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NEURAL NETWORKS



Neural Networks - introduction

An artificial neural network (ANN) is a program that simulates the behaviour of a series of 
neurons and their connections

ANNs are capable of producing very flexible functions of the feature space variables

At the heart of the ANN there is an architecture of nodes organized in layers. Every "neuron" 
of a layer receives inputs from some of (or all) the neurons of the previous layer

Neural networks are extremely powerful tools for supervised learning tasks, such as 
classification and regression. 



Looking inside

For binary classification problems, the loss function may be simply the fraction of 
misclassified events. From that one can construct a binary cross entropy.

The crucial step in the minimization phase is "back-propagation".
Training events are used to compute the loss function. During back-propagation the 
contribution of each neuron (with associated weight and bias) to the loss is computed. This 
way one may estimate how the loss would change if those parameters were changed. The 
iteration of the procedure allows to obtain optimal values, with different convergence 
strategies possible (e.g. "gradient descent").

Each neuron may emit a strong or weak signal, in response 
to the combined stimulus coming from its inputs →
activation functions parametrize the response signal.

The signal is transmitted to the neurons connected to it in 
the next layer.
Mathematically, the behaviour of every neuron is 
described by two parameters (a bias and a weight). The 
training phase of the ANN (learning) consists in finding 
parameter values which minimize a loss function



Multi-class NN classification in 2 steps

1) convert the output label 
into a class probability, 
using the softmax function

2) minimize the cross-entropy 
loss between the output 
probabilities and the target. 
The cross-entropy loss is 
computed as the KL 
divergence, 

𝐿 =෍𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)



The Perceptron

The perceptron is the simplest NN

The idea is to try to create a mathematical model of a single 
neuron, as a "node" which receives several inputs, sums them, 
and gets "activated" if the sum surpasses a fixed threshold
The perceptron task is to select between two classes based in the 
inputs it receives. The inputs are combined linearly:

𝑢 = 𝑤𝑇𝑥 + 𝑏

Above, x is a vector of inputs, and w is a "weight vector", b is a 
constant bias. The output is calculated as 

𝑜 𝑢 =
+1 𝑖𝑓 𝑢 ≥ 0
−1 𝑖𝑓 𝑢 < 0

The predicted class here depends on the sign of u. As w and b 
define a hyperplane in the feature space:

𝑤𝑇𝑥 + 𝑏 = 0, 
by adjusting their values one can achieve ideal classification if the 
classes are linearly separable

o(u)

u



Learning w and b
Suppose we have training data {xi}, i=1...N for the two classes, labeled as such:

yi = +1      for i in C1

yi = -1       for i in C2

To simplify the math, we include b in the weight vector, adding a 0th component to 
x=[1,x1,...,xm] and w={b,w1,...wm}.

If for an event i we write 𝑢𝑖 = 𝑤𝑇𝑥𝑖, then (due to how we defined y) 𝑢𝑖𝑦𝑖 is >0  (<0) if 
the event is classified correctly (incorrectly). We can then write an error function, if we 
define M(w) the set of misclassified events:

𝑒 𝑤 = −෍
𝑖∈𝑀

𝑤𝑇𝑥𝑖𝑦𝑖

We can minimize this function to find the optimal weights. This is done by iteratively 
stepping in the right direction:

𝑤 𝑘 + 1 = 𝑤 𝑘 − 𝛻𝑒 𝑤 𝑘 =
𝑤 𝑘 𝑖𝑓 𝑖 ∉ 𝑀

𝑤 𝑘 + 𝑥𝑖𝑦𝑖 𝑖𝑓 𝑖 ∈ 𝑀

This way, the weights get adjusted to reduce the misclassification error.



The smooth output: logistic sigmoid

In neural networks, rather than a 
discontinuous score as in the perceptron, 
the response of a neuron is modeled by a 
continuous, differentiable function 
The simplest of these is the sigmoid. 

In logistic regression, one assigns a 
probability to events based on the 
distance from the boundary, using the 
logistic sigmoid function:

[M.Kagan]



Meaning of the sigmoid

If we express the posterior probability of x to be in class C1 as a 
sigmoid,

𝑝 𝐶1 𝑥 =
𝑝 𝑥 𝐶1 𝑝 𝐶1
𝑝 𝑥 𝐶1 ∪ 𝐶2

= 𝜎 𝑢 =
1

1 + 𝑒−𝑢

we can compute the inverse of σ as

𝑢 = log
𝜎

1 − 𝜎
= log

𝑝(𝐶1|𝑥)

𝑝(𝐶2|𝑥)

This is called logit function, and corresponds to the log of the relative 
posterior odds.



The feed-forward neural network

We can put together these elements to 
create a non-linear function of the 
inputs, which can learn much more 
complex separation boundaries than a 
hyperplane

A feed-forward NN is composed of 
nodes connected by forward links. 
There is >=1 hidden layer, and one 
output layer 

– for binary classification, all you need 
is one node in it

The nodes need not all be connected, 
but there must be no circular reference 
– the value of a node must be a 
deterministic function of what comes 
before

z1

z2

1

a21

z3

o1

1

a11

L0 (input) L1 (hidden)      L2 (output)

bias terms



Calculation of the function

The FFNN is a complex, differentiable function of the inputs, and it offers a 
simple solution to the problem of optimizing its parameters. 

