
Glitch Classification
Data Challenge

Roberto Corizzo
University of Bari Aldo Moro

Data Science School, Braga 25-27.03.2019

Data Challenge: Tomorrow
Filip’s presentation on time series data
Tutorial on 1D CNN and 2D CNN notebooks

Note about the time series glitch dataset:
• Some time series present missing values (NaN)
• Those time series were not supposed to be included in the dataset

and can be discarded

Overview
• Ensemble models
• Auto-encoders
• Notebooks on Random Forest, XGBoost, Keras

Glitch classification: Part I

6667 glitches seen by LIGO
detectors during O1

• Numeric features
• GPStime
• peakFreq
• snr
• centralFreq

• Categorical label

• duration
• bandwidth

Dataset specifications
'Extremely_Loud’ 'Repeating_Blips’ '1080Lines’
'Wandering_Line’ 'Koi_Fish’ 'Low_Frequency_Burst’
'Whistle’ 'Scratchy’ 'Light_Modulation’
'Blip’ ‘Scattered_Light’ 'Violin_Mode’
'Power_Line’ 'Helix’ 'Low_Frequency_Lines’,
'None_of_the_Above’ '1400Ripples’ 'Chirp’
'No_Glitch’ 'Paired_Doves’ 'Air_Compressor’
'Tomte'

22 classes of glitches

Links to resources

Docker images
https://lip-computing.github.io/datascience2019/docker_images.html

For those who experience technical issues with Docker:

• Notebooks
https://cernbox.cern.ch/index.php/s/VSDpUpsavpmZR4A
Refer to the notebooks folder only, the data folder is not updated

• Data
https://owncloud.ego-gw.it/index.php/s/nHXFIJrCvAoDWob

https://lip-computing.github.io/datascience2019/docker_images.html
https://cernbox.cern.ch/index.php/s/VSDpUpsavpmZR4A
https://owncloud.ego-gw.it/index.php/s/nHXFIJrCvAoDWob

Notebooks Task
• Jupyter notebooks

• Random Forest in SKLearn
• Gradient Boosted Trees in XGBoost
• Neural Networks in Keras

• Propose a predictive model for glitch
classification

• All notebooks include working code to train
basic models, and to extract evaluation
metrics from predictions

• Identify the best performing model by
experimenting with different:

• Data preprocessing strategies
• Neural network architectures
• Grid search over parameter values
• Stacking different models

Evaluation strategy
• Fixed split

• 66.6% training set
• 33.3% testing set
• Seed = 7

Evaluation metrics
• Error rate
• Precision, Recall, F-Measure (per class)
• Precision, Recall, F-Measure (Micro/Macro/Weigthed)

Classification accuracy evaluation

Evaluation metrics: Micro vs Macro average
Example

• Class A: 1 TP and 1 FP
• Class B: 10 TP and 90 FP
• Class C: 1 TP and 1 FP
• Class D: 1 TP and 1 FP

Macro-average

Micro-average

Evaluation metrics: Confusion matrix
A classification algorithm has been trained to distinguish
between cats, dogs and rabbits

Assuming a sample of 27 animals — 8 cats, 6 dogs, and 13
rabbits, the resulting confusion matrix could look like this table

• In this confusion matrix, of the 8 actual cats, the algorithm predicted that three were dogs, and of the six
dogs, it predicted that one was a rabbit and two were cats.

• We can see from the matrix that the algorithm has trouble distinguishing between cats and dogs, but can
make the distinction between rabbits and other types of animals pretty well.

