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Binary Classification

A linear rule A non linear rule A "rectangular" rule
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Signal and Background: a common problem in many setups

Generally we know the characteristics of two classes of events, and we wish to 

use them to find the best possible distinction with a fixed rule → a "decision 

boundary" in the feature space of the event characteristics

Low variance (stable), high bias methods High variance, small bias methods



Feature Space and Output Function

Every signal or background event has “D” measured variables

D-dimensional

“feature

space”

y(x)

Test statistic:

y(x): RD
→R:

y  = y(x);  x RD

x={x1,….,xD}: input variables

One can construct a histogram 
of the resulting values of y(x) 
taken by S and B

One wishes to find a map of the multi-D space of 
features, into a real variable that separates in a 
pseudo-optimal way the two classes



The "ROC" Curve  

y(x)

Cutting harder on y(x)

Smaller selection efficiency

The ROC curve (receiver operating characteristic) is a way to summarize how well 
you are doing with your estimated y(x) in the classification problem

How to quantify ?
- look at rejection at fixed eff
- compute AUC
- many other metrics available



The AUC metric

In some cases it is not trivial to rank classifiers by 
their performance. 

In particular if one does not (yet) have an estimate of 
the proportion of signal and background (class 
probabilities), one cannot decide!

A simple criterion is to compute the area under the 
ROC curve (AUC).
The AUC has a clean statistical interpretation: taken 
two events at random, one from each of the two 
classes, AUC is the probability that the signal event 
has higher score than the background event.

AUC is a coherent measure of predictive power of y(x) 
if we have no information on the relative 
misclassification cost of the two classes – i.e. if we do 
not know the operating point. The more we know of 
that, the less useful AUC is. 

Which 
is best?

AUC



A parenthesis: Generalities on 
Hypothesis Testing

We are often concerned with proving or disproving a theory, or comparing and
choosing between different hypotheses.
In general this is a different problem from that of estimating a parameter, but the two
are tightly connected.

If nothing is known a priori about a parameter, naturally one uses the data to estimate it;
if however a theoretical prediction exists of a particular value, the problem is more
proficuously formulated as a test of hypothesis.

A hypothesis is simple if it is completely
specified; otherwise (e.g. if it depends on
the unknown value of a parameter, H(θ)) it is 
called composite.



Nuts and bolts of HT

Be given 
- i.i.d. (Identical and Independently Distributed) data 
X={xi}i=1,...,N, assumed without loss of generality multi-
dimensional: xi=(xi,1,xi,2,...,xi,D)
- Two fully specified PDFs:
• H0: null hypothesis P(X|H0)
• H1: alternate hypothesis P(X|H1)

Three main parameters in the game:
– a: type-I error rate; probability that H0 is true although 

you allow yourself to accept the alternative hypothesis
– b: type-II error rate; probability that you fail to claim a 

discovery (accept H0) when in fact H1 is true
– q, parameter of interest (describes a continuous 

hypothesis, for which H0 is a particular value). 
E.g. q=0 might be a zero cross section for a new particle

• Common for H0 to be nested in H1

Above, a smaller a is paid for 
with a larger type-II error
rate (yellow area) 
→ smaller power 1-b

if one specifies p(H0), p(H1),
and α the problem is solved...



Alpha vs Beta and 
power graphs

• Choice of a and b is conflicting: where to stay in 
the curve provided by your analysis method highly 
depends on habits in your field

• What makes a difference is the test statistic: note 
how the N-P likelihood-ratio test outperforms 
others in the figure  [James 2006] – reason is N-P 
lemma

• As data size increases, power curve becomes closer 
to step function

The power of a test usually also
depends on the parameter of 
interest: different methods may 
have better performance in 
different parameter space points
UMP (uniformly most powerful):
has the highest power for any q



Statistical significance
Statistical significance reports the probability that an experiment obtains data at 
least as discrepant as those actually observed, under a given "null hypothesis“ H0

– In physics H0 usually describes the currently accepted and established theory 

• Given data X and a test statistic T (a function of X), one may obtain a p-value as 
the probability of obtaining a value of T at least as extreme as the one observed, 
if H0 is true. 

p can then be converted into the corresponding number of "sigma," i.e. standard 
deviation units from a Gaussian mean. This is done by finding x such that the integral 
from x to infinity of a unit Gaussian equals p:

According to the above recipe, a 15.9% probability is a one-standard-deviation 
effect; a 0.135% probability is a three-standard-deviation effect; and a 0.0000285%
probability corresponds to five standard deviations - "five sigma" in jargon.
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The convention is to use a “one-tailed” Gaussian: we do not care about departures 
of x from the mean in the un-interesting direction

The conversion of p into σ is independent of experimental detail. Using Νσ rather 
than p is just a shortcut, nothing more ! 

In particular, using “sigma” units does in no way mean 
we are operating some kind of Gaussian approximation
anywhere in the problem

Notes

The whole construction rests on a proper 
definition of the p-value. Any shortcoming of 
the properties of p (e.g. a tiny non-flatness of 
its PDF under the null hypothesis) totally 
invalidates the meaning of the derived Nσ

Empirical PDF of p|H0

0                                      1    p

GOOD

BAD – don't even
think of converting
ill-defined p into Z !!



A note on the notes:
How a non-flat p-value arises

The graph in the previous page is 
probably cryptic unless we consider 
how we could construct it

Take a model of the data (a PDF). 
Then consider observations allegedly 
sampled from that model
If the model is not correct, the data 
will populate certain regions 
differently from what the model 
predicts
If for each data point you do a test of 
hypothesis, asking how probable it is 
that it does come from the supposed 
PDF (as a tail probability!), you can 
plot the resulting p-values
→ the incorrect model is spotted by a 
non-flat distribution of p

Empirical PDF of p|H0

0                                      1    p

GOOD

BAD – don't even
think of converting
ill-defined p into Z !!