For a formal treatment let us define:
• zi be the inputs to node i (i=1,...Z, where Z is the number of inputs for 

that node; z0=1). For layer 0 (input layer), zi=xi is the vector of inputs. 
[When we need to specify it, we add an index j for the node and an index m for the 
layer, so zijm is the ith input to the jth node of the mth layer]

• wijm be the vector of weights for that node (with w0jm=bjm the bias 
term).

The rule is that at each node the inputs are summed with a linear 
weighting, to obtain the activation of that node, a (ajm when needed):

𝑎 =෍

𝑖=0

𝑍

𝑤𝑖𝑧𝑖 i=1...Z inputs for a node
j=1...J nodes of a layer
m=1...M layers



Adding nonlinearity

Nonlinearity is introduced by choosing a suitable continuous differentiable 
function of a to model the behaviour of the node. A common choice for inner 
layers is

ℎ 𝑎 = tanh(𝑎)
whose derivative is

ℎ′ 𝑎 = 1 − ℎ(𝑎)2

For the output layer, as we saw, the sigmoid is the common choice for binary 
classification (one output). For K classes, one uses the soft-max 
generalization, which retains the interpretability of outputs as posterior 
probabilities:

𝑜𝑘 = 𝜎 𝑎𝑘 =
𝑒𝑎𝑘

σ𝑖=1
𝐾 𝑒𝑎𝑖



Calculation/2

Let us consider a 3/2/1 architecture, and compute 
activations in the hidden layer as

𝑎𝑗1 =෍
𝑖=0

3

𝑤𝑖𝑗1𝑥𝑖

The output layer receives as inputs the sum of j=1, j=2 activation functions 

𝑧𝑗 = ℎ 𝑎𝑗1 = tanh𝑎𝑗1
The activation in the output layer is then

𝑎 =෍
𝑖=0

2

𝑤𝑖12𝑧𝑖

and the output is the activation function (a sigmoid) of the above:
𝑜 = 𝜎 𝑎

= 1 + exp −𝑤012 −෍
𝑗=1

2

𝑤𝑗12 tanh 𝑤0𝑗1 +෍
𝑖=1

3

𝑤𝑖𝑗1𝑥𝑖

−1

(node 1 of layer 2)

(for each node j:)



Backpropagation: 
where the magic happens

Consider the two-class case, with binary output y12=1/0 for signal and 
background, and the 3/2/1 2-layer network of the previous slides. If 
a(x,w) is the activation on the output node, the output is

𝑜 𝑥, 𝑤 =
1

1 + 𝑒−𝑎(𝑥,𝑤)

This means that p(C1|x)=o(x,w), and p(C2|x)=1-o(x,w) so we can write 
syntetically

p(y|x) = o(x,w)y  [1-o(x,w)]1-y

We have a differentiable model of the class probabilities, so we may 
write the –log(L) for a training dataset {x(1)...x(N)} as

𝑒 𝑤 = −σ𝑛=1
𝑁 𝑦𝑛 log 𝑜𝑛 𝑥𝑛, 𝑤 + (1 − 𝑦𝑛) log(1 − 𝑜𝑛 𝑥𝑛, 𝑤 )

This is called (binary) cross entropy; it is the most commonly used loss 
for classification.



Finding the weights
To find the optimal weights, we need to minimize the BCE loss. We are 
helped by noting that the loss is decomposable in per-event 
contributions en, which are a function of the weights. We need to only 
find the gradient of the error function with respect to each weight:

𝑒𝑛 𝑤 = − 𝑦𝑛 log 𝑜𝑛 (𝑥𝑛 , 𝑤) + 1 − 𝑦𝑛 𝑙𝑜𝑔 1 − 𝑜𝑛(𝑥𝑛, 𝑤)

We take the derivative of en WRT the weight for the ith input to node j 
in layer m, wijm:

𝜕𝑒𝑛
𝜕𝑤𝑖𝑗𝑚

=
𝜕𝑒𝑛
𝜕𝑎𝑗𝑚

𝜕𝑎𝑗𝑚

𝜕𝑤𝑖𝑗𝑚
= 𝑒𝑛𝑗𝑚𝑧𝑖𝑗𝑚

where 𝑒𝑛𝑗𝑚 =
𝜕𝑒𝑛

𝜕𝑎𝑗𝑚
and we have used the activation

𝑎𝑗𝑚 =෍
𝑖=0

𝑛𝑚−1

𝑤𝑖𝑗𝑚𝑧𝑖𝑗𝑚



Finding the weights/2

We work our way from the output layer M to the previous ones. While for the 
output layer the error caused by event n is en1M=on-yn, for nodes at layer m=M-1 
we should write

