem

The more one works on a NN, the better results can be achieved (up to a limit given by
the NP lemma, which is however not usually achieved)

So is the message "take a problem and work at it very hard"? Not necessarily...

Take e.g. a HEP analysis where e.g. we want to measure the mass of a particle (e.g. top
quark). There are multi-variate problems everywhere:

It makes little sense to spend all
your time on one of these... That is
poor analysis design!

_ selected Better to try and optimize everything
independent control together if you can... Or get some
dataset ée% robust tool for each task
’%} &
. O
.
L Yo, Y
classification 2
unfiltered LR
events regression .
dai Systematics

v

energy calibration

INFERNO

One common problem of many analyses searching for a signal: the
classification of S vs N is normally "optimized" without accounting for
systematic effects, which are assessed later.

The INFERNO algorithm (from "Inference-aware Neural Optimization") proposes a NN
architecture that incorporates the evaluation of systematic effects on the estimate of
the parameter of interest (signal strength) in the definition of the loss.

The loss can be formulated as the expected sqrt(variance) of the likelihood fit that
extracts the signal from the classifier output

- the classification becomes robust WRT systematics and strongly reduces their
impact

compute via automatic differentiation

———

7 hY yd Y / N T ™
g |- Yo |1 Y off § & -1
@) [l R])] ([t

T [EY Gl-ted] [

) = = I\==) X 1)

'SIMULATOR OR NEURAL SUMMARY "INFERENCE-AWARE
APPROXIMATION NETWORK STATISTIC LOSS

stochastic gradient update ' = ¢t +n(t)V U
D W) Ve

Results on synthetic example

In a 3-D dataset of background plus small

(50/1000) signal, where there are three

nuisance parameters affecting the shape of the X

PDFs, the INFERNO classifier vastly outperforms - -

the NN classifier on the quantity of interest .

See for details arxiv:1806.04743 (to be AN
published in Computer Physics Ty m%% /ﬁ"\ ST

QTN B W

Communications) . . .

1.754 cross-entropy
inference-aware

Benchmark O Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4 __ 1504
= - ~
NN classifier 14991952 18047011 23.047052 21547020 26.71753% =
v pq40.09 o 041517 1654 0+3.15 . 0otT.63 4 1.251
INFERNO 0 15.51%005 18347537 23247030 21387345 26.3877% 3
INFERNO 1 1580924 1679700 21417299 20207120 2426723 3 1004
INFERNO 2 15718000 16877012 16.95T008 1688007 18677028 E
INFERNO 3 15705520 16017028 1697702 16.89700% 18.697020 < 0.75]
INFERNO 4 15717982 16807039 16057038 16887000 18.68T) 57 3
Optimal classifier 14.97 19.12 24.93 22.13 27.98 =
Analytical likelihood ~ 14.71 15.52 15.65 15.62 16.89 g 0-561
0.257
0.00 . : : . .
20 30 40 50 60 70 80

s parameter of interest

Deep neural networks

What is "deep"? Arguable, but already a network with >2 hidden layers can be
enormously complex

DNNs are appropriate for very complex data. While a single hidden layer should suffice
to produce arbitrarily complex functions, to do so the number of neurons has to grow
exponentially = better to increase the number of layers, essentially factorizing the
learning process

DNNs can be powerful but are usually difficult to train

hidden layer 1 hidden layer 2 hidden layer 3

input layer

g e A\

Convolutional neural networks

CNNs are a specialized form of DNNs

A very important commercial application is image recognition = used
to drive cars, recognize faces, interpret content

Convolutional neural networks

A convolution can be applied to reduce the dimensionality
of the input (e.g. a high-res image), retaining the
important information for later more effective processing

A number of "filters" can be used
to reduce the input data

00000000000 Oomo
oOoOoOoooOo [
1 O)E o0 oo
1 O)= 10 OO
OOooooOoOooood
1 O|L | oo
101 \ oo
0O000000O00oOo.o oo
1O Ol oo
101 O oo
1001 00Ol oo
77777 O

[|

L=W=5

Shared weights!!!

O0000000000
[m. []
(] [(N
oooodooooo
oo []
oo [(|
O0000000000
oo Ol 11
o0 [[
a0t] (]
O0000000000
(. (]]
00000000000

Convolved image

1/11/1/0(0
0,1/1(/1|0 4
0,0/1,(1|1

o 0|0(1(1]|0

S 0/1(1(0]|0

Image Convolved

Feature

http://danielnouri.org

Example of 3x3 filter

original filter (3 x 3) identity

(@) |[Hez) || (=)
o | = O
(@) ||]| (@)

Example of a blurring 5x5 filter

original filter (5 x 5) blur

0({0(0]|0]|0
0{1|1|1(0
0(1]1]|1(0
0{1|1|1(0
0({0/0|0|0

A 5x5 sharpening filter

original filter (5 x 5) sharpen

nale

L]
et

(=] =] [=} =] =]
(=] [=] fug f =] (=)

(=] [=] fwg [=] (=)
(=] =] =} =] =]

(=)

Example of a 3x3 edge detector

original filter (3 x 3) vertical edge detector

A 3x3 all-edge detector

original filter (3 x 3) all edge detector

e
—

[
(=]

Max pooling

A different reduction of dimensionality is achieved by the method of
"max pooling", which retains the most interesting information from
the inputs, producing in the output a more compact map of the image

g

B

Max Pooling

Layer N Layer N+1

Feature detection

Genetic algorithms

The first idea of algorithms that would evolve toward optimality is from Alan
Turing (1950).

Genetic algorithms are a subclass of evolutionary algorithms. These employ
the concepts of natural selection and pooling, to allow the best models (those
maximizing a "fitness function) to "evolve" from a random initial choice.