PDF(x)

x



The Neyman-Pearson Lemma

In a 1932 paper by J. Neyman and E. S. Pearson, "On the Problem of the 
most Efficient Tests of Statistical Hypotheses", the following notable 
result is demonstrated:

Given two simple hypotheses, parametrized by densities p(x|θ1), p(x|θ0) 
that depend on specific values of a parameter, the likelihood ratio 

r(x|θ0,θ1) = p(x|θ1) / p(x|θ0) 

is the most powerful test statistic to discriminate between them.

The importance of this lemma cannot be overstated – it is the ultimate 
weapon for solving inference problems.



How to Build a Classifier

The function

r 𝒙 =
𝑷𝑫𝑭(𝒙|𝑺)

𝑷𝑫𝑭(𝒙|𝑩)

is therefore the best possible classifier of S versus B  → PROBLEM SOLVED! ?

...NO:

- p(x|S), p(x|B) are usually not perfectly known; in typical cases of interest in HEP 

and astro-HEP they may be only estimated by forward simulation, affected by 

stochastic phenomena

- hypotheses are not usually "simple vs simple" – nuisance parameters affect their 

determination

In general: One knows examples of S and B, but not their precise density



A relevant theorem

The Neyman-Pearson lemma can be used effectively in association with a 

Theorem:

The likelihood ratio r(x) is invariant under a change of variable y = f(x), 
provided f(x) is monotonic with r(x):

𝑟 𝑥 𝜃0, 𝜃1 =
𝑝(𝑥|𝜃0)

𝑝(𝑥|𝜃1)
=
𝑝(𝑓(𝑥)|𝜃0)

𝑝(𝑓(𝑥)|𝜃1)
= 𝑟(𝑦|𝜃0, 𝜃1)

Note:
• This is a strict equality, not an inequality. 
• The transformation does not squander information on the ratio
• But information about x may be lost by f()



How to construct f(x)
With supervised learning we can get f(x) automagically!

- we start with a binary classifier f* trained to distinguish x sampled from p(x|θ1) from x sampled 
from p(x|θ0): a Bernoulli process, modelled with Binomial pdf

the training may be achieved by minimization of cross-entropy, e.g.

𝐿 መ𝑓 = −𝑬𝑝 𝑥 𝜃 𝜋 𝜃 [𝟏 𝜃 = 𝜃0 𝑙𝑜𝑔 መ𝑓 𝑥 + 𝟏 𝜃 = 𝜃1 log 1 − መ𝑓 𝑥 ]

The solution at minimum loss approximates the optimal classifier

መ𝑓 𝑥 ~𝑓∗ 𝑥 =
𝑝(𝑥|𝜃1)

𝑝 𝑥|𝜃0 + 𝑝(𝑥|𝜃1)

which is monotonic with the likelihood ratio r, so

𝑟 𝑥 𝜃0, 𝜃1 ~ Ƹ𝑟 𝑥 𝜃0, 𝜃1 =
1 − መ𝑓(𝑥)

መ𝑓(𝑥)

This proves that supervised classification is equivalent to likelihood ratio estimation, and can be 
effectively used for inference or discrimination



Other metrics for binary classification

We discussed the ROC curve, and mentioned 
that the AUC (area under curve) can be a 
measure of how well a classifier is doing

But there are of course other metrics, that fit 
different tasks 

E.g.: Sensitivity and Specificity. Suppose we 
have to gauge the effectiveness of a signal 
selection cut.
Sensitivity: TP/(TP+FN)
think of it as "signal efficiency"
Specificity: TN/(TN+FP)
"background rejected by selection"

Also of interest: 
Purity: TP / (TP+FP) (a relative measure)
Can be useful as a measure of the goodness of 
the selection, but cannot be the only measure, 
as it strongly depends on initial fractions

True positives     False positives
TP FP

False negatives   True negatives
FN                       TN

Is signal           Is background

pass cut
(positive)

fail cut
(negative)

AUC



The loss function

The mean squared error is a sound measure of the model accuracy, but it is not 
necessarily the metric most appropriate for our problem

E.g., in physics analyses we are concerned with the maximum sensitivity to a small signal, and we 
often use as a figure of merit the ratio s/sqrt(b+s) → don't do that (see digression next slide)

In general, the quality of a predictive model can be quantified by constructing a 
function l(y,f(x)), a measure of the distance between the true class label y and the 
predicted response f(x).
One may then define the expected distance

𝐿 𝑋, 𝑌 = 𝐸𝑋,𝑌𝑙 𝑌, 𝑓 𝑋 = 

𝑦∈𝑌

න

𝑋

𝑙 𝑦, 𝑓 𝑥 𝑃 𝑥, 𝑦 𝑑𝑥

over the full space of X and Y. This can be computed empirically, using labelled data 
drawn from the pdf p(x,y), by averaging l(y,f(x)):

𝐿 =
1

𝑁


𝑛=1

𝑁

𝑙(𝑦𝑛, 𝑓 𝑥𝑛 )

Note: the empirical loss depends on the prior distribution of the two classes, P(y). This 
is not always what the analyzer wants (see note above).



Optimization?

• We all-too-often see analyses blindly optimizing on S/sqrt(B) or S/sqrt(B+S) even in 
cases when the signal region is going to contain a small number of entries

• One real-life example (recently seen): a great cut keeps 20% bgr, 60% signal
– at preselection, expect 8 signal, 1 background: S/sqrt(B)=8; S/sqrt(B+S)=0.89
– after selection, expect 4.8 signal, 0.2 background: S/sqrt(B)=10.7, S/sqrt(B+S)=0.96
– Is it a good idea ?
– Median of B-only p-value distribution for observing N=8+1=9 in the first case is 

pm=1.1*10-6 , twice smaller than median p-value for observing N = 4.8+0.2 = 5 
(pm=2.6*10-6)  → we worsened the expected p-value by a factor of 2 !!!