𝑒𝑛𝑗𝑚 =
𝜕𝑒𝑛
𝜕𝑎𝑗𝑚

=෍
𝑞=1

𝑛𝑚+1 𝜕𝑒𝑛
𝜕𝑎𝑞,𝑚+1

𝜕𝑎𝑞,𝑚+1

𝜕𝑎𝑗𝑚
=෍

𝑞=1

𝑛𝑚+1

𝑒𝑛𝑞,𝑚+1

𝜕𝑎𝑞,𝑚+1

𝜕𝑎𝑗𝑚

To evaluate derivatives we proceed thus:
𝜕𝑎𝑞,𝑚+1

𝜕𝑎𝑗𝑚
=

=෍
𝑖=1

𝑛𝑚
𝑤𝑖𝑞,𝑚+1

𝜕𝑧𝑖𝑞,𝑚+1

𝜕𝑎𝑗𝑚
= ෍

𝑖=1

𝑛𝑚
𝑤𝑖𝑞,𝑚+1

𝜕ℎ(𝑎𝑖𝑚)

𝜕𝑎𝑗𝑚
=𝑤𝑖𝑞,𝑚+1ℎ′(𝑎𝑗𝑚)

Hence we find

𝑒𝑛𝑗𝑚 = ℎ′(𝑎𝑗𝑚)෍
𝑞=1

𝑛𝑚+1

𝑤𝑞𝑗,𝑚+1𝑒𝑛𝑞,𝑚+1

(At layer m+1=M there is 
only one node, but this 
formula works for any layer)

Remember:



Finding the weights/3

The formulas of the previous slide allow us to work our way back 
recursively through the NN, using the chain rule. 
For tanh() activation in inner layers the error contribution of event n due 
to weights in node j of layer m is written

𝑒𝑛𝑗𝑚 = 1 − ℎ(𝑎𝑗𝑚)
2 ෍

𝑞=1

𝑛𝑚+1

𝑤𝑞𝑗,𝑚+1𝑒𝑛𝑞,𝑚+1

The weight updating process is iterative, and modulated by a learning 
rate η:

𝑤(𝑘+1) = 𝑤𝑘 − 𝜂𝛻𝑒(𝑤𝑘)

One may choose to use the whole training set to evaluate the gradient 
(batch learning), or to update weights at each new event evaluation 
(online learning). They have different applications and properties. 

Online learning is better fit to jump out of minima, but the learning may 
take longer. 



Choices of Activation function

We want it non-linear, otherwise hidden layers do nothing; it must be monotonic to 
ensure convergence of the optimization problem; and smooth. Often also preferable to 
have rapidly changing for input close to zero, slowly changing for large input



Learning rate

Above we mentioned the learning rate – the 
parameter η controlling how fast the 
parameters of the learner are updated

In a NN the weights, on which depend the 
strength of the response of an activated 
node, are adjourned by back-propagation

For NNs η is one of the crucial parameters in 
the search of optimality

Advanced techniques have been devised to 
overcome the difficulty. These include slowly 
decreasing η, scheduled modulations in η, 
momentum, etcetera. 



Regularization

We have already encountered the concept in general. In ANNs, 
regularization is similarly applied by adding to the loss a penalty term
• L1 loss: 
• L2 loss: (AKA "weight decay")

A different method is called "dropout": during training, a random set 
of nodes is removed at each pass.
• prevents collective effects conditioning the training

[M.Kagan; see
arxiv:1207.0580]



Playing with NNs



Let us play a little

A wonderful web page allows us to fiddle with the 
architecture and hyperparameters of a NN, training it to 
solve simple 2D problems.

https://playground.tensorflow.org/

https://playground.tensorflow.org/


Exercises with simple NNs

1) We take the first proposed dataset 
in the web site

What will be able to do if we use only 
one input (e.g. the first one from top) ? 



→ Answer: you can't do better than about 0.25, independently 
of the chosen architecture / hyperparameters

Left: the simplest 
possible NN quickly
converges to the 
optimal result

Right: a much more complex 
network does not perform any
better, but takes much longer
and requires tuning



2) What if we use both the x and y inputs? What changes 
when we go from a 2-nodes hidden layer to one with more ?



Top: two nodes 
in the hidden 
layer. The test 
loss is 0.21

Bottom: three 
nodes vastly 
outperform the 
2-node NN; the 
classification 
becomes 
perfect in this 
case



2b) What happens if we add more inputs, but keep just two nodes in 
the hidden layer?
→ A 3/2/1 architecture, and let's use a tanh activation, with 0.03 

learning rate.
What test loss can you get ? What inputs did you pick?



With 3 inputs the classification becomes perfect even 
with only two nodes in the hidden layer. Why?



3) Now let's try using two inputs and three nodes in the HL, but change from 
tanh to relu the activation function.

What do we expect will change?



We get a more spikey decision boundary, an effect of the sharp nature of 
"relu"
Question: why 6 sides? How many edges do you expect in the decision 
boundary if you use 4 neurons?



8? Not necessarily!...

Why?



Here is a pathological case:

we seem to fail to obtain the wanted result from these three neurons! 
Maybe we can intervene to drift away from the local minimum?

