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Two words about your lecturer

I work for INFN – Istituto Nazionale di Fisica Nucleare, in 
Padova
Am a member of the CMS collaboration at CERN (2001-)
• formerly (1992-2012) also a member of CDF @ 

Tevatron
Long-time interest in statistics; member of CMS Statistics 
Committee, 2009-, and chair, 2012-2015
Developed several MVA algorithms for data analysis in 
HEP (Hyperball, MuScleFit, Inverse bagging, Hemisphere 
mixing, INFERNO) 

Editor of Reviews in Physics, an Elsevier journal

Scientific coordinator of AMVA4NewPhysics, ITN 
network on MVA for HEP

Scientific coordinator of accelerator-based research for 
INFN-Padova

Blogging about physics since 2005 - www.science20.com
, formerly at http://dorigo.wordpress.com and 
http://qd.typepad.com/6/

In 2016 I wrote a book on searches for signals in CDF →

When I don't do physics or statistics I play chess / piano
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Notes on my lectures
• My slides are full of text!

→ this makes it harder to focus on what I actually say during the lecture...
→ On the other hand, they offer clarity for offline consumption / consultation
Try to pay attention to me rather than on the projected text. You will probably get 
the gist of it sooner.

• I have way too much material
the subject is vast! We will have to skip some things / go fast here and there

• I am here at your service
– Some of the things we will go over are highly non-intuitive, so I expect you to 

be confused if you have no previous understanding of a topic.
– hence please ask questions if you do not understand something. You need not 

raise your hand.
• sometimes I may omit answering straight away / the question may be better covered in 

later material

• I will be at your service also after the school
– please email me at tommaso.dorigo@gmail.com if you have nasty questions on 

the topics covered during the lectures, and I will do my best to answer them. 3

mailto:tommaso.dorigo@gmail.com


Suggested reading
These lectures are based on a number of different sources, as well as on 
some personal alchemy
I tried to provide references but sometimes I failed [apologies...]

A formal treatment of most of the covered material, and more in-depth than 
what I can go here, is offered in a couple of excellent textbooks:

Hastie, Tibshirani, Friedman:
The elements of statistical learning
→ AVAILABLE ONLINE FOR FREE!

Narsky, Porter: Statistical Analysis 
techniques in Particle Physics, 
Wiley
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Other credits

Besides the textbooks quoted above, the production of these 
lectures also benefited from perusing additional assorted 
material:

– Trevor Hastie's lectures on Statistical Learning, Padova 2017
– Some material from Michael Kagan's lectures at TASI 2017
– One or two ideas from Ilya Narsky's lectures on ML with MatLab, 

2018
– A couple of graphs from Lorenzo Moneta's lecture at last year's 

school 
– Some slides from interesting presentations at ACAT 2019

Plus random plots / stuff I collected around
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Lecture 1
An introduction to Machine Learning



INTRODUCTION

10



Machine Learning is all around us
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Areas of development for ML tools

More market-driven:
• Speech and handwriting recognition

– often the previous step to NLP

• Search engines, advertising
– ways to guess what you want

• Stock market analysis, predictive models, fraud detection

More research-oriented:
• Master closed systems (go, chess, computer games)
• Natural language processing

– allows computers to understand, interpret and manipulate human language

• Self-driving cars, object and image recognition, robotics
– methods to give spatial awareness to machines

• AGI

→ Distinction more and more blurred as applications pop up
→ For fundamental physics, both areas offer cues 12



The path to Artificial Intelligence
- Alan Turing: machine shuffling 0's and 1's can 

simulate any mathematical deduction or 
computation
- the Chinese room

- Dartmouth conference, 1956 →many astonishing 
developments, checkers, automated theorem 
solvers 
- and funding from US defense budget

- In the seventies, research effort dampened
- Eighties: Expert systems 
- Nineties: the second AI winter
- Solutions to closed system problems; deep blue →

alpha zero
- Development of Neural Networks
- Toward AGI
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Is AI desirable?

Humanity is going to face in the next few decades 
the biggest "growing pain" of its history: how to 
deal with the explosive force of artificial 
intelligence

Once we create a superintelligence, there is no 
turning back – in terms of safeguards we have to 
"get it right the first time", or we risk to become 
extinct in a very short time

But we cannot stop AI research, no more than we 
could stop nuclear weapons proliferation 

Interesting times ahead!
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Can we define Machine Learning?