Commonly used in computer science to solve complex optimization
problems

* Can be powerful solvers, but have high CPU demand in repeated
evaluations of fitness

* Do not scale well with complexity (exponential space of mutations to
investigate)

* No guarantee that full space is explored; behavior hard to
understand/assess

Example: Neuroevolution for
data certification in CMS

Optimization of hyperparameters of
neural networks trained to classify
CMS data events

study ROC AUC as figure of merit

Start with random choice of
hyperparameter, create pool of
classifiers, train them

let them breed (crossover), insert
mutations

Re-seed periodically picking best-
performing 50%, other part fished
randomly to avoid getting stuck in
local minima, if evolution stops or
in case of bad mutations

Pool evolves to best choice of
hyperparameters

Initial population Selection Crossover Mutation Termination

Generate population | Calculate fitness Generate new Randomly change Terminate if max
randomly or using score for each population by one or more number of
seeds (hints). individual. Terminate | breeding individuals | parameters of newly | generations is
if desired score is with best fitness generated reached.
reached. = | score . individuals.

Initial population

Individual is an artificial neural network with all its parameters. Each individual is a solution to the
problem. Initial population can be generated randomly using parameter pool (Table 1) as well as
seeded with potential solutions where optimal solutions are likely to be found.

Figure 2: Population is made of individuals having same topology

Parameter Pool

Units (# of neurons) [15, 25, 50,75, 100, 125, 150, 250, 500, 750, 1000]
Activation [relu, elu, sigmoid, tanh]

Dropout [0.0,0.1, 0.2, 0.3, 0.4, 0.5]

Optimizer [adam, rmsprop, sgd, adagrad, adadelta, adamax]

Table 1: Parameter pool used to create initial population

Activation: tanh Activation: relu Activation: relu
Units: 200 . Units: 100 === | Units: 156
Dropout: 0.1 Dropout: 0.4 Dropout: 0.3
[Activation: tanh | [Activation: relu [Activation: relu Activation: relu
Units: 200 Units: 100 == | Units: 156 \ Units: 55
| Dropout: 0.1) | Dropout: 0.4 | Dropout: 0.3 | | Dropout: 0.3

Result of genetic evolution

The networks "evolve" to higher AUC values, as designed.

098 = T
|2 N random search (0.954)
1 | :
[| = neuroevolution {(0.967)
:Q |Q training
lu Im
i i
097 n o
0.96 1 -~ = N
o 3 .;'.'__
® e , R RoC S
Y s 3 : Her .
T 095 ST ‘; i -3
v} “l . I
(e} ., ' 1 ,
e Bre.® L 1 il .
r % | TR .
ot .o i S0 . 3
[& F . o] o ¢
a ! » "] | L= PR
094 H o = o
093 - ‘
b
t
0.92 T — T . T %
0 200 400 600 800 1000 1200

Trainings

Y

Mantas Stankevicius, Valdas Rapsevicius, Virginijus Marcinkevicius (fzy CMS /|
Vilnius University, Institute of Data Science and Digital Technologies :

mantas.stankevicius@mif.vu.lt

PRACTICAL TIPS

Step 0: yvwOL ceautov

First of all, you should understand the specific
needs of your problem. Name it!, e.g.

e Classification? Multi-class classification? Regression? Clustering?
Density estimation? Hypothesis test? Goodness of fit?
Optimization? ...

* |s it supervised or not supervised?

* If classification, do you need to estimate densities or can you
directly create a discriminator?

* What dimensionality do your data have? High/low/can be
reduced/cannot ...

* Are your data tall, wide, do they miss entries... ? Does it look like
you need to work on preprocessing / data augmentation?

Do you aim for a robust result or a performant one?

Step 1: choosing what fits

 Want something simple? kNN may do very well for low-D (or if you can
reduce D)

 Want insight in algorithm choices? Prefer decision trees

* Need high performance, aren't scared of complex optimization? A (D)NN
can be your best friend (for a long time ©)

In general, you should know that there is no free lunch (Wolpert, 1996)! It
was shown that there is no a priori method that outperforms others if no
prior specification of the problem is given.

[This is analogue to the issue "what GOF measure is best?" = there is no
answer, it depends on the specific density]

This is why many different algorithms exist, and more are coming in...

But some general empirical observations have been made

Empirical analysis

A survey of 179 methods (not including DNNs) was made testing them
on 121 datasets

= RF was the best performer in 84% of cases (see
http://imlr.csail.mit.edu/papers/volumel5/delgadol4a/delgadol4a.pdf)

Kaggle competitions also allow to draw some conclusions (M.Kagan):

* When high-level features informative of the system are present,
winners are often RF

* When you have lots of unstructured, low-level information per event,
DNN outperform all others

* CNNs typically work best in image classification, RNN excel in
text/speech recognition

http://jmlr.csail.mit.edu/papers/volume15/delgado14a/delgado14a.pdf

Random bits

Check what others have done in similar problems, even outside your domain —
study the literature if you at all can!

Try simple things first — they may be all you need (and they might even be best)

Don't avoid preprocessing! Study your data to see if there are degeneracies that
allow you to augment your training set

Always set up a robust validation scheme; divide your data accordingly; do not use
validation data for testing.

Check for overtraining using cross-validation, but don't forget to avoid
undertraining!

Use CV also to tune all the hyperparameters that may affect your results

MACHINE LEARNING IN HEP

Statistical learning techniques for HEP:
some examples

In HEP the commonest problem is extracting a small signal from large set of
background-dominated data = classification (sometimes multi-class)

Regression also widely used, e.g. to improve the estimate of an important
feature (sometimes as an input to classification)

Almost always we deal with supervised learning tasks, but anomaly detection
(unsupervised or semi-supervised) is starting to get attention. Resistance due to
insufficient trust in models out of the bulk of the phase space.

Clustering is used as a tool (e.g. jet reconstruction); at high level rarely. Will see
an example later (Higgs pair benchmarks).

Recently interest has boomed in more cutting-edge techniques:
* Generative Adversarial Networks (e.g. to create better models)
e Convolutional networks (image processing for e.g. jet substructure)

Data structures in HEP

Our data are collision events (e.g. pp interactions at the LHC), comprising
millions of readout channels providing information about the hard subprocess

After some dimensionality reduction one may look at data constituted by N
variables that describe the kinematics of observed phenomena

* single reconstructed particles (e,u, v, ...)
* |ocal collective effects (jets, b-tags, primary vertices)
* non-local collective effects (missing E;, H, ...)

Number of objects is not constant = representation problems, zero-padding...