The application 
allows you to do this 
manually, by clicking 
on the link 
connecting the first 
hidden node from 
the top to the 
output one, 
modifying the 
weight



Let us go back to the tanh activation

This problem is much more complex. We can start with only two inputs 
x,y

Try this at home. What result do you get ? Do you need many layers? How 
long does the training requires to converge ?

And take the 4th dataset:



Using only x,y inputs it is harder to get to a good result...

But why? After all, {x,y} are a complete set – a sufficient statistic! 
By sweating over this simple problem you will come to learn that in 
order to give the NN the needed flexibility to learn the correct non-
linear combinations of the given features, you need to train for a much 
longer number of epochs.

Note that a NN can perfectly
well emulate, with appropriate
training, whatever combination
of the inputs, without your need
to input it to it.

But this points clearly to a 
conclusion:

A bit of feature engineering
is worth many long hours spent
training a very flexible network!



Final Challenge

Try this at home.

Take the fourth dataset, and use a tanh activation. Use == 
4 inputs of your choice, 2 hidden layers, and a maximum 
total of 6 nodes in the hidden layers

What test loss do you get ?

(Hint: you should get a loss close to zero)

Extra: if you can get a good score, can you do it with one 
less node?



My solution



ADVANCED TECHNIQUES



NNs everywhere

The ascent of deep learning 
in the XXI century has 
brought to the design and 
development of many 
specialized architectures 
optimized to different tasks

We can give only a peek, as 
it is more fruitful to make 
sure you have gotten the 
gist of the basic concepts



The multi-body problem
The more one works on a NN, the better results can be achieved (up to a limit given by 
the NP lemma, which is however not usually achieved)
So is the message "take a problem and work at it very hard"? Not necessarily...
Take e.g. a HEP analysis where e.g. we want to measure the mass of a particle (e.g. top 
quark). There are multi-variate problems everywhere:

unfiltered 
data

selected 
events

independent 
dataset

selected 
control 
sample

classification

mass 
regression

energy calibration

Mtop

Systematics

It makes little sense to spend all
your time on one of these... That is
poor analysis design!
Better to try and optimize everything
together if you can... Or get some 
robust tool for each task



INFERNO

One common problem of many analyses searching for a signal:  the 
classification of S vs N is normally "optimized" without accounting for 
systematic effects, which are assessed later. 

The INFERNO algorithm (from "Inference-aware Neural Optimization") proposes a NN
architecture that incorporates the evaluation of systematic effects on the estimate of 
the parameter of interest  (signal strength) in the definition of the loss.
The loss can be formulated as the expected sqrt(variance) of the likelihood fit that 
extracts the signal from the classifier output
→ the classification becomes robust WRT systematics and strongly reduces their 
impact



Results on synthetic example

In a 3-D dataset of background plus small 
(50/1000) signal, where there are three 
nuisance parameters affecting the shape of the 
PDFs, the INFERNO classifier vastly outperforms 
the NN classifier on the quantity of interest

See for details arxiv:1806.04743 (to be 
published in Computer Physics 
Communications)



Deep neural networks

What is "deep"? Arguable, but already a network with >2 hidden layers can be 
enormously complex

DNNs are appropriate for very complex data. While a single hidden layer should suffice 
to produce arbitrarily complex functions, to do so the number of neurons has to grow 
exponentially → better to increase the number of layers, essentially factorizing the 
learning process

DNNs can be powerful but are usually difficult to train



Convolutional neural networks
CNNs are a specialized form of DNNs
A very important commercial application is image recognition → used 
to drive cars, recognize faces, interpret content

The challenge in those cases is that the 
dimensionality of the input data is very 
large, but the required output is simple 
→ dimensionality reduction problem

A convolution can be applied to reduce 
the dimensionality of the input (e.g. a 
high-res image), trying to grasp the 
essential information that can produce a 
meaningful output

Each output neuron shares weights from 
former layer with the others, so the 
classification acquires location-
invariance



Convolutional neural networks

A convolution can be applied to reduce the dimensionality 
of the input (e.g. a high-res image), retaining the 
important information for later more effective processing

http://danielnouri.org

A number of "filters" can be used
to reduce the input data



Example of 3x3 filter



Example of a blurring 5x5 filter



A 5x5 sharpening filter



Example of a 3x3 edge detector



A 3x3 all-edge detector



Max pooling

A different reduction of dimensionality is achieved by the method of 
"max pooling", which retains the most interesting information from 
the inputs, producing in the output a more compact map of the image



Feature detection



Genetic algorithms

The first idea of algorithms that would evolve toward optimality is from Alan 
Turing (1950). 

Genetic algorithms are a subclass of evolutionary algorithms. These employ 
the concepts of natural selection and pooling, to allow the best models (those 
maximizing a "fitness function) to "evolve" from a random initial choice.

Commonly used in computer science to solve complex optimization 
problems

• Can be powerful solvers, but have high CPU demand in repeated 
evaluations of fitness 

• Do not scale well with complexity (exponential space of mutations to 
investigate)

• No guarantee that full space is explored; behavior hard to 
understand/assess



Example: Neuroevolution for 
data certification in CMS

Optimization of hyperparameters of 
neural networks trained to classify 
CMS data events

• study ROC AUC as figure of merit
• Start with random choice of 

hyperparameter, create pool of 
classifiers, train them

• let them breed (crossover), insert 
mutations

• Re-seed periodically picking best-
performing 50%, other part fished 
randomly to avoid getting stuck in 
local minima, if evolution stops or 
in case of bad mutations

• Pool evolves to best choice of 
hyperparameters 



Result of genetic evolution

The networks "evolve" to higher AUC values, as designed.