• All correct predictions are located in the diagonal of the table (highlighted in bold), so it is easy to visually
inspect the table for prediction errors, as they will be represented by values outside the diagonal.

https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html#sphx-glr-auto-
examples-model-selection-plot-confusion-matrix-py

Confusion matrix in Python:

Hyperparameters and Grid Search

from sklearn.model_selection import GridSearchCV
clf = LogisticRegression()
grid_values = {'penalty': ['l1', 'l2'],'C':[0.001,.009,0.01,.09,1,5,10,25]}
grid_clf_acc = GridSearchCV(clf, param_grid = grid_values,scoring = 'recall’)

grid_clf_acc.fit(X_train, y_train)
y_pred_acc = grid_clf_acc.predict(X_test)

print('Recall Score : ' + str(recall_score(y_test,y_pred_acc)))
confusion_matrix(y_test,y_pred_acc)

• A model hyperparameter is a characteristic of a model that is external to the model and whose value cannot be
estimated from data. The value of the hyperparameter has to be set before the learning process begins.

• For example, c in Support Vector Machines, k in k-Nearest Neighbors, the number of hidden layers in Neural
Networks.

• Grid-search is used to find the optimal hyperparameters of a model which results in the most ‘accurate’
predictions.

Ensemble models
Bagging, boosting, stacking

• Bagging and Boosting train multiple learners
generating new training data sets by random
sampling with replacement from the original set.

• In Bagging, any element has the same probability to
appear in a new data set, and the the training stage
is parallel (i.e., each model is built independently)

• In Boosting the observations are weighted and
some of them will take part in the new sets more
often. The new learner is learned in a sequential
way:
• Each classifier is trained on data, taking into

account the previous classifiers’ success
• After each training step, misclassified data

increases its weights to emphasize the most
difficult cases. In this way, subsequent learners
will focus on them during their training.

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

Ensemble Models: Bagging vs Boosting

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

• To predict the class of new data N learners are
applied to the new observations.

• In Bagging the result is obtained by averaging
the responses of the N learners (or majority
vote).

• Boosting assigns a second set of weights, this
time for the N classifiers, in order to take a
weighted average of their estimates.
• During training, the algorithm allocates weights

to each resulting model. A learner with good a
classification result will be assigned a higher
weight than a poor one.

• Boosting techniques may include an extra-
condition to keep or discard a single learner. In
AdaBoost, an error less than 50% is required to
maintain the model; otherwise, the iteration is
repeated until achieving a learner better than a
random guess.

Ensemble Models: Bagging vs Boosting

• Stacking uses the predictions of different basic
classifiers as a first-level, and then uses another
model at the second-level to predict the output
from the earlier first-level predictions.

• Key idea: predictions of different classifiers can
be used as training data for another classifier.

• Stacking generally results in better predictions
when the first-level classifiers outcome appear
uncorrelated with respect to the specific
dataset.

https://www.kaggle.com/arthurtok/introduction-to-ensembling-stacking-in-python

Ensemble Models: Stacking

base_predictions_train =
pd.DataFrame(
{'RandomForest': rf_preds,

'ExtraTrees’: et_preds,
'AdaBoost’: ada_preds,
'GradientBoost’: gb_preds })

https://www.kaggle.com/arthurtok/introduction-to-ensembling-stacking-in-python

Random Forest algorithm
• Random forests create decision trees on randomly

selected data samples, gets prediction from each tree and
selects the best solution by means of voting.

1. Select random samples from a given dataset.

2. Construct a decision tree for each sample and get a
prediction result from each decision tree.

3. Perform a vote for each predicted result.

4. Select the prediction result with the most votes as
the final prediction.

• Key advantages
• Highly accurate and robust due to the number of decision trees participating in the process.
• Does not suffer from overfitting
• Can be used in both classification and regression problems.
• Can handle missing values using median values to replace continuous variables, and computing the

proximity-weighted average of missing values.

https://www.datacamp.com/community/tutorials/random-forests-classifier-python

https://www.datacamp.com/community/tutorials/random-forests-classifier-python

Random Forest in Python sklearn
Most important parameters
• n_estimators The number of trees in the forest. default=10

• criterion Function to measure the quality of a split.
Supported criteria are “gini” for the Gini impurity
and “entropy” for the information gain.