One usually tries to construct "high-level" variables that help the discrimination
of signal from backgrounds

Things worth noting:
* the dimensionality reduction step usually also reduces available information

* DNNs should be able to construct derived quantities of interest from scratch,
but finite training time and dataset size make it useful to help them out

Some example ML applications in HEP

Online and DAQ: Data analysis, hypothesis testing,
* Fast identification of patterns for signal extraction:
triggering e Classify signal from background
« Data quality monitoring events
e Model backgrounds
Event reconstruction: * Regress to improve energy/mass
* Sort out hard interaction vertex, resolution, calibrate energy

measurements

* Find structures, detect anomalies,
identify benchmarks

handle pile-up
» Pattern recognition for tracking

* Reconstruct b-tags, boosted

hadronic systems, neutrino .
interactions Computing tasks:

° Classify to perform particle v Estimate dataset pOpu|arity
identification Optimisation of resources

Two ubiquitous HEP problems

1) Improve the energy resolution of jet pairs,
or photon pairs

Pre-2012, a lot of emphasis was given to this
problem in connection to H searches. Still at
the focus for high-mass particles.

A narrower M, or M, e peak improves
observability proportionally to 1/o

—> regression: achieve the best estimate of m,
given my, and other observables

2) Classify to obtain an effective "summary
statistic”, discriminating signal from
backgrounds

Often, rather than selecting data with high
value of a discriminant (BDT, NN, ...) one fits
the full distribution = tough modeling issues

T T T T LI (LI B S L B S B B B B |

t CMS Slmulatuon Nominal
[\s=8TeV o 1586eV(132%r

1}~ Z(I'T)H(bb), p: >100 GeV

Regression
c: 12.4 GeV (10. 0%)

Events /2 GeV

L | | R S
60 80 100 120 140 160 180 200
m(jj) [GeV]
y e 22907 (13 TeV)
§ fems T LT

T T T I O I AU BRI
= T T T T T T T
g 045"« (bata-background) background
2 03E- = (HH to b signal) | background
Qo 0oE- Total uncertainty
@ E =
LR .
g E PO ot ye svie ot gesats s e
e et

(=] E
Z-015

02 03 04 05 05 0.7 08 09 1
BDT output

For instance, in Higgs searches...

In the Nature review
article "Machine learning
at the energy and
intensity frontiers of
particle physics" by
A.Radovic et al. was
offered a summary of the
effect of ML techniques
employed by ATLAS and
CMS on Higgs sensitivity

The improvement over
non-ML techniques is
quite significant

More "aggressive"
methods could certainly
achieve still more

Table 1 | Effect of machine learning on the discovery and study of
the Higgs boson

Sensitivity Sensitivity Ratio Additional
Years ofdata without machine with machine of P data

Analysis collection learning learning values required
CMS™ 2011-2012 220, 270, 40 51%
H— vy P=0.014 P =0.0035

ATLAS% 2011-2012 2.50, 340, 18 85%
H— %~ P=0.0062 P =0.00034

ATLAS®® 2011-2012 1.9, 250, 4.7 73%
VH — bb P=0.029 P =0.0062

ATLASSl 2015-2016 2.80, 300, 19 15%
VH — bb P=0.0026 P =0.00135

CMS0 2011-2012 1.4o, 210, 45 125%
VH — bb P=0.081 P=0.018

Five key measurements of three decay modes of the Higgs boson H for which machine learning
greatly increased the sensitivity of the LHC experiments, where V denotes a Wor Z boson,
denctes a photon and b a beauty quark. For each analysis, the sensitivity without and with
machine learning is given, in terms of bath the Pvalues and the equivalent number of Gaussian
standard deviations o. (We present only analyses that provided both machine-learning-based and
non-machine-learning-based results; the more recent analyses report only the machine-learning-
based results.) The increase in sensitivity achieved by using machine learning, as measured by
the ratio of P values, ranges roughly from 2 to 20. An alternative figure of merit is the minimal
amount of additional data that would need to be collected to reach the machine-learning-based
sensitivity without using machine learning, which varies from 15% to 125%,

A kNN application: background modeling
for SUSY Higgs search with CMS

A search performed by the CMS-Padova
group in 2011-2012 concerned the
associated production of H and b-quarks

The final state includes >=3 b-jets

Supersymmetry foresees that these
processes may have a large cross section;
also, for much of the par space, two of the
neutral Higgs bosons are mass-degenerate
and contribute to the process

—> searching for the process contributes to
exclude theory space, and probe a region of
parameters where DZERO had seen a hint of
a signal

(o

The Problem

Multijet events are produced by QCD, and have a largely unknown, little-studied
heavy flavour content

* Monte Carlo simulations can somehow model this, but large uncertainties
remain from several assumed inputs and free parameters

 The mass spectrum of pairs of b-jets (anyway b-tagged) in a multijet sample is
hard to model in shape, very hard to model in normalization

* Errors cannot be constrained to few-% level

 Compare to requirements for MSSM H—>bb search: shape errors of 1-2%
already significantly diminish the observability of the signal
- need a data-driven approach
— and it better be a precise one!

Note: a background shape with a normalization constraint is a good thing to have
for a likelihood fit that searches for a signal in the spectrum, as the amount of
observed data is good information along with the shape of the mass distribution

Data-driven approach

In principle, one can try and determine the double b-tagging probability from the
data, in a suitable control sample, and apply it to a signal-enriched sample

— Example: in ==2-jet events (lower signal content) one calculates the fraction of (++)
events as a functlon of critical kinematic variables (e.g. jet E{’s, jet # of tracks, p; of
dijet system...) and derives a P**(E;1,N%,E-%,N2,pJl) matrix

— Then one can apply it to 3-jet events (higher signal content) extracting a prediction
binned in M;; (“++” are double tags in lead jets, “00” untagged jets):

N3°°(M ;X T+
N ++() 30 (M X) N ¥ () NJ.00 N0
3] OO(X) 2 3

i ++

— This method can model biases precisely only by binning in many variables X
(algorithmic dependence: N,,..., N; physics dependence: P}, E;, ADY, H-...)

—> Statistically limited!