• If you really need a quick-and-dirty answer please use: Q=2[(S+B)0.5-B0.5] which has 
better properties (case above: Qpresel=4; Qsel=3.58)

• In general “optimization” is a word used recklessly. A full optimization is seldom 
seen in HEP analyses. This however should not discourage you from trying!

→When possible, optimize on final result, not on “intermediate step” (systematics may 
wash out your gain if you disregard them while optimizing)



0-1 loss and Bayes error

The predicted response of a classifier can be a hard label (e.g. y*=0,1), or a soft 
score f(x). The latter provides a "level of confidence" in the prediction
In the case of a hard label y*, the loss can only be formulated as a "0-1 loss", the 
classification error

l(y,y*) = 0 if y=y*
l(y,y*) = 1 if y!=y*

One then minimizes the expected loss L(X,Y) by choosing y* such that it 
maximizes the probability of the corresponding class: 

y*(x) = arg maxy P(y|x).

The 0-1 loss equates to the probability of observing one of the less probable 
classes,

𝜖∗ = 1 −න
𝑋

𝑃 𝑦∗ 𝑥 𝑃 𝑥 𝑑𝑥

The minimal classification error thus obtained is also known as the Bayes error.

 pick y which maximizes p!



Finding the best parameters
We can treat a supervised learning problem by using the general strategy for 
parameter estimation: cast the problem as a likelihood maximization. 

Using data X, write L as
L(w) = p(y|X;w) = Πi p(yi|xi,w)

and select the parameters w that make the observed data the most likely,
L(w)  = arg minw (-log L(w)) = 

= arg minw [-Sumi log p(yi|xi,w)]

E.g. 1: if the targets have a Normal distribution of mean μ=f(x) and width σ, 
given data X, compute

log p(y|x) = log [N(y|μ,σ)] ~ [y-f(x)]2.

E.g. 2: if probability of data X being signal is p, one has a Bernoulli trials 
distribution of p(x)

log p(y|x) = log (B(y;p=f(x)) = log [py (1-p)1-y] = 
= y log f(x) + (1-y) log (1-f(x)) 



Parameter estimates for a linear model

Let us assume that 
yi = f(xi)+ei

with a Gaussian random error 
p(ei) = exp(-ei

2/2σ2)
The model for yi is then 

p(yi|xi,w) = exp((wxi-yi)
2/2σ2)

The likelihood can then be written:

𝐿 𝑤 = 𝑝 𝑦 𝑥,𝑤 =ෑ
𝑖=1

𝑛

𝑝(𝑦𝑖|𝑥𝑖 , 𝑤)

→ − log 𝐿 𝑤 = σ𝑖=1
𝑛 (𝑦𝑖 −𝑤𝑖𝑥𝑖)

2

Thus the negative log-likelihood is equivalent to the least-square loss. 
This yields a probabilistic interpretation of the regression operated by 
a ML tools using the LS loss.



Regularizing the loss

The parameters of a model, learned through loss minimization, can 
sometimes diverge / be unstable

Often one wishes to regularize the loss by adding some constraining 
term, e.g.

The function Ω, moderated by a strength parameter λ, penalize some 
values of the parameters w



Ridge and Lasso

The regularization of the loss is often done with a L2 or a L1 
norm on the parameters. The behavior one obtains is different.

A L2 norm 

Ω w =𝑤𝑖
2

is equivalent to having a 
Gaussian prior in the 
PDF of the parameters

A L1 norm 

Ω w =|𝑤𝑖|

corresponds instead to 
a prior having a Laplace 
distribution

RIDGE LASSO



What it means



Binary Cross-Entropy

For binary classification, class assignment is modeled by a Bernoulli 
trial probability p following the Binomial distribution

A commonly used loss function
is correspondingly  defined as

High loss for events
with low probability
of being in predicted class



A comparison of loss functions

Only penalizes values <1



Classification vs Regression

The two "standard" problems usually addressed by supervised learning 
methods are apparently quite different

• In classification tasks, the target is an indicator function assigning 
elements to one of two or more classes

• In regression tasks, the target is continuous

Consider a binary tree (see later) used for classification of events of type S 
and B: a node will have relative frequencies  p, q and a measure of impurity is 
the associated Gini index, for s and b events in a node:

φ(p,q) = 2pq = 2sb/(s+b)2

If taken as a regression problem, the target is yn=+1 for S, yn= -1 for B. One 
may choose the measure to be minimized as a mean-square error:

MSE = Sumn=1,...,N (yn-<y>)2 / N

= 0 → pure of one class
=1/2 → completely mixed

S

X

B



Classification == regression ?

We may write the mean response in a node with s and b events as

<y> = s/(s+b)*[+1] + b/(s+b)*[-1] = 
= (s-b)/(s+b)

Hence, since N = s+b, the MSE results in

MSE = Sumn=1,...,N (yn-<y>)2/N = Sumn=1,...,N (yn-<y>)2/(s+b) = 
(s[1-<y>]2 + b[-1-<y>]2 )/ (s+b) =
[s(1-(s-b)/(s+b))2 + b(-1-(s-b)/(s+b))2] / (s+b) =
2sb / (s+b) = φ(p,q)

→MSE = φ(p,q) !