• max_depth Maximum depth of the tree default=None
If None, then nodes are expanded until all leaves
are pure or until all leaves contain less thanmin_samples_split samples

• min_samples_split Minimum number of samples to split an internal node default=2
Can be an integer value or a float representing a
fraction, such that ceil(min_samples_split * n_samples)
are the minimum number of samples for each split

• min_samples_leaf The minimum number of samples required to be at a leaf node. default=1
A split point at any depth will only be considered if it leaves at least
min_samples_leaf training samples in each of the left and right branches.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Random Forest in Python sklearn
Jupyter notebook

• RandomForest.ipynb

Required code fixes

Setup correct dataset filename and path:

list_filename="gspy-db-20180813_O1_filtered_t1126400691-1205493119_snr7.5_tr_gspy.csv”
data_dir = os.path.join(os.path.dirname(os.getcwd()),"data")

Update attribute list:

X = gl_df.get(['GPStime','peakFreq','snr','centralFreq','duration','bandwidth'])

XGBoost: Core Model

• Based on the tree ensemble model: it
consists of a set of classification and
regression trees (CART)

• It sums the prediction of multiple trees
together, which try to complement each
other

Single tree example

Multiple trees example

K is the number of trees, f is a function in
the functional space , and  is the set of
all possible CARTs.

XGBoost: Tree Boosting
• Trees are learned by defining and optimizing an objective function:

Boosted Trees Performance

https://medium.com/mlreview/gradient-boosting-from-scratch-1e317ae4587d

https://medium.com/mlreview/gradient-boosting-from-scratch-1e317ae4587d

XGBoost: Data format
• It currently supports two text formats for ingesting data: LibSVM and CSV.

• You may specify instance weights in the LibSVM file by appending each instance label with the
corresponding weight in the form of [label]:[weight]

• Supports numeric data only. Categorical features can be processed transforming them:

• To numeric features (using LabelEncoder)
• Example: [a,b,b,c] > array([0, 1, 1, 2])

• To binary features with One-Hot-Encoding (using OneHotEncoder)
• Example: [a,b,b,c] > array([[1., 0., 0.], [0., 1., 0.],

[0., 1., 0.], [0., 0., 1.]])

This is the ideal representation of a categorical variable for XGBoost or any other machine
learning algorithm. https://xgboost.readthedocs.io/

https://xgboost.readthedocs.io/en/latest/tutorials/input_format.html

XGBoost: Example code
• Example code:

training = xgb.DMatrix(X_train, label=Y_train)
test = xgb.DMatrix(X_test, label=Y_test)

num_round = 2
param = {'max_depth': 2,

'eta': 1,
'silent':1,
'objective':'multi:softmax',
'num_class': Y_count_labels}

bst = xgb.train(param, training, num_round)
preds = bst.predict(test)

DMatrix is a internal data
structure that used by XGBoost
which is optimized for both
memory efficiency and training
speed. You can construct
DMatrix from numpy.arrays

Example featured in the XGBoost Jupyter Notebook for the glitch classification data challenge

XGBoost: Control overfitting and imbalance
• When you observe high training accuracy, but low test accuracy, it is likely to be an overfitting

problem.

• There are in general two ways that you can control overfitting in XGBoost:

• The first way is to directly control model complexity
This includes max_depth, min_child_weight and gamma

• The second way is to add randomness to make training robust to noise
This includes subsample and colsample_bytree

• You can also reduce stepsize eta. Remember to increase num_round when you do so.

• In some cases, the dataset is also extremely imbalanced. This can affect the training of XGBoost
model. For classification, you can balance the positive and negative weights via
scale_pos_weight (default 1)

• A typical value to consider: sum(negative instances)/sum(positive instances)

Gradient Boosted Trees in XGBoost

Jupyter notebook

• XGBoost.ipynb

Required code fixes

Setup correct dataset filename and path:

list_filename="gspy-db-20180813_O1_filtered_t1126400691-1205493119_snr7.5_tr_gspy.csv”
data_dir = os.path.join(os.path.dirname(os.getcwd()),"data")

Update attribute list:

X = gl_df.get(['GPStime','peakFreq','snr','centralFreq','duration','bandwidth'])

Auto-Encoders

Auto-Encoders
Auto-Encoders learn to reconstruct a given input representation with a low reconstruction
error.