PRACTICAL TIPS



Step 0: γνῶθι σεαυτόν

First of all, you should understand the specific 
needs of your problem. Name it!, e.g. 

• Classification? Multi-class classification? Regression? Clustering? 
Density estimation? Hypothesis test? Goodness of fit? 
Optimization? ...

• Is it supervised or not supervised? 
• If classification, do you need to estimate densities or can you 

directly create a discriminator? 
• What dimensionality do your data have? High/low/can be 

reduced/cannot ... 
• Are your data tall, wide, do they miss entries... ? Does it look like 

you need to work on preprocessing / data augmentation?
• Do you aim for a robust result or a performant one?



Step 1: choosing what fits

• Want something simple? kNN may do very well for low-D (or if you can 
reduce D)

• Want insight in algorithm choices? Prefer decision trees
• Need high performance, aren't scared of complex optimization? A (D)NN 

can be your best friend (for a long time ☺)

In general, you should know that there is no free lunch (Wolpert, 1996)! It 
was shown that there is no a priori method that outperforms others if no 
prior specification of the problem is given.
[This is analogue to the issue "what GOF measure is best?" → there is no 
answer, it depends on the specific density]

This is why many different algorithms exist, and more are coming in...

But some general empirical observations have been made



Empirical analysis

A survey of 179 methods (not including DNNs) was made testing them 
on 121 datasets 
→ RF was the best performer in 84% of cases (see 
http://jmlr.csail.mit.edu/papers/volume15/delgado14a/delgado14a.pdf)

Kaggle competitions also allow to draw some conclusions (M.Kagan):

• When high-level features informative of the system are present, 
winners are often RF

• When you have lots of unstructured, low-level information per event, 
DNN outperform all others 

• CNNs typically work best in image classification, RNN excel in 
text/speech recognition 

http://jmlr.csail.mit.edu/papers/volume15/delgado14a/delgado14a.pdf


Random bits

• Check what others have done in similar problems, even outside your domain –
study the literature if you at all can!

• Try simple things first – they may be all you need (and they might even be best)

• Don't avoid preprocessing! Study your data to see if there are degeneracies that 
allow you to augment your training set

• Always set up a robust validation scheme; divide your data accordingly; do not use 
validation data for testing. 

• Check for overtraining using cross-validation, but don't forget to avoid 
undertraining!

• Use CV also to tune all the hyperparameters that may affect your results



MACHINE LEARNING IN HEP



Statistical learning techniques for HEP: 
some examples

In HEP the commonest problem is extracting a small signal from large set of 
background-dominated data → classification (sometimes multi-class)

Regression also widely used, e.g. to improve the estimate of an important 
feature (sometimes as an input to classification)

Almost always we deal with supervised learning tasks, but anomaly detection 
(unsupervised or semi-supervised) is starting to get attention. Resistance due to 
insufficient trust in models out of the bulk of the phase space.
Clustering is used as a tool (e.g. jet reconstruction); at high level rarely. Will see 
an example later (Higgs pair benchmarks).

Recently interest has boomed in more cutting-edge techniques:
• Generative Adversarial Networks (e.g. to create better models)
• Convolutional networks (image processing for e.g. jet substructure)



Data structures in HEP

Our data are collision events (e.g. pp interactions at the LHC), comprising 
millions of readout channels providing information about the hard subprocess

After some dimensionality reduction one may look at data constituted by N 
variables that describe the kinematics of observed phenomena
• single reconstructed particles (e,μ, γ, ...)
• local collective effects (jets, b-tags, primary vertices)
• non-local collective effects (missing ET, HT, ...)

Number of objects is not constant → representation problems, zero-padding...

One usually tries to construct "high-level" variables that help the discrimination 
of signal from backgrounds

Things worth noting:
• the dimensionality reduction step usually also reduces available information
• DNNs should be able to construct derived quantities of interest from scratch, 

but finite training time and dataset size make it useful to help them out



Some example ML applications in HEP 

Online and DAQ:
• Fast identification of patterns for 

triggering
• Data quality monitoring

Event reconstruction:
• Sort out hard interaction vertex, 

handle pile-up
• Pattern recognition for tracking
• Reconstruct b-tags, boosted 

hadronic systems, neutrino 
interactions

• Classify to perform particle 
identification

Data analysis, hypothesis testing, 
signal extraction:
• Classify signal from background 

events
• Model backgrounds
• Regress to improve energy/mass 

resolution, calibrate energy 
measurements

• Find structures, detect anomalies, 
identify benchmarks

Computing tasks:
• Estimate dataset popularity
• Optimisation of resources



Two ubiquitous HEP problems
1) Improve the energy resolution of jet pairs, 
or photon pairs

Pre-2012, a lot of emphasis was given to this 
problem in connection to H searches. Still at 
the focus for high-mass particles. 
A narrower Mjj or Mγγ peak improves 
observability proportionally to 1/σ
→ regression: achieve the best estimate of mH

given m12 and other observables

2) Classify to obtain an effective "summary 
statistic", discriminating signal from 
backgrounds

Often, rather than selecting data with high 
value of a discriminant  (BDT, NN, ...) one fits 
the full distribution → tough modeling issues



For instance, in Higgs searches...