The Hyperball algorithm

Originally developed in 2003 to increase resolution of dijet mass shape in low-mass SM Higgs
searches at the Tevatron, but in practice, not very different conceptually from standard kNN
algorithm

* You have a M; estimate for two jets coming from the H—>bb decay. Jets are mismeasured
due to many detector and physics effects; you want to correct these effects.

IDEA: you measure along with jet 4-momenta MANY other kinematical characteristics of the
jet and of the event that contains them

— Jets are “undermeasured” or “overmeasured” and this reflects in the value of other variables =
Use these variables to guesstimate a correction to M;;

The approach is multi-dimensional. In general, if a quantity f(x) varies in the space of the
observables x, you can determine its value in every point of the space by a nearest-neighbor
approach.

e To compute a meaningful average, you need a sizable number of training events. But
which ones do you pick ?

—>The CLOSEST ones in the multi-D space.

Application already described in Lecture 1...

How Close ? Or better, “which” close ?
Choosing the metric

Let us return to the problem of estimating P,,.: this is the function f(x) to be
evaluated with an “average” in the multi-D space of our observables

e Critical input: concept of distance between two points in the multi-D space
spanned by the observable quantities

— D =Xy naim (XiYi)* ?
This does not make sense if variables have different dimensionality
— D =X naim [(XYi)/ 0] (o, s.g.m. of i-th variable)?
- the ball is now an hyperellipsoid. Better-behaved, but it does not yet account for
the different “power” of different variables in predicting the function
— D=2 Ndim Vi(Ptag) [(x-y;)/]2
(vi(Pag) Variance of b-tagging probability along i-th direction around test point)

This is a better attempt: the shape of the “hyperellissoid” now depends on the test
point in space and adapts to the fine structure of the dependence of f on x

— we can develop this concept further (see next slides)

To find the best definition of a distance measure, we can construct an approximate

model of P,

test point, to derive bias in P,

as f(D,) (i labels directions in space)
One needs to determine how
quickly Py, varies

along each space

coordinate, in the
surroundings of each test
point.

The bigger the variation, the
shortest we want the interval
to be along that direction, to

in the whereabouts of the

/

Averaging the tag rate in
the interval [-A:A]

minimize the bias in the Piag
estimate

In other words: we evaluate P,

coordinate we are looking at (x;) the P

a bias at 0.

We estimate that bias with an approximation of the P

(see next slide for the math)

tag

p true
tag A
o N
Biasat 0
P (average)
tag
—
_______________________________________ _—______d_______ﬂ
Ptag(x=0)
| | |
| | |
A 0 A

averaging within [-A,A] (blue line). However, along the
may vary non-linearly (red curve), creating

curve as a quadratic function

Some (easy!) math

Problem: We cannot compute f(x)=P,,, along the coordinate x, because it is
an average! We know it only as a ratlo *of sparse points (tagged jets divided
by all jets)

« What we can do is compute "moments", i.e. integrals: ﬂ, — _[Xi f (X)dX

We write f(x) as a power series: f (X) =Y a X

Then we can integrate and write the A factors as a function of the a :

04 . |
2/ i A|+N+1 — _A i+N-+1
AN EoaeeE |

 Remember that we only need to estimate the."bias" o, i.e. f(x=0)
and how it varies if f(x) is non linear

- So we evaluate only A, and A, (A, does not depend on a, since
the expression in parentheses is null for i=0 and odd N) from the
number and coordinates of tagged and untagged jets in the interval.

[f(X) = 1 for tagged jets, f(x)=0 for untagged ones, and moments will
average these out |

We truncate at second order the series, f(x) = a,+o,x +a,x?, obtaining the
variation in the estimate of the P, at zero as a function of how “parabolic-like”

the A tell us P, is.

A =2Ac, +2A3%+...

First, let us explicitate A, and A,:

94 94
A =2 = +2N = +...
3 S
Now we invert the above two equations, eliminating a,, and calculate o, :

- 9N'A —154,
: 8A

a

This is the result for a parabolic f(x). If we had instead a flat f(x), we would find
Ao = 2A0, (Integral of flat distibution). The error we commit in estimating f(x=0)
with an average (i.e. assuming f(x) is flat in [-A,A]) can then be evaluated to

second order as
sy = Ao (9N, =153, 154, 5K,
RN SA’ 8SA’

Recipe summary

The recipe allows to estimate with no bias (to O(x?)) the error 60, we make
on the estimate of P,,, due to the extension of the integration region, and
due to the non-linearity of Piag iN it

The bit of math is needed to deal with discontinuous inputs on f(x), which are
eitherOor 1...

In order to minimize the global uncertainty of P.__ in a hyperball, weights can now be

chosen such that the sums of squares of the SOLBa%aCtOFS in each test point are
minimized

In practice the recipe is the following:

1) For each test point, inflate a ball (with axes determined by all-space
variation of tag probability along each direction)

2) use captured training data to compute bias 8, along each space direction

3) reconfigure ball shape such that
each axis is inversely proportional to
square of bias along that direction

4) compute P, with events captured
in new ball

Monte Carlo tests of procedure

Use data from a Monte Carlo simulation of QCD (5.5M events)

For the signal:
— bbH (H->bb), governed by two MSSM parameters: M,=120, 150, 210 GeV, tan 3 = 30,
— about 100k events for each parameter space point.

Use non-optimal (getting around CPU-intensiveness) options for the algorithm
N,,,=40,000 events (total ==2-jet events)
N,;=400 events (events in each hyperball)
— Predicting events with 2 tags (“++”) using untagged events (“00”).
— using 19 variables for the feature space

* Running 200,000 test events with >=3 jets, injecting 1% of signal (about 8 times more
than expected MSSM signal) in order to

— See if method correctly “finds” an excess of “++” events in the mass distribution
— Check for dilution effects

Goal: see whether dijet mass shape
can be modeled in QCD MC

Test with 200k QCD events, 2000 signal events
(bbH, m,;=150 GeV)