A suitable way to learn an auto-encoder consists in layer-wise back-propagation learning.

Each auto-encoder has an encoding function γ and a decoding function δ such that:

Decoding stage (one hidden layer)

The decoding stage reconstructs x from z as:

such that the following loss is minimized:

Encoding stage (one hidden layer)

Takes the input x∈Rd =X and maps it to an hidden representation z∈Rp =F

Where σ is a sigmoid or a rectified linear unit activation function, W is a weight matrix and b is a
bias vector.

Auto-Encoders

Auto-Encoders vs Stacked Auto-Encoders

Auto-Encoders: Possible tasks
Anomaly detection
• Once the auto-encoder is trained with non-
anomalous data, a high reconstruction error for
a new instance means that it is possibly an
anomaly.

Clustering
• Non-linear auto-encoders build multiple-local-
valley representations of the underlying domain.

• Instances with similar values of reconstruction
error may imply that they belong to the same
cluster.

Auto-Encoders: Possible tasks
Recognition-based classification
• Once trained with data belonging to the positive class,

if the reconstruction error is lower than a threshold
for an unseen example, it belongs to the positive
class, otherwise it belongs to the negative class.

Concept learning prior to classification or regression
• Perform layer-wise pre-training
• Trained layers can be copied to other neural network

models (a new model with one output neuron for
classification)

• Pre-training should initialize the weights closer to
good solutions (see Larochelle et al. 2009)

Auto-Encoders: Possible tasks
Feature extraction
• After training, extract a set of features of

reduced dimensionality (embedding features)
exploiting the encoding function.

• Reduced dimensionality implies model
compactness and possible mitigation of
collinearity effects, similarly to Principal
Component Analysis (PCA).

Note: Auto-encoder embedding features are equivalent to PCA just if the
hidden layer has linear activations (see Japkowicz et al. 2000)

Keras: Feature extraction via autoencoders

• Data compression algorithm where
the compression and
decompression functions are
learned automatically from
examples rather than engineered by
a human

• In almost all contexts where the
term "autoencoder" is used, the
compression and decompression
functions are implemented with
neural networks

• Applications of autoencoders are
data denoising and dimensionality
reduction

https://blog.keras.io/building-autoencoders-in-keras.html

from keras.layers import Input, Dense
from keras.models import Model

encoding_dim = 32
input = Input(shape=(784,))

encoded = Dense(encoding_dim, activation='relu')(input)
decoded = Dense(784, activation='sigmoid')(encoded)
autoencoder = Model(input, decoded)

encoder = Model(input_img, encoded)

Auto-encoders

https://blog.keras.io/building-autoencoders-in-keras.html

Keras: Feature extraction
Deep auto-encoders

https://blog.keras.io/building-autoencoders-in-keras.html

encoded = Dense(128, activation='relu')(input_img)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(32, activation='relu')(encoded)

decoded = Dense(64, activation='relu')(encoded)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(784, activation='sigmoid')(decoded)

autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta',
loss='binary_crossentropy')

autoencoder.fit(x_train, x_train,
epochs=100,
batch_size=256,
shuffle=True,
validation_data=(x_test, x_test))

• Instead of a single layer as encoder or decoder, they implement a stack of layers

https://blog.keras.io/building-autoencoders-in-keras.html

Neural Networks in Keras: Classification example
Jupyter notebook

• KerasNN.ipynb

Required code fixes

Setup correct dataset filename and path:

list_filename="gspy-db-20180813_O1_filtered_t1126400691-1205493119_snr7.5_tr_gspy.csv”
data_dir = os.path.join(os.path.dirname(os.getcwd()),"data")

Update attribute list:

X = gl_df.get(['GPStime','peakFreq','snr','centralFreq','duration','bandwidth’])

Setup correct number of neurons in the input layer:
model = Sequential()
model.add(Dense(70, input_dim=6, activation='tanh'))
model.add(Dense(22, activation='softmax'))