In the Nature review 
article "Machine learning 
at the energy and 
intensity frontiers of 
particle physics" by 
A.Radovic et al. was 
offered a summary of the 
effect of ML techniques 
employed by ATLAS and 
CMS on Higgs sensitivity

The improvement over 
non-ML techniques is 
quite significant

More "aggressive" 
methods could certainly 
achieve still more 



A kNN application: background modeling 
for SUSY Higgs search with CMS

A search performed by the CMS-Padova 
group in 2011-2012 concerned the 
associated production of H and b-quarks
The final state includes >=3 b-jets

Supersymmetry foresees that these 
processes may have a large cross section; 
also, for much of the par space, two of the 
neutral Higgs bosons are mass-degenerate 
and contribute to the process 
→ searching for the process contributes to 
exclude theory space, and probe a region of 
parameters where DZERO had seen a hint of 
a signal

H
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The Problem

Multijet events are produced by QCD, and have a largely unknown, little-studied 
heavy flavour content
• Monte Carlo simulations can somehow model this, but large uncertainties 

remain from several assumed inputs and free parameters

• The mass spectrum of pairs of b-jets (anyway b-tagged) in a multijet sample is 
hard to model in shape, very hard to model in normalization

• Errors cannot be constrained to few-% level
• Compare to requirements for MSSM H→bb search: shape errors of 1-2% 

already significantly diminish the observability of the signal
→ need a data-driven approach
→ and it better be a precise one!

Note: a background shape with a normalization constraint is a good thing to have 
for a likelihood fit that searches for a signal in the spectrum, as the amount of 
observed data is good information along with the shape of the mass distribution



Data-driven approach

In principle, one can try and determine the double b-tagging probability from the 
data, in a suitable control sample, and apply it to a signal-enriched sample

– Example: in ==2-jet events (lower signal content) one calculates the fraction of (++) 
events as a function of critical kinematic variables (e.g. jet ET’s, jet # of tracks, pT of 
dijet system...) and derives a P++(ET

1,N1,ET
2,N2,pT

jj) matrix

– Then one can apply it to 3-jet events (higher signal content) extracting a prediction 
binned in Mjj (“++” are double tags in lead jets, “00” untagged jets):

𝑁3
++ 𝑀𝑗𝑗 =෍

1

𝑁3
00(𝑀𝑗𝑗,𝑋)𝑁2

++(𝑋)

𝑁2
00(𝑋)

– This method can model biases precisely only by binning in many variables X 
(algorithmic dependence: Ntracks, h; physics dependence: PT

jj, ET, DF
jj, HT...) 

→ Statistically limited! 

N2
00

N2
++

N3
00

N3
++



The Hyperball algorithm

Originally developed in 2003 to increase resolution of dijet mass shape in low-mass SM Higgs 
searches at the Tevatron, but in practice, not very different conceptually from standard kNN 
algorithm 

• You have a Mjj estimate for two jets coming from the H→bb decay. Jets are mismeasured 
due to many detector and physics effects; you want to correct these effects. 

IDEA: you measure along with jet 4-momenta MANY other kinematical characteristics of the 
jet and of the event that contains them

– Jets are “undermeasured” or “overmeasured” and this reflects in the value of other variables →
Use these variables to guesstimate a correction to Mjj

The approach is multi-dimensional. In general, if a quantity f(x) varies in the space of the 
observables x, you can determine its value in every point of the space by a nearest-neighbor 
approach. 
• To compute a meaningful average, you need a sizable number of training events. But 

which ones do you pick ? 
→The CLOSEST ones in the multi-D space.

Application already described in Lecture 1... 



How Close ? Or better, “which” close ? 
Choosing the metric

Let us return to the problem of estimating Ptag: this is the function f(x) to be 
evaluated with an “average” in the multi-D space of our observables

• Critical input: concept of distance between two points in the multi-D space 
spanned by the observable quantities 

– D = Si=1,Ndim (xi-yi)
2 ? 