So regression based on minimizing the MSE is equivalent to classification using the 
Gini index as criterion for the best split!
This is not a general result (change the minimization recipe and the result does not 
hold) but shows the tight connection of the two problems.

NB the Gini
index is discussed
in more detail
below, in the
context of
decision trees



Diversion: Choose The Model

Suppose you are given some data (x, y+-σy) and the task 
of finding a suitable model y=f(x). The σ are standard 
error estimates. What model do you choose: a constant, 
a linear, or a quadratic one?

A first note to make is that this question involves a set of 
two tests of hypotheses (P0 vs P1 or P1 vs P2), and as 
such it is ill-posed until one specifies a type-1 error rate.

The other thing one might realize is that there is a thing 
solving this problem for you – it is called F-test. 

Without diverging, the solution for the data shown (for 
α=0.1) is that you should pick the linear model. 
If you chose the quadratic one you were too greedy: the 
model overfits the data (it goes through every 
uncertainty bar)!
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The test between constant and line 
yields p=0.0146: there is evidence
(according to our choice of α) against the 
null hypothesis (that the additional 
parameter is useless), so we reject the 
constant pdf and take the linear fit

The test between linear and quadratic fit 
yields p=0.1020: there is no evidence 
against the null hypothesis (that the 
additional parameter is useless). We 
therefore keep the linear model.



Underfitting and overfitting
What we saw is a general issue: don't overfit!
We will discuss this issue further in the following.
As the complexity of your model increases, you manage to capture more and 
more of the features of the data. However, one needs to stop somewhere... Your 
task is to generalize, not to interpret just the data you were given. 

Generalization fights against systematic uncertainties from the imperfections of 
the model (bias) and against the sensitivity of the prediction (variance) 

Just about right



The pains of generalization

We can try to be a bit more formal, to investigate what is going on 
quantitatively. Suppose you have a model f(x) trained on data x, that 
approximates a random variable t. So this is a regression task.

In terms of expectation values you can write

𝐸 𝑡 = Ƹ𝑡

𝐸 𝑓 𝑥 = መ𝑓 𝑥

One can study the generalization error on t at any value x by expanding

𝐸[ 𝑓 𝑥 − 𝑡 2]=
𝐸 𝑡 − Ƹ𝑡 2 +

Ƹ𝑡 − መ𝑓(𝑥)
2
+

𝐸[ 𝑓(𝑥) − መ𝑓(𝑥)
2
]

Noise term – cannot be
improved with modelingSquared bias: this can be 

reduced with a more 
complex model Variance term: the more 

complex the model, the 
higher this term, as it 
tries to capture erratic 
behavior



Bias-Variance Tradeoff

With larger amounts of data the model can become more complex (smaller bias), 
because the variance diminishes. 

Optimal 
tradeoff

Model complexity

Squared 
error

Bias2

Variance

Total 
squared
error



Training and testing

In order to construct and study a classifier built with a supervised algorithm – e.g. a 
decision tree, one needs labelled data from the two classes. The more data, the better!

One must decide how to use the available labeled data in the 
construction of the classifier or regressor. Can we use the same data 
for both training and testing?
Answer: No – the error estimated in the training phase 
("resubstitution error") is optimistic: this is the phenomenon called 
over-training

During training, the model attempts to learn the features of the joint 
distribution p(x,y) of data x and labels (or values, in regression) y

But training data carries noise with it – and this component will be 
learned by a flexible model too, deteriorating the accuracy on data 
not seen in the training phase
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Training error:

7/42 = 16.7%
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Testing 

(validation) 

error:

2/15 = 13.3%
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Predictor variable 1
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Testing 

(validation) 

error:

4/15 = 26.7%
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Training vs Testing

So we split the labelled data into training and testing subsets. 

Let us consider a decision tree where we vary the leaf size from 1 
(perfect classification at training stage) to N (training size, no tree). 
As the size of leaves increases we go from a flexible, high-variance 
tree to a robust, but high-bias one.

We observe that the training error increases with leaf size.
This is a general property:  the training error decreases with the 
model complexity

The test error instead decreases with leaf size until an optimal value 
is reached, which is close to the Bayes error.

(The above behaviour is not universal; for e.g. ensemble learners the 
test error also increases monotonically with leaf size)

Leaf size

MSE



One fitting example

Here we have training data (blue 
crosses) and a few polynomial models
that try to capture their variation (y)
by minimizing the mean square error

Validation data (red points, call it test
data here for now) also shown

The problem cannot be "solved" by
training data alone, as a more complex
model would always seem to work
better than a simpler one

A graph of the MSE vs model complexity
is all that is needed to see what 
model complexity is appropriate.
But we use test data for that!



How to compromise?

There is a detail to fix. We want to learn the most accurate possible 
model given our data, but we also want to estimate its predictive 
power as accurately as possible. 

- the predictive power improves with training data size →max that
- the uncertainty on the predictive power decreases with test data 

size → or max that ?

Data is costly → we need to optimize the partition into training and 
testing.

We can in principle solve this problem by studying the statistical 
properties of the misclassification error (see next slide). However, as a 
spoiler, this will not be sufficient...



Misclassification error

Consider a binary classifier y* = f(x) which yields a misclassification error ε. In statistical 
jargon we are discussing a Bernoulli trial, modelled with a Binomial distribution

𝑃 𝑚,𝑁, 𝜀 =
𝑁
𝑚

𝜀𝑚(1 − 𝜀)𝑁−𝑚

The test set has size N, and m is the number of failures. The job of the test set is to 
minimize the length of a confidence interval on ε. The job of the training set is to 
minimize ε itself. 
One can kill both birds with the same stone by minimizing the upper limit on ε. At 
95% CL, and under a Normal approx., we may write, for an ensemble of train/test sets:

𝐸𝜀𝑈𝐿 = 𝜀 𝑁𝑡𝑟𝑎𝑖𝑛 + 1.96
𝜀(𝑁𝑡𝑟𝑎𝑖𝑛)(1 − 𝜀(𝑁𝑡𝑟𝑎𝑖𝑛))

𝑁𝑡𝑒𝑠𝑡

Barring the caveats (Wald approximation, Gaussian approx for UL) is the problem 
solved?