19 variables in space; Mass observable: dijet mass
of leading jet pair

Modeling events with ==2 b-tags in leading jet pair

Observe 8977 (++) events
Expect (HB) 8519.31£28.6

Excess from HB: 457.7
Signal in sample: 618 evts

Excess/signal fraction: 0.74

Agreement
at the few
percent level

| True dijet mass | M2 true
E Entries 9188
1600 Mean 179.8
1400)
e > Black: double tags
1000 -1 Blue: HB prediction
800 -85 Red: signal content
600—
400
200— [
c L I-LA_L'MI—-—— L .4_.:| nn e
% *""s0 100 150 200 750 300 350 400 450 500
| Difference true-pred M2_diff
Entries 36560
L Mean 159.4
C 2 I ndf 63.5/19
200— —e= Prob 1.067e-06
| po -0.5605 + 1.3769

150

50

0 50

Black: data - prediction
Red: signal content

150

250 300

| |
350 400

Results on data

The technique, applied to control sample of 1-b-tag events, correctly
predicts the background shape of 3-b-tag events in two disjunct datasets
(low-mass and high-mass search regions)

Result is compatible with one provided by matrix method (working on 2-
b-tag events, "closer" to signal region), but more precise

Events / 10 GeV

CMS 2011, L=4.8 fb" \s =7 TeV

OD

A

Y

=1

fel

Semileptonic Analysis |

Low-Mass Scenario

¢+ Data
Background

matrix
Background

nearest-neighbor

L
O

PR
L] "“ » —

I\'n.ll\Hll\\I‘I\\Illl\ll\l\ll\H\l\\l\ll\llll\ll

ey

50 100 150 200 250 300 350 400 450 500
M., [GeV]

> CMS 2011,L=4.8 fb',\s = 7 TeV
84500_\II \III‘\III‘\III‘\Il\l\ll\‘\II\‘I\I\\‘SIIII‘IIeI_
=) - N Semileptonic Analysis
~ 4000~ d Medium-Mass Scenario |
g2 F ¥ o a
c C]
© 35001 t Data 3
L L 13 + Background i
SDOOi matrix 5

L Background]

2500 :_ 4 ¥ nearest-neighbor _:

B *]

2000 —

C Ly,]

1500 A E
1000 s =

C o *l]

500 Ty -
R e S]
O_\\I."‘\III‘\III‘\III‘\Il\l\ll\‘\I:.\.I.\‘ﬁ'\“r‘uli"o"v oig]

0 50 100 150 200 250 300 350 400 450

500
M,, [GeV]

Unsupervised learning example:
Cluster analysis of HH production

After the 2012 discovery, one questioned if its characteristics were
those predicted by the SM

In particular its couplings to massive bosons and fermions are
predicted precisely 2 production and decay measurement can test
this

But H can couple to itself, too = how strongly ? The SM predicts a
value, but new physics might change that value. To test it one should
study processes sensitive to the self coupling: HH pair production

h Self-coupling allows HH production
through this diagram

regardless of
what goes on
here

we want to
measure
this

BSM HH production

If the Higgs Lagrangian contains differences with SM predictions, these can be
explicitated by anomalous terms in an "effective Lagrangian" that considers
terms up to dimension-6

In general one may think at 5 classes of diagrams contributing to HH pairs at
the LHC. For each one may define a coupling modifier, multiplying the SM
value (for (a) and (b) below) or plain generating a non-SM-existing process (in

(c), (d), (e)).

By measuring HH production one can thus exclude these theories.

(a) and (b)
exist in SM

(c), (d), (e) ,

do not exist in SM S » o

- related couplings -
(c) “ (d) *s (e)

are =0; >0 in BSM

Higgs Effective Lagrangian

1 0
Higgs effective Lagrangian after EWSB, neglecting couplings with light fermions H — NG (,U " h)

1 - - 1 ‘ V |] —
Ly, = 5(")# ho*h — E-m%h,z — Ky Asasv h? — ﬁ(-’U +reh+~—hh)(tptg + h.c.)
; v I\

29 1

v

BSM parameter space

We are dealing with a 5-dimensional parameter; each point corresponds to a different
phenomenology of HH production

Indeed, the frequency of production varies drastically, and also the kinematics in the
final state changes quickly

How can experiments test such a vast parameter space? One cannot do hypothesis
testing with, e.g., 10° theories (imagining a grid of 10 values per parameter)

We are helped by the fact that varying the five couplings, the final state (HH) is the
same) = an experimental search looking for HH pairs can be sensitive to many theories
at once; but not optimally!

— it is advantageous to define "benchmarks", theory points that are
"representative" as they describe situations that are maximally different and
separately searchable

The idea is then to find points of parameter space on which to optimize the
experimental searches, such that the optimized search remains sensitive to the largest
possible range of parameter space points

Parameter space scan

| _—7

4

Are the blue and red PDF different ?
Of course

Should we do two different

analyses (with differently optimized
MVA tools etc.) for these two points?
Or should we pick two different
points?

In other words, if we can only train two MVA, the question is whether we should
teach them to distinguish background from the blue and red signals, or from

the blue and green, e.g.

—> our choice impacts the sensitivity we have to a BSM hh signal in the full parameter
space... so we have to take it wisely!

Dimensionality Reduction!

We are interested in distinguishing different production mechanisms, so we can focus on
what really tells apart different BSM models that produce HH pairs before any decay
/ hadronization / detector / reconstruction effect

Variables choice .
The bosons are back-to-back in ¢ (no

ISR), so, disregarding of the particular
azimuthal angle, we just need 3 variables
to describe the system

PT, Pz1, Pz2

Boost along the z from parton distribution
beam axis functions we do not want to account for.
So we study the process in the centre of
mass frame with just two variables

ho

Mhnh, COSO*

Parameter space point @ Monte Carlo sample — 2D shape

Binning: sufficiently populated 50 (mnn) X 5 (Icos8l) bins.

mpn [0, 1500 GeV] 30 GeV wide-bin
lcosB*| [0,1] 0.2 wide-bin.

Construction of a Test Statistic

Likelihood ratio test statistic wedaed

Several possible choices to test samples similarity: Kolmorov-Smirnov, Anderson-Darling,
Zach-Aslan... Final choice: likelihood ratio based on Poisson counts.