This does not make sense if variables have different dimensionality
– D = Si=1,Ndim [(xi-yi)/si]

2 (si s.q.m. of i-th variable)?
→ the ball is now an hyperellipsoid. Better-behaved, but it does not yet account for 
the different “power” of different variables in predicting the function

– D = Si=1,Ndim vi(Ptag) [(xi-yi)/si]
2  

(vi(Ptag) variance of b-tagging probability along i-th direction around test point)
This is a better attempt: the shape of the “hyperellissoid” now depends on the test 
point in space and adapts to the fine structure of the dependence of f on x 

→ we can develop this concept further (see next slides)



To find the best definition of a distance measure, we can construct an approximate 

model of Ptag in the whereabouts of the

test point, to derive bias in Ptag

as f(Di) (i labels directions in space)

One needs to determine how
quickly Ptag varies
along each space
coordinate, in the 
surroundings of each test
point. 
The bigger the variation, the 
shortest we want the interval
to be along that direction, to 
minimize the bias in the Ptag

estimate D-D

Ptag 
true

0

In other words: we evaluate Ptag averaging within [-D,D] (blue line). However, along the
coordinate we are looking at (xi) the Ptag may vary non-linearly (red curve), creating 
a bias at 0.
We estimate that bias with an approximation of the Ptag curve as a quadratic function
(see next slide for the math)

Bias at 0

Averaging the tag rate in
the interval [–D:D]

Ptag(x=0)

Ptag
(average)



Some (easy!) math
Problem: We cannot compute f(x)=Ptag along the coordinate x, because it is 
an average! We know it only as a ratio of sparse points (tagged jets divided 
by all jets)
• What we can do is compute "moments", i.e. integrals:

We write f(x) as a power series:

Then we can integrate and write the λ factors as a function of the α :

• Remember that we only need to estimate the "bias" a0 , i.e. f(x=0) 

and how it varies if f(x) is non linear

→ So we evaluate only l0 and l2 (l1 does not depend on a0 since 

the expression in parentheses is null for i=0 and odd N) from the 

number and coordinates of tagged and untagged jets in the interval.

[f(x) = 1 for tagged jets, f(x)=0 for untagged ones, and moments will 

average these out ]
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We truncate at second order the series, f(x) = a0+a1x +a2x
2, obtaining the 

variation in the estimate of the Ptag at zero as a function of how “parabolic-like” 

the λ tell us Ptag is.

First, let us explicitate l0 and l2:
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Now we invert the above two equations, eliminating a2, and calculate a0 :
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This is the result for a parabolic f(x). If we had instead a flat f(x), we would find 

l0 = 2Da0 (integral of flat distibution). The error we commit in estimating f(x=0) 

with an average (i.e. assuming f(x) is flat in [-Δ,Δ]) can then be evaluated to 

second order as
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The recipe allows to estimate with no bias (to O(x2)) the error a0 we make 
on the estimate of Ptag due to the extension of the integration region, and 
due to the non-linearity of Ptag in it. 
The bit of math is needed to deal with discontinuous inputs on f(x), which are 
either 0 or 1...

In order to minimize the global uncertainty of Ptag in a hyperball, weights can now be 
chosen such that the sums of squares of the a0 factors in each test point are 
minimized

In practice the recipe is the following:
1) For each test point, inflate a ball (with axes determined by all-space 
variation of tag probability along each direction)
2) use captured training data to compute bias a0

(i) along each space direction
3) reconfigure ball shape such that 

each axis is inversely proportional to 
square of bias along that direction

4) compute Ptag with events captured 
in new ball 

Recipe summary



Monte Carlo tests of procedure

Use data from a Monte Carlo simulation of QCD  (5.5M events)

For the signal:
– bbH (H→bb), governed by two MSSM parameters: MA=120, 150, 210 GeV, tan b = 30, 
– about 100k events for each parameter space point.

Use non-optimal (getting around CPU-intensiveness) options for the algorithm
– Ntrial=40,000 events (total ==2-jet events)
– NHB=400 events (events in each hyperball)
– Predicting events with 2 tags (“++”) using untagged events (“00”). 
– using 19 variables for the feature space

• Running 200,000 test events with >=3 jets, injecting 1% of signal (about 8 times more 
than expected MSSM signal) in order to

– See if method correctly “finds” an excess of “++” events in the mass distribution
– Check for dilution effects



• Test with 200k QCD events, 2000 signal events 
(bbH, mH=150 GeV) 

• 19 variables in space; Mass observable: dijet mass 
of leading jet pair

Modeling events with ==2 b-tags in leading jet pair

• Observe 8977 (++) events
• Expect (HB) 8519.3±28.6

• Excess from HB: 457.7
• Signal in sample: 618 evts

• Excess/signal fraction: 0.74

Black: double tags
Blue: HB prediction
Red: signal content

Black: data - prediction
Red: signal content

Goal: see whether dijet mass shape 
can be modeled in QCD MC

Agreement
at the few 

percent level



Results on data

The technique, applied to control sample of 1-b-tag events, correctly 
predicts the background shape of 3-b-tag events in two disjunct datasets 
(low-mass and high-mass search regions)
Result is compatible with one provided by matrix method (working on 2-
b-tag events, "closer" to signal region), but more precise



Unsupervised learning example:
Cluster analysis of HH production

After the 2012 discovery, one questioned if its characteristics were 
those predicted by the SM

In particular its couplings to massive bosons and fermions are 
predicted precisely → production and decay measurement can test 
this

But H can couple to itself, too → how strongly ? The SM predicts a 
value, but new physics might change that value. To test it one should 
study processes sensitive to the self coupling: HH pair production

h

h

h

Self-coupling allows HH production
through this diagram

p

p

regardless of 
what goes on
here

we want to 
measure 
this



BSM HH production

If the Higgs Lagrangian contains differences with SM predictions, these can be 
explicitated by anomalous terms in an "effective Lagrangian" that considers 
terms up to dimension-6

In general one may think at 5 classes of diagrams contributing to HH pairs at 
the LHC. For each one may define a coupling modifier, multiplying the SM 
value (for (a) and (b) below) or plain generating a non-SM-existing process (in 
(c), (d), (e)).
By measuring HH production one can thus exclude these theories.