Yes – the calculation of the appropriate split (which minimizes the expectation value 
for the UL on the misclassification error) gives a good rule, but...

No – we have omitted an important step in the procedure: the optimization of the 
classifier parameters. We need an independent sample to do that! → Validation



Training, Validation, Testing

In order to construct and study a classifier built with a supervised algorithm – e.g. a BDT 
(see below), one needs labelled data from the two classes. The more data, the better!

Be given a sample of NS signal events and NB background events, one usually separates 
these sets in three parts:

Training set: events used to build the classifier. The algorithm 
employs them to estimate the prior densities of S and B, or directly 
the likelihood ratio or a monotonous function of it
Validation set: this is used to understand whether the training was 
too aggressive (overfitting), and to tune the algorithm parameters 
for best results
Test set: this sample is totally independent from the former two, 
and it is used to obtain a unbiased estimate of the final 
performance of the model, previously learned, validated and 
optimized.

The quality of the generalization can be further studied by more
advanced partitions and resampling techniques. A common one is 
k-fold cross validation (see below). 



Leave-one-out Cross Validation

You can come up with the idea of removing just one event from the set. Train 
the learner on N-1 events, and test it on the Nth one:

MSEN = (yN-y*)2

That is a very rough estimate! But we can iterate on all N and take the mean:
<MSE> = 1/N Sumi (MSEi)

You are using almost all data for training, so the returned answer is stable and 
has low variance; plus, the method is deterministic.

LOOCV is good, but can be very CPU consuming for large samples → use it 
only for very small data sizes.

Data is costly! So, often it is impractical to keep large holdout samples
for validation.

Imagine you want to optimize a hyperparameter s affecting the 
precision of your model. How to proceed?



k-Fold Cross Validation

Recipe:

• Divide training data into N equally 
sized subsets (N=5-10 is typical)

• For each k=1...N, train a classifier, or 
fit data with k-th sample as hold-out; 
apply to k-th subset and obtain error 
(or loss) Ek(s)

• Obtain CV error by averaging: 
CVE(s) = 1/N Sum(Ek(s))

• Pick s such that CVE is minimum

Narsky advises N=10 for most problems.

Training sample

VT T TT
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V

V

V

T

T

T

T T T T

T T T

T T T

T T T

E1(s)

E2(s)

E3(s)

E4(s)

E5(s)

Leave-one-out cross validation can be generalized by leaving out 1/kth of the 
data
If k is >4, the training accuracy is not affected significantly, and we still get a 
reasonable estimate of the uncertainty.



LOSS MINIMIZATION



Behind the scene of the picture

In the pictured situation, there are two possible 
outcomes:
• the dealer has 21 (p=4/13) → you break even
• the dealer does not (p=9/13) → you win 1.5 

times your bet
E(win) = 1.5*9/13 = 1.038 (in initial bet units)
It's looking good! However, you might end up not 
winning anything... max loss = - min win = 0.

If you however place an insurance bet of X units (on 
the dealer having blackjack), 
E(win) = (1.5-X)*9/13 +2X*4/13 = 1.038 - X/13; 
So the insurance isn't doing any good to your 
expectation... But OTOH, now
max loss = -min [1.5-X,2*X]
→ by taking an insurance bet you decrease your 

expected win, but with X=0.5 you minimize your 
max loss (i.e. maximize your minimum win)

(at Casinos, max X allowed is 0.5 anyway) 

X0.5     1.0     1.5   

Max loss

0

-1

minimal max loss

max loss with 
no insurance



Gradient Descent

To minimize –log L and find optimal value of model parameters, in the 
absence of an analytical description, we "descend" toward the 
minimum by approximating the shortest route with local information:

1) find gradient of L w.r.t. parameters w:   
𝜕𝐿(𝑤)

𝜕𝑤
2) update parameters:

𝑤′ ← 𝑤 − 𝜂
𝜕𝐿(𝑤)

𝜕𝑤

and iterate.

Success depends on how fast you 
descend, moduled by "learning rate" η.



Stochastic Gradient Descent
Computing the gradient over the whole training set at each step is sub-optimal:
• CPU-intensive (must pass all dataset)
• large memory use, intractable if too large datasets
• does not allow updates on-the-fly (adding data online)
Also, it can become ineffective, as risk of getting stuck in local minima is large in multi-D
Most modern deep ML methods employ "stochastic" techniques to find the optimal 
working point / parameter values

This relies on the possibility to decompose 
the loss function into the sum of per-
example losses.
SGD updates parameters on a per-event 
basis → objective function becomes noisy, 
but this has merits (can jump out of local 
minima)



Mini-batch SGD

One may improve on per-event SGD updating by computing 
the gradient over small batches of training data

→ get the best of both worlds: 
- fast 
- no memory issues 
- scales well with data size
- still can jump out of local minima 
- noise averages out a bit

Recipe:
𝑤 ← 𝑤 − 𝜂 ∙ 𝛻𝑤L(w; 𝑥

𝑖:𝑖+𝑀, 𝑦𝑖:𝑖+𝑀)



Advanced descent strategies

Finding the real, absolute minimum of a 
function with many parameters in a multi-D 
space can be very tricky, and take a lot of 
time