Steps to build our likelihood ratio:

1. If the two samples under test share the same parent distribution the probability to observe
n{;and ny;in the i-th bin is given by

Pois(nq|i;) x Pois(n;a|fi), fi; = (n;1 +ni2)/2
however there is an ancillary statistic
Pois(ni1) x Pois(n;2) = Pois(n; 1 + n;2) x Binomial(n;1/(ni1 + ni2))

only the binomial term contains useful information

3 : N: 1+ 1n; T 1 ni1 1 4.2
Binomial(ni,/(niy +ni)) = i1 3;12} (_) -

ni1'n; 1! 2 2

Let’s call L the likelihood built from this pdf.

Likelihood ratio test statistic

. If the two samples are equal (saturated hypothesis) the pdf is just

| | 20! (1) 2
Binomial(n;1 = n;2 = ji;) = Eﬁ:—{:)}? (E)

Let’s call Ls the likelihood associated to this pdf.

. The (log-) likelihood ratio is defined as

Nbins
L S
I'5=2log (L—) =2) log(nia!) + log(niz!) — 2log (n . JQF - ’2!)
S ,
1=1

thanks to Wilks theorem TS is x2 distributed and can be used directly as an ordering
parameter.

In fact: a two-sample test produces in general a number (KS distance, AD distance,
chi-square, etc) whose PDF is not distribution-independent; being distribution
independent is a big advantage for a TS

Clustering algorithm

TSj> TSk

I and j are more similar
to each other then kl

Steps:

1) Identify each sample as one element
cluster

2) define cluster-to-cluster similarity as
TSmin = min(TS;) where i runs on first
cluster elements and j on the second one

3) merge the pair of clusters with highest
TSmm

4) repeat until the desired number of
clusters Neys is reached

5) identify the benchmark k of each cluster
as the one with the highest

TSkmin = mini(TSk)

where /runs on the cluster elements.

Ncius IS the only free parameter, fixed a posteriori.

TS u

TS,,

:>

TS;;™" > TS,
TS,,™" > TS,,mn

Nolus = 12 ChOiCG

Looking for Ncus ~ O(10)...

Clusters pair merged stepping from final cluster number Ncius t0 Neius -1

2000
1500
1000 - 1000 -
500
‘ 2000
o €0 800 1000 1200 0 1500

a h
Y400 €00 BO0O 1000 120C

g

m,, (GeVic?) m,, (GeVic?) ‘
j60 1000}
. 1500 soof
2000 0 400600 800 1000 1200 400 600 1000 1200
m,, (GeVrc?) m,, (GeVic)
i good homogeneity bad homogeneity
0™—300 €00 800 1000 1200 0
m,, (GeVic?) m,, (GeVic?)
Nelus = 11 Ny, =10 Tradeoff:

n L numerosity < intra-cluster homogeneity

Nclus = 10 N, =09
aooof
‘ 1000
600 B0O 1000 1200 2000} Jat
m,,, (Gevic?) m,, (GeV/c?) il
a8
1000) y
2000
15004 0400 600 800 7000 7200 O™ %0 "800 1000 1200
m,;, (GeVic?) m,, (GeVic?)
1000)
500
0™—400 600 800 1000 1200 0™—400 &0 800 1000 1200

m,, (GeVic) my, (GeVic?)

The Higgs Kaggle Challenge

https://www.kaggle.com/c/higgs-boson#tdescription

Higgs Boson Machine Learning Challenge

g g H Use the ATLAS experiment to identify the Higgs boson

challenge

Data Kernels Discussion Leaderboard Rules

Q’;\ A'I' LA Run: 204153
Evaluation 5"-‘_ A Event: 35369265
Prizes : Jj_ EXPERIMENT 2012-05-30 20:31:28 UTC

Timeline B /
e
)

About The Sponsors -

s/
A

\ - ’
Winners A = . B
e £ < \ 1

The problem

The gluon-fusion production process pp—2H—=2>Ttt is
not easy to distinguish from large backgrounds in
LHC data. CMS and ATLAS competed to "observe"
the decay long after the 2012 discovery in the easier
H—>7Z, H>yy channels.

In 2014 ATLAS loaded on Kaggle high-level features
of signal and background processes (30 per event),
challenging users to tell signal and background apart

In practice the request was to optimize an
"approximate median significance" measure on data
surviving a selection decided by the user with a
discriminant of their craft and tuning

359" (13 TeV)

) weighted events / GeV

B
o
1=
1=
I

S/S+

1200

® =3
2 o
I

I

&

=)

=)
T

no

(=1

[=]
T T T e T
L o N =

g3

F CEvEaog
L =

B TA 0] Ly S L L

- CMS J
1600

1400F

—a— OjeliT

VBF: rhrh

o 50 100150200250300
m,, (GeV)

Boosted: 77, pr ety e

=]

Events/GeV

—

il
50 100

150 200 250

300

m.; (GeV)

I

e 2

T | T]
- ATLAS Prellmlnary EIE,; 2”‘(2 e
r Vs=13TeV, 36.1f0"'

| TpTrag VBF tight SR

™ om B ackgr.
Misidentified 7
Uncertainty

) |

Data/Bkg
o

o

200

mYMC [GeV]

AMS

The evaluation metric is the approximate median significance (AMS):
&
AMS = \/2 (I:S—Fb—l—bfp)log(l—l—m) —8)

« g,b2unnormalized true positive and false positive rates, respectively,

where

« o = 10 is the constant reqgularization term,

« log is the natural log.

More precisely, let (z1,...,u4s) € {b,s}" be the vector of true test labels, let (¢,...,%,) € {b,s}" be
the vector of predicted {submitted) test labels, and let {w1,...,wy,) € R be the vector of weights.
Then

T
s =) wil{ys =s}{y; =5}
i=1

and

b=> wil{y; =b}{y, =s},
=1

where the indicator function 1{A} is 1 if its argument 4 is true and O otherwise.

Details

Submission Instructions

The submission file format is

EventId, RankOrder,Class
1,2,b

2,541234, s

3,5,b

4,1,b

5,542456, s

Your submission file should have a header row and three columns

« Eventld is a unigue identifier for each event. The list of Eventlds must correspond to the exact list of
Eventlds in test.csy, but the ordering can be arbitrary.