No self-respected lecture on Machine Learning avoids defining ML at the very 
beginning, and who am I to blow against the wind? 
There are various options on how to define ML. Things I have heard around:

• “[Machine Learning is the] field of study that gives computers the ability to learn 
without being explicitly programmed.” - Arthur Samuel (1959)
– ok, but learning what?

• Wikipedia: "A scientific discipline concerned with the design and development of 
algorithms that allow computers to evolve behaviors based on empirical data"
– correct but slightly vague

• Mitchell (1997) provides a succinct definition: “A computer program is said to 
learn from experience E with respect to some class of tasks T and performance 
measure P , if its performance at tasks in T , as measured by P , improves with 
experience E"

• The fitting of data with complex functions
– in the case of ML, we learn the parameters AND the function

• Mathematical models learnt from data that characterize the patterns, regularities, 
and relationships amongst variables in the system
– more lengthy description of "fitting data"
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Can we agree on what "Learning" is?

Maybe this really is the relevant question. Not idle to answer it, as by 
clarifying what our goal is we take a step in the right direction

Some definitions of Learning:
• the process of acquiring new, or modifying 

existing, knowledge, behaviors, skills, values, or preferences
• the acquisition of knowledge or skills through study, experience, or 

being taught.
• becoming aware of (something) by information or from 

observation.
• Also, still valid is Mitchell's definition in previous slide

In general: learning involves adapting our response to stimuli via a 
continuous inference. The inference is done by comparing new data to 
data already processed. How is that done? By the use of analogy.
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What about analogies?

Analogies: arguably the building blocks of our learning 
process. We learn new features in a unknown object by 
analogy to known features in similar known objects

This is true for language, tools, complex systems –
EVERYTHING WE INTERACT WITH

... But before we even start to use analogy for 
inference or guesswork, we have to classify unknown 
elements in their equivalence class!

(Also, one has to define a metric along which 
analogous objects align)

In a sense, Classification is even more "fundamental" 
in our learning process than is Analogy. 
Or maybe we should say that classification is the key 
ingredient in building analogies. 17



Classification and the scientific method
Countless examples may be made of how breakthroughs in the 
understanding of the world were brought by classifying observations 

- Mendeleev's table, 1869 (150 years ago!)

- Galaxies: Edwin Hubble, 1926

- Evolution of species: Darwin, 1859 
(classification of organisms was 
instrumental in allowing a model of the 
evolution, although he used genealogy 
criteria rather than similarity)

- Hadrons: Gell-Mann and Zweig, 1964

18



Classification is at the 
heart of Decision Making

Finding similarities and distinctions between elements, creating classes, looks like
an abstract task

Yet it is at the heart of our decision making process

→ in a game, choosing the next move entails a classification of the possible actions as 
good or bad ones, as a preprocessing step before going "deep" in the analysis

→ an expert system driving your vehicle must constantly decide how to react to external
stimuli: it does so by classifying them (potentially dangerous → requires choice of proper
reaction; irrelevant → can be ignored)

Decisions are informed by previous experience, and by information processing

That is how we "comprehend" the world and assign it to some description

Ultimately, an important component of intelligence is the continuous processing of our
sensorial inputs, classifying them to react one way or the other to them
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Classes of Statistical Learning algorithms

Supervised:
if we know the probability density of S and B, or if at least we can estimate it
→ E.g. we use "labeled" training events ("Signal" or "Background")
to estimate p(x|S), p(x|B) or their ratio

Semi-supervised:
it has been shown that even knowing the label for part of the data is 
sufficient to construct a classifier

Un-supervised:
if we lack an a-priori notion of the structure of the data, and we let an 
algorithm discover it without e.g. labeling classes → cluster analysis, 
anomaly detection, unconditional density estimation. 