A number of variants of mini-batch SGD 
exist on the market:
• momentum descent
• ADA gradient
• ADAM
• Nesterov accelerated gradient (NAG)
• and others

Their performance depends on the specific 
problem, the data size, sparsity, etcetera

Take-home bit: don't just pick the first off 
the shelf. Experiment with different 
methods, try to understand what is best for 
your case http://danielnouri.org/notes/category/deep-learning/#changing-

learning-rate-and-momentum-over-time



Escaping saddles
It has been shown that the most challenging issue of SDG is that it tends to get 
trapped in saddle points, rather than local minima 
Also, saddles are way more common!
• Easy to understand: as number of dimensions grow, probability that a point which 

has zero local gradient is a minimum in all directions goes to zero

Variants of SGD try to address this in creative ways
- decrease η according to some schedule
- emulate physical rolling down 
- etcetera
E.g. Momentum: leverages "memory" of which gradient component consistently 
show decrease in loss to increase shift in relative direction



Escaping the saddle/2

Another nice animation 
shows how different SGD 
strategies perform on a 
complex surface

Methods that adapt the 
learning rate to the 
situation at hand, and 
explore the gradient 
components (ADA, 
RMSprop, ADAM) are faster 
in escaping saddles and 
progressing toward the real 
minimum

Funny to see how their 
trajectories look longer and 
less meaningful – their 
strength is in the speed 
here

http://ruder.io/optimizing-gradient-descent/



Escaping the saddle / 3

In this example 
one may more 
clearly see the 
risk SGD runs in 
saddle points



Escaping the saddle / 4

Here the oscillation 
of the SGD solution 
is not perfectly 
aligned with the 
direction of zero 
gradient, so it also 
ultimately escapes, 
but computationally 
the shortcomings 
are evident with 
respect to more 
advanced methods



A COUPLE OF METHODS



MVA methods

Life is short, and there are heaps of good ideas to construct smart methods 
for supervised learning tasks...

In the following we give a quick look at linear discriminants and Support 
Vector Machines, and then focus on decision trees /BDTs and neural networks

One thing to mention at the start: it _is_ important to learn the easy methods 
– in many applications they are all that's needed, if not better than complex 
tools like DNNs with all their bells and whistles

→ Trevor Hastie: kNN is as good or better than anything else in 
2/3 of all problems !

I think that's a bit of a stretch (also depends on what prior distribution of 
problems you are considering), and yet we have to stop and think...



Fisher Linear discriminant
The Fisher discriminant constructs a linear boundary  between two classes by 
finding a projection of the data that maximizes their separation
The idea is similar to linear discriminant analysis (not discussed here), however 
there is no assumption of normality or equal variance of the classes
There are two measures of relevance: the separation of the means along the 
chosen projection, and the spread of each distribution

If two classes have means μ1, μ2,
and covariances C1, C2 we can define:

The between-class variation
𝑆𝐵 = 𝜇2 − 𝜇1

𝑇(𝜇2 − 𝜇1)

The within-class variation

𝑆𝑊 = 

𝑗=1,2



𝑖∈𝑐𝑙 𝑗

𝑥𝑖 − 𝜇𝑗
𝑇
(𝑥𝑖 − 𝜇𝑗 )



Fisher linear discriminant /2

Fisher criterion tries to maximize SB and minimize SW, so it is in fact 
written as a ratio of the two. One finds the vector w (orthogonal to 
the separating plane) which maximizes the function

𝑆 𝑤 =
(𝑤 ∙ (𝜇2 − 𝜇1))

2

(𝑤𝑇 𝐶1 + 𝐶2 𝑤)

The solution is found for w proportional to
𝑤 ∝ (𝐶1 + 𝐶2)

−1(𝜇2 − 𝜇1)

This is easy to compute. 
The Fisher discriminant is optimal for normal MV distributed data of 
different means and same covariance; performance deteriorates with 
complexity



Support vector machines

A SVM is a binary linear classifier that tries to find the best separation between two 
classes of data

The basic concept can be again 
explained with linear 
separation between the 
classes (a hyperplane in the 
feature space)

Non-linear separation is 
possible by extending the 
technique to additional 
dimensions → we do not make 
the discrimination surface 
more complex, but we make 
the data more complex (see 
below)



Which hyperplane?

Besides the 
obviously bad 
solutions, there can 
be an infinity of 
good solutions that 
work perfectly with 
linearly-separable 
training data

However, there is 
only one "best" 
solution
→ need to discuss a 
proper recipe to 
find it



A bad idea

Can we learn a decision boundary between two classes by 
using a least square loss ? 

→not a good idea. Too sensitive to outliers...



Linear SVM

SVM find the hyperplane that maximizes the 
distance of each class from the plane separating 
them. The decision score can be set as the value of

𝑓 𝑥 = 𝛽𝑇𝑥 + 𝛽0
and we can define the separating hyperplane as 
the one for which f(x)=0; examples with f(x)>0 are 
then classified in class c=1, and those with f(x)<0 
are in class c=-1.
One can always rescale the coefficients such that 
f(x)=+1 at the plane that intercepts the edge of the 
positive class, and f(x)=-1 at the plane supported 
by the edge points of the negative one:

𝑐 𝛽𝑇𝑥 + 𝛽0 = ±1

Take two classes of i.i.d. training data {(xi,ci)} where c is the class label, either +1 or -1, 
and x is D-dimensional. For now let us consider linear separable classes.

The classification margin is cf(x), and the loss function appropriate for training a 
SVM is called hinge loss:



𝑖=1

𝑁

[1 − 𝑐𝑛𝑓 𝑥𝑛 ]+

The loss is zero in a 
linearly separable training 
sample.