« RankOrderis a permutation of the integer list [1,550000]. The higher the rank {larger integer value),
the more signal-like is the event. 550000 is the most signal-like event. The largest background rank
should be one less than the smallest signal cne. Most predictors output a real-valued score for each
event in the test set, in which case KankOrder is just the ordering of the test points according to the
score. The RankOrder is not used for computing the AMS, but it allows the organizers to compute
other metrics {e.q., ROC) related to the classification task, which is not captured entirely by the
classification alone.

o

« Class is either "b" or "s", and it indicates if your prediction (i, above in the formal definition) for the
event is background or signal. The AMS will be calculated based on the (hidden) weights of events
that you mark "s".

Leaderboard

B Inthemconey [Geld [Silver M Bronze

apub Team Name Kernel Team Members Score Entries
1 al Gabor Melis 3.80581 110
2 a Tim Salimans ‘a 3.78912 57
3 al nhixbhaze M 3.78682 254
4 438 ChoKoTeam O | 3.77526 216
5 35 cheng chen ti 3.77383 21
6 ~16 quantify D | 3.77086 8
7 al Stanislav Semenov & Co (HS... m 3.76211 68
8 v/ Lubos Motl's team n ﬁ 3.76050 589
9 a8 Roberto-UCIIIM - 3.75863 292
10 a? Davut & Josef i 3.75837 161

CONCLUSIONS

Conclusions

| do hope these lectures have brought you a bit closer to the world of
Machine Learning

- or at least that | have not bored you to death, if you knew
everything already!

As with any field in rapid development, you do not need to become all-
knowledgeable before you can become a practicioner: on the contrary!
The best advice | can give you is - Jump in wherever you see fit and
start swimming!

You will be surprised to see how fun it is to play with these tools — not
to mention the fun you may have by coding your own methods
(although clearly that's not everybody's definition of "fun"...)

Some take-away bits

Don't look for complex solutions when simple ones work well

— Hastie: often kNN performs best !
— Useful to understand easy tools before you can exploit hard ones

As powerful as individual tools are, they aren't the answer to the question

"what is best"

— the mastery of the data analyzer is to optimally combine the proper
ingredients to achieve their task, and then add the killing bit that is only useful

in the particular application at hand

In NN design, the loss function is where the money-is
— improvements in the inputs have also large impact in results (see tutorials)
— smart scanning for absolute minimum is important
— gttempts to improve on already reasonably flexible designs likely to not give as
ig gains

A few interesting applications
from the ACAT conference

10-15 March 2019
Steinmatte conference center

Europe/Zurich timezone

Overview

Scientific Programme
Call for Abstracts
Timetable

Survey

Contribution List

Author List

Search...

19th International Workshop on Advanced Computing and
Analysis Techniques in Physics Research

The 19th edition of ACAT will bring together experts to explore and confront the boundaries of
automated data analysis, and theoretical calculation technologies, in particle and nuclear phy:
astronomy and astrophysics, cosmology, accelerator science and beyond. ACAT provides a ur
where these disciplines overlap with computer science, allowing for the exchange of ideas anc
discussion of cutting-edge computing, data analysis and theoretical calculation technologies |

Neutrino interactions:
reconstruction with CNN

The use of CNN for reconstruction of neutrino interactions in LAr TPC detectors has been
investigated in arXiv:1903.05663.

In a talk at ACAT2019, Laura Domine explained the problem, the architecture used to
solve it, and the performance achieved

The idea is to use the semantic segmentation capabilities of CNNs:

Semantic segmentation

B

Data (network’s input) Predictions (network’s output)

Predicted as
particle track

In neutrino interactions, what one
cares to measure is energy and
direction only. But for this one needs
to identify long tracks, EM showers, l_,

cosmics, nuclear recoils... MicroBooNE

Predicted as

electromagnetic
shower
2 MicroBooNE

30 cm Data

30 cm Data

A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification
in the MicroBooNE Liquid Argon Time Projection Chamber. (arxiv:1808.07269)

Neutrino event reconstruction

Pixel-level Feature Information

Machine Learning in Neutrino Physics e

Pixel Fraction

3

0.0 —

Region 2

Regioh 3

Region 1 .-
A 1.0 ‘
o ‘E‘ Shower score % Shower score
| I'rack score Track score
_E 0.8 =
3]
= 0.6
=
= 04 ‘
Q
. -?:1 0.2 [
MicroBooNE =]
Data o 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 " 0.2 0.4 0.6 0.8
Score Score Score

Localized features at
the pixel-level are useful

[Shower score
[Track score

[Shower score

I Shower score

[Track score
of data features &

to inspect correlation

[Track score

Score Score

algorithm responses
| 1 |
0.z 04 06 08 = 02 04 06 08 0z 04 06 08 02 0.4 0.6 08 33
Score Score

One example of pruning w/ L1

hils 4 ml

Deep Learning on FPGAs for Trigger
and Data Acquisition

ACAT, 11-15 March 2019, Saas Fee, Switzerland

Javier Duarte, Sergo Jindariani, Ben Kreis, Ryan Rivera, Nhan Tran (Fermilab)
Jennifer Ngadiuba, Maurizio Pierini, Vladimir Loncar (CERN)
Edward Kreinar (Hawkeye 360)

Phil Harris, Song Han, Dylan Rankin (MIT)

Zhenbin Wu (University of lllincis at Chicago)

Sioni Summers (Imperial College London)

Giuseppe Di Guglielmo (Columbia University)

Here the focus is to see if one can implement discriminators for boosted jets in FPGAs

Case study: jet tagging

Study a multi-classification task: discrimination between highly energetic (boosted)
q, g, W, Z, t initiated jets

t—=bW-bqq Z—qq W-qq q/g background

3-prong jet 2-prong jet 2-prong jet no substructure
and/or mass ~ 0

Signal: reconstructed as one massive jet with substructure

Jet substructure observables used to distinguish signal vs background 1

[*] D. Guest at al. PhysRevD.94.112002, G. Kasieczka et al. JHEP0S5(2017)0086, J. M. Butterworth et al. PhysRevlett.100.242001, stc..

nNAa NE oNA o lernnifar haadiha - RloAmls doon nooreal nshaeeedee in FRC A 13

To manage the identification of heavy particle decays inside hadronic jets, you need to
resort to high-level variables, and learn complex image structures