(a) and (b)
exist in SM

(c), (d), (e) 
do not exist in SM
→ related couplings 
are =0; >0 in BSM





BSM parameter space

We are dealing with a 5-dimensional parameter; each point corresponds to a different 
phenomenology of HH production

Indeed, the frequency of production varies drastically, and also the kinematics in the 
final state changes quickly

How can experiments test such a vast parameter space? One cannot do hypothesis 
testing with, e.g., 105 theories (imagining a grid of 10 values per parameter)

We are helped by the fact that varying the five couplings, the final state (HH) is the 
same) → an experimental search looking for HH pairs can be sensitive to many theories 
at once; but not optimally!
→ it is advantageous to define "benchmarks", theory points that are 

"representative" as they describe situations that are maximally different and 
separately searchable

The idea is then to find points of parameter space on which to optimize the 
experimental searches, such that the optimized search remains sensitive to the largest 
possible range of parameter space points



Parameter space scan

kλ

kt

Are the blue and red PDF different ?
Of course

Should we do two different
analyses (with differently optimized
MVA tools etc.) for these two points?
Or should we pick two different 
points?

In other words, if we can only train two MVA, the question is whether we should
teach them to distinguish background from the blue and red signals, or from
the blue and green, e.g.
→ our choice impacts the sensitivity we have to a BSM hh signal in the full parameter
space... so we have to take it wisely!



Dimensionality Reduction!
We are interested in distinguishing different production mechanisms, so we can focus on
what really tells apart different BSM models that produce HH pairs before any decay
/ hadronization / detector / reconstruction effect



Construction of a Test Statistic



In fact: a two-sample test produces in general a number (KS distance, AD distance, 
chi-square, etc) whose PDF is not distribution-independent; being distribution 
independent is a big advantage for a TS







The Higgs Kaggle Challenge

https://www.kaggle.com/c/higgs-boson#description



The problem

The gluon-fusion production process pp→H→ττ is 
not easy to distinguish from large backgrounds in 
LHC data. CMS and ATLAS competed to "observe" 
the decay long after the 2012 discovery in the easier 
H→ZZ, H→γγ channels.

In 2014 ATLAS loaded on Kaggle high-level features 
of signal and background processes (30 per event), 
challenging users to tell signal and background apart

In practice the request was to optimize an 
"approximate median significance" measure on data 
surviving a selection decided by the user with a 
discriminant of their craft and tuning



AMS



Details



Leaderboard



CONCLUSIONS



Conclusions

I do hope these lectures have brought you a bit closer to the world of 
Machine Learning

- or at least that I have not bored you to death, if you knew 
everything already!

As with any field in rapid development, you do not need to become all-
knowledgeable before you can become a practicioner: on the contrary! 
The best advice I can give you is - Jump in wherever you see fit and 
start swimming!

You will be surprised to see how fun it is to play with these tools – not 
to mention the fun you may have by coding your own methods 
(although clearly that's not everybody's definition of "fun"...)



Some take-away bits

• Don't look for complex solutions when simple ones work well
– Hastie: often kNN performs best !
– Useful to understand easy tools before you can exploit hard ones 

• As powerful as individual tools are, they aren't the answer to the question 
"what is best"
– the mastery of the data analyzer is to optimally combine the proper 

ingredients to achieve their task, and then add the killing bit that is only useful 
in the particular application at hand

• In NN design, the loss function is where the money is
– improvements in the inputs have also large impact in results (see tutorials)
– smart scanning for absolute minimum is important
– attempts to improve on already reasonably flexible designs likely to not give as 

big gains



Thank you!



A few interesting applications
from the ACAT conference



Neutrino interactions:
reconstruction with CNN

The use of CNN for reconstruction of neutrino interactions in LAr TPC detectors has been 
investigated in arXiv:1903.05663. 
In a talk at ACAT2019, Laura Domine explained the problem, the architecture used to 
solve it, and the performance achieved
The idea is to use the semantic segmentation capabilities of CNNs:

In neutrino interactions, what one 
cares to measure is energy and 
direction only. But for this one needs
to identify long tracks, EM showers,
cosmics, nuclear recoils... 



Neutrino event reconstruction



One example of pruning w/ L1



Here the focus is to see if one can implement discriminators for boosted jets in FPGAs



To manage the identification of heavy particle decays inside hadronic jets, you need to
resort to high-level variables, and learn complex image structures



Starting with a set of features, a reduction of the important features is performed
recursively during training, using a Lasso-like norm for the weights





Vertex finding in LHCb



Idea: reduce problem to 1D



Z-view of generated PDF



The network learns the vertices z



... Almost always