Finding the optimal hyperplane

We write the linear classifier as ℎ 𝑥; 𝛽 = 𝛽𝑇𝑥 + 𝛽0
To find the distance of each data point to the decision boundary we calculate, 
with ci=+-1,

𝑐𝑖(𝛽
𝑇𝑥𝑖 + 𝛽0)

𝛽𝑇𝛽
The best boundary will have β such that

arg𝑚𝑎𝑥𝛽
1

𝛽𝑇𝛽
𝑚𝑖𝑛𝑖 𝑐𝑖(𝛽

𝑇𝑥 + 𝛽0)

We can equivalently write our optimization problem as the one of 

– minimizing  L = 𝛽𝑇𝛽
– with the condition that 𝑐𝑖 𝛽

𝑇𝑥𝑖 + 𝛽0 ≥ 1 ∀𝑖

This corresponds to finding the separating hyperplane that offers the widest 
margin between the points of the two classes



If distributions are not separable

[M. Kagan]



Loss for SVM

The loss function for a SVM can be defined as

𝐿 𝛽 = 𝑐

𝑖

max 0,1 − 𝑐𝑖(𝛽
𝑇𝑥 + 𝛽0) +

1

2


𝑖

𝛽𝑖
2

c is a hyperparameter that controls the regularization: how "hard" is the 
boundary. 



Non-separability: increase dimensions

[M. Kagan]

The map increases the data dimensionality, Rm
→Rk

ℎ 𝑥; 𝑎, 𝛽 =

𝑖

𝑎𝑖𝑦𝑖𝜑 𝑥 𝑇𝜑 𝑥 + 𝛽0

If k large, CPU problems... but we can rely to the Kernel trick (see next slide)



Kernel trick
By transforming the data with a map φ(x), we may find a hyperplane in 
the larger dimensions space where the classes are linearly separable
We do not need to compute the full transformation of the data: we just 
need to compute the "kernel" K(x,x') = φ(x)φ(x')

Some valid (semi-positive-definite) Kernels:

- Gaussian: 𝐾 𝑥, 𝑥′ = exp(−
𝑥−𝑥′

2

2𝜎2
)

- Polynomial: 𝐾 𝑥, 𝑥′ = 1 + 𝑥𝑇𝑥′ 𝑞

- Inner product (linear kernel):  𝐾 𝑥, 𝑥′ = 𝑥𝑇𝑥′



DECISION TREES



Decision Trees
A "decision tree" is a tree constructed by "leaves" that are rules to split the data in
the different classes, based on the data features.

If each event to be classified has variables x1, x2, x3, x4 ...., I may create a tree by posing
conditions on each variable, in a chain

A decision tree is not generally
restricted to two possible decisions,
but the most simple problems lend
themselves to this form

What the tree does for you is to partition
the multi-D space describing the possible
states of an observation (right: atmospheric 
weather used to decide whether to play
Tennis) in hypercubes where the decision
optimizes some quantity of our interest
(in this case the satisfaction of playing)



Two-Variable Example

The graph shows how the decision space of two variables could be partitioned
by a decision tree with a large number of "splits".

The tree operates "linear cuts" (such as x<x* or similar). Yet, due to the branching
nature of the structure, very complex decision boundaries may be created

Due to their simplicity, and 
the absence of variable 
transformations,
DTs were among the first
MVA algorithms adopted for
HEP S/B discrimination 
problems.



Training a tree

Splits are obtained by conditions on a single feature (j) of the data at a time, 
x(j) < > t*

The probability of a class at each split is evaluated by the number of examples 
of that class in the partitioned set Nm from training data, 

p(ci) = Nim/Nm

We take the Nm events of the parent node m and for each split criterion θ = 
(x(j), t*m) we get two subset Qleft, Qright of size nleft, nright. We then compute the 
function

H() is an impurity measure (see below). We may now compute the best split: 

(elsewhere one equivalently finds this described
as "maximizing the impurity gain", defining
ΔΙ=I0-IL-IR, and choosing max ΔI)



Three measures of node impurity

To grow effective trees, we need nodes to be as pure as possible. On the 
other hand we also need nodes to not have too small probability, or we 
will be overfitting the training data. 
The two criteria are conflicting for classes that overlap. So we need to first 
of all define a measure of impurity of each node.
It is common to define this as a symmetrical function I(t)=φ(p,q), when p, 
q are the relative frequencies of the two classes in node t, and with φ(0,1) 
= φ(1,0) = 0, and φ(½,½)= ½ 

If we just look at the classification error for one class as a measure of 
impurity, then we have 

φ(p,q) = 1 – max (p,q). 
This obliges the above definitions, but being linear it does not lend itself 
as an attractive way to optimize the tree construction. 

A better (and non-linear) rule is the cross-entropy, defined as
φ(p,q) = –p log2p –q log2q

The third impurity measure is the Gini impurity index (see next slide).

p
q



The Gini diversity index

The Gini index or Gini coefficient is a statistical measure of 
distribution developed by the Italian statistician Corrado 
Gini in 1912. It is very well known as a gauge of economic 
inequality, but it has much broader applications.

If a population includes two classes of elements, 
with relative frequencies p and q (i.e. defined so 
that p+q=1), the Gini index is the symmetric 
function φ(p,q) = 1–p2–q2

As before, φ(0,1) = φ(1,0) = 0 indicates that the 
population is pure (only contains elements of 
one type), while φ(½,½)=½ indicates maximum 
entropy.   

Clearly an equivalent definition is φ(p,q) = 2pq

p
q



Comparison

The Gini index and the cross-entropy both provide the necessary non-
linearity to find optimal compromises between the two requests (high 
purity, low variance) for effective tree growth.



One example

Let us consider the following proposed splits for a binary 
tree (example from I.Narsky). Do you see the problem?

the metric all linear impurity
measures are proportional to



The Gini index decides for us...