Case study: jet tagging

e Study a 5-output multi-classification task: discrimination q, g, W, Z, t initiated jets

¢ Fully connected neural network with 16 inputs:

- mass (Dasgupta et al., arXiv:1307.0007), multiplicity, energy 16 inputs
correlation functions (Larkoski et al., arXiv:1305.0007) S
64 nodes
. o _ activation: ReLLUJ
- expert-level features not necessarily realistic for L1 trigger, o
but the lessons here are generic 32 nodes
activation: RelL.U
oo hlsaml 8
— g tagger, AUC = 93.8% 32 IlOdBS
—— qtagger, AUC = 90.4% activation: ReLLU
—— w tagger, AUC = 94.6% a
— z tagger, AUC = 93.,9%
—— ttagger, AUC = 95,8% 5 outpute
0 activation: SoftMax

Background Efficiency

-
=
I8

AUC = area under ROC curve

better (100% is perfect, 20% is random)

103

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Signal Efficiency

11.03.2019 Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs 14

Starting with a set of features, a reduction of the important features is performed
recursively during training, using a Lasso-like norm for the weights

Efficient NN design: compression

e [terative approach:

- train with L1 regularization (loss function augmented with penalty term):
Lx(w) = L(w) + Af|w|]

- sort the weights based on the value relative to the max value of the
weights in that layer

- prune weights falling below a certain percentile and retrain

hls4ml 32.7% 95%
400 mEE te3_relu i
N output_softmax I
Traln 350 W fc?_relu |
ol _rele |
ith L]
Wi 12
B} 5.
g Prune g
= =
= =
ﬂi’ ﬁfzuu
5 5
g £
2 3150-
1004
504
. 0 T T T T T .
10 10~ 1w~ 1 107! 1t 0" 1wt 107 1w 1wt 107 10t 10°

Absolute Relative Weights Absolute Relative Weights

11.03.2019 Jennifer Ngadiuba - hls4ml: desp neural networks in FPGAs 18

Efficient NN design: compression

Prune and repeat the training for 7 iterations

hlsdml - " 5.2 - BT — hisaml
oo E fel el | [l TS | o] e
g et . - ot pahtmas -t
-k Traln 35 | /. rer_ceh ek
B el . el el
- ithl., ™

after pruning

— 70% reduction of weights
and multiplications w/o
performance loss

Ty - e -
with L, Eiw Prune iw
7t jteration —_— —_—

)
L T T T
Atnokiie tdatrer wegt

11.03.2019 Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs 20

Vertex finding in LHCb

A hybrid deep learning approach to vertexing

Rui Fang® Henry Schreiner: 2 Mike Sokoloff® Constantin Weisser> Mike Williams3

March 11, 2019

1The University of Cincinnati
2Princeton University

*Massachusetts Institute of Technology

Supported by:

ACAT 2019

ldea: reduce problem to 1D

Tracking procedure

® Hits lie on the 26 planes

® For simplicity, only 3 tracks shown
® Make a 3D grid of voxels (2D shown)

e Note: only z will be fully calculated and X
stored

® Tracking (full or partial)

® Fill in each voxel center with Gaussian PDF
® PDF for each (proto)track is combined

® Fill z "histogram" with maximum KDE value
in xy

4 z axis (along the beam)

A hybrid DL approach to vertexing

(')
[&
3 Fang, Schreiner, Sokoloff, Weisser, Williams March 11, 2019 5/14 C})

/-view of generated PDF

Example of z KDE histogram Design

2000 1 — Kemel

® LHCbPVs
¢ Other PVs
® LHCbSVs
¢ Other Svs

1500 ~

1000 A

Density of Kernel

500 A

T T T T T T T T T
—100 -50 0 50 100 150 200 250 300
z values [mm]

Note: All events from toy detector simulation

Challenges

Human learning

® Vertex may be offset from peak
® Peaks generally correspond to PVs and SVs e \ertices interact

A hybrid DL approach to vertexing F

')
3 Fang, Schreiner, Sokoloff, Weisser, Williams March 11, 2019 6/14 fp

The network learns the vertices z

Compare predictions with targets: When it works

Kernel Density

Xy maximum [um]

1200+

1000

800

600

Event 0 @ 48.9 mm: PV found

S
B
Probability

Kernel Density Il Target
[Predicted
True: 48.904 mm
" Pred: 48.954 mm Masked
A: 50 pm
L — x
Y e —— —
T — |
47.00 48.00 49.00 50.00 51.00

z values [mm]

PV found example

A hybrid DL approach to vertexing

=]
=

0.0

200

Kernel Density
(=]
o
o

Xy maximum [um]

Fang, Schreiner, Sokoloff, Weisser, Williams

(=]
Ul
o

Results
Event 0 @ 1.0 mm: Masked 0.8
Kernel Density Il Target 0.7
ored: 0.076 I Predicted ||
red: U. mm
Masked 0.6
{0.5 2
10.4 %
=]
[(=]
l0.3 &
I j0.2
s s s 0.0
— x}
— ¥ N ——
S / T
-1.00 0.00 1.00 2.00 3.00

z values [mm]

Masked (<5 tracks) example

S 2
March 11, 2010 10/14 Y WGP

... Almost always

Compare predictions with targets: When it fails

Kernel Density

Xy maximum [um]

250

200

=
Ul
o

=
(=
o

Event 2 @ 65.7 mm: False positive

Kernel Density

Pred: 65.696 mm

Il Target
[Predicted

H — X

nm— Y

64.00 65.00

66.00
z values [mm]

67.00

False Positive example

A hybrid DL approach to vertexing

o
B
Probability

o
w

Kernel Density

Xy maximum [um]

Fang, Schreiner, Sokoloff, Weisser, Williams

500}

IS
(=]
[=]

Results
. Evenlt 3 @ 51.9 mm: PV not foupd . 0.8
Kernel Density I Target 0.7
True: 51.898 I Predicted ||
| True: S mm Masked 0.6
052
0.4:?:
2
(=]
I 037
{0.2
-‘ ‘ -Dll
- - 0.0
— X
—y i —
50.00 51.00 52.00 53.00 54.00

z values [mm]

PV not found example

March 11, 2019 11/14 XX

N