DT: the perfect classifier?

If you allow your tree 
to grow indefinitely, it 
will continue to split 
impure nodes, ending 
up classifying events in 
"pure" leaves

Of course this has 
huge variance, and in 
fact it is a blatant 
example of overfitting 
the training data



When to stop?

As the leaf size decreases, 
leaves increasingly 
contain only events of 
one class

But this is true only for 
training data!

Validation is crucial to 
decide where to stop

The graph on the right, 
showing classification 
error versus leaf size, is 
quite typical of decision 
trees



Pros and cons

• Decision trees are an attractive choice for applications where 
performance is not the culprit:
– they are extremely simple to interpret (in low D!)
– they demand no preprocessing (scaling, standardization) and handle 

categorical data easily
– they work well regardless of number of dimensions of feature space

• But DTs have shortcomings, too:
– overfitting is under no control → a careful validation is required
– they are not stable WRT perturbations of the input data: change the 

training by a little, and the tree can grow very differently
– The local optimization of tree splits does not guarantee reaching a 

global optimum (a NP complete problem)

There are ways to overcome the above shortcomings. They rely on 
early stopping, and ensemble methods.



Early stopping criteria

To mitigate the 
overfitting, one can 
adopt a fixed rule, 
such as:
- set a minimum 

number of events 
per leaf

- set a max number 
of leaves

- set a max tree 
depth

These recipes all 
work, although it is 
not easy to decide 
what is best for each 
case

[Rogozhnikov]



Pruning

Pruning means what it means: cut branches, replacing each with the node at their 
root. It is a form of regularization: we reduce the model complexity, hoping that the 
variance gain is not offset by a bias loss.

One may treat pruning by defining a risk function for each node t as the classification 
error of the node weighted by its probability,

𝑟 𝑡 = 𝑝(𝑡)𝜀(𝑡)

and for a tree as the sum over all leaves of the tree:

𝑟 𝑇 = 

𝑡∈𝐿(𝑡)

𝑟(𝑡)

When using training data, r(T) will tend to zero; one can however try to penalize the 
overtraining by adding to r(T) a term proportional to the number of leaves of the tree.



Ensemble methods

Here we take the case of decision trees to illustrate the power of 
ensemble methods, which are however applicable to any supervised 
learning tool

The idea is that we can reduce the variance of a prediction without 
increasing the bias, a "holy grail" in statistics. How can we do that? 

By training slightly different models and taking a majority vote (for 
classification; for regression one would average the scores).
• The bias does not increase because the result behaves similarly to 

any one of the inputs: the average ensemble performance is equal 
to the average performance of its members.

• The variance does decrease because fluctuations and noisy 
predictions are averaged out: a spurious pattern picked up by one 
model will be damped in the pool



Combining weak learners

A combination of the prediction of several weak learners (small 
correlation with target value) with high variance can be a 
powerful model!

For decision trees the benefit is also the control of overfitting, 
as the "perfect classification" issue of growing pure leaves is 
solved automatically



Bagging and Boosting

Bagging ("Bootstrap aggregating") is a very effective ensemble technique 
employing bootstrap to leverage the replica of training sets

The training dataset is sampled with replacement, and every time a new 
classifier is trained with the resulting set
The prediction is obtained by a majority vote of the pool of classifiers, or by 
an average (in case of regression)

• The Random Forest algorithm uses bagging to stabilize the response (see 
below)

The idea of Boosting is instead to train a sequence of models, each of which 
gives more weight to events not classified correctly by the previous ones.

• At the heart of boosted decision trees



The ADABoost algorithm

Similar schemes are used by other algorithms (Gradient Boosting, XGBoost, ...)



Example: averaging trees
Trees grown on bootstrapped training data learn different decision 
boundaries; the averaging does better than any of the inputs



Random Forests

The Random Forest algorithm was first proposed by Breiman (2001), but is based on 
a 1995 idea of Tim Kan Ho.

RF employs two ensemble techniques. The first is bagging of the training sample, to 
grow a forest of different trees based on different training data. The second is the 
subsampling of the feature space.

If I choose a subset of the variables (e.g. x1, x3, x7) to create a split in a node of a 
decision tree, and another subset (x2, x4, , x5, x7) to create a different one, there will 
be events that get classified in a different way by the two nodes.

Often there is a dominant variables that is used to decide the split, offsetting the 
power of the subdominant ones. RF avoids that problem by reducing the correlation 
of different tres.

RF grows trees where at each node a subset (typically of size D0.5, where D is the 
dimensionality of the feature space) of the features is used to find the best split.



Ensembles of trees: RF

Tree ensembles (like the Random
Forest algorithm) have a number
of attractive properties

- they usually do not overfit
- they are powerful learners

In addition they retain the 
advantages of DTs:

- they are simple to understand 
and interpret

- easy to train
- They work equally well with 

continuous as well as categorical 
data types

- no need to pre-process the data 
(e.g. invariant to standardization)



Fun with Gradient Boosting

• See 
http://arogozhnikov.github.io/2016/07/05/gra
dient_boosting_playground.html

http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html


LECTURE 2 CONCLUSIONS



Conclusions for lecture 2

• Classification is a rich subject, and solutions depend on the specific 
needs of the problem
– metrics for optimality vary a lot

• The loss function contains the recipe to give you the answer you 
want – pay attention to put it together (adding regularization where 
useful)

• Overfitting / overtraining must be avoided by careful testing; 
optimization handled with independent dataset. Apply cross 
validation when data is scarce, k=5-10 typically good

• Random Forests / boosted trees are a very flexible, interpretable, 
powerful learner. Often hard to beat