We may also single out:
Reinforcement learning:

the algorithm learns from the success 
or failure of its own actions
→ E.g. a robot reaches its goal or fails

20
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A map to clarify the players role

Machine 
Learning

Unsupervised learning
Develop model to group and 
interpret data without labels

Supervised learning
Develop predictive model 

based on labelled data

Classification
The output is nominal, 

categorical,
unordered / ordered

Regression
The output is 
continuous

Clustering
Learn ways    
to partition  

the data

Semi-supervised 
Learning

Data only partly 
labeled

anomaly 
detection

find outliers

Density 
Estimation

Find p(x)
21



A more complete list of ML tasks /1

Classification and Regression are important tasks belonging to the 
"supervised" realm. But there are many other tasks:

• Density estimation: this is usually an ingredient of classification, but can 
be a task of its own.

• Clustering: find structures in the data, organize by similarity. Often can 
be a useful input to other tasks

• Anomaly detection (e.g. fraud detection, from the modeling of 
purchasing habits; or new physics searches!)

• Classification with missing inputs: if taken with brute force, this differs 
from simple classification because one is looking for a set of functions, 
each mapping into the categorical output a vector x with a different set 
of missing components (but: better to use a probabilistic model to 
handle it)
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A more complete list of ML tasks /2

• Structured output:
- Transcription: e.g. transform unstructured representation of data into discrete 

textual form; e.g. images of handwriting or numbers (Google Street view does 
it with DNN for street addresses), or speech recognition from audio stream

- Machine translation
- parsing sentences into grammatical structures
- image segmentation, e.g. aerial pictures → road positions or land usage
- image captioning

• Synthesis, sampling: e.g. speech synthesis (structured output with no 
single correct output for each input); GANs can be used for e.g. 
generating artificial data

• Missing values inputation: this can be a very complex task – Netflix ran a 
challenge on it to understand customer preferences

• Denoising: obtain the clean example from a corrupt one x*, get p(x|x*)
23



The supervised learning problem

• Starting point:
– A vector of n predictor measurements X (a.k.a. inputs, regressors, 

covariates, features, independent variables).
– One has training data {(x,y)}: events (or examples, instances, 

observations...) 
– The outcome measurement Y (a.k.a. dependent variable, or response, or 

target)
• In classification problems Y can take a discrete, unordered set of values 

(signal/background, index, type of class)
• In regression, Y has a continuous value

• Objective:
– Using the data at hand, we want to predict y* given x*, when (x*,y*) 

does not necessarily belong to the training set.
– The prediction should be accurate: |f(x*)-y*| must be small according to 

some useful metric (se later)

• We would like to also: 
– understand what feature of X affects the outcome and how
– assess the quality of our prediction 24



Example: the Netflix challenge
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The unsupervised learning problem

• Starting point:
– A vector of n predictor measurements X (a.k.a. inputs, regressors, 

covariates, features, independent variables).
– One has training data {x}: events (or examples, instances, observations...) 
– There is no outcome variable Y 

• Objective is much fuzzier:
– Using the data at hand, find groups of events that behave similarly, find 

features that behave similarly, find linear combinations of features 
exhibiting largest variation

• Hard to find a metric to see how well you are doing
• Result can be useful as a pre-processing step for supervised learning
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Ideal predictions, a' la Bayes

For a regression problem, the best prediction we can make for Y based on the input 
X=x is given by the function

f(x) = Ave (Y|X=x)

This is the conditional expectation: you just derive the Y average for all examples 
having the relevant x.
• It is the best predictor if we want to minimize the average squared error,

Ave (Y-f(X))2.
• But it is NOT the best predictor if you use other metrics. E.g., if you wish to 

minimize Ave |Y-f(X)| you should rather pick... Who can guess it?
f(x) = Median (Y|X=x)

If we instead are after a qualitative output Y in {1...M} (a discrete one, as in multi-
class classification tasks) what we can do is to compute

P (Y=m|X=x) 

for each m: conditional probability of class m at position X=x; then we take as the 
class prediction

C(x) = Arg maxj {P(Y=j|X=x)}. 

The above is the majority vote classifier.

Problem solved? Let us try and see how to implement these ideas.
27



Implementation

To predict Y at X=x*, collect all pairs (x*,y) in your training data, then
• For regression, get 

f(x*) = Ave (y|X=x*)

• For classification, get 
c(x*) = Arg maxj {P(Y=j|X=x*)}

Alas, this would be good, but... 

We usually have sparse training data, obtained by forward simulation. Our 
simulator gives p(x|y) but the process is stochastic. That means we cannot 
invert the simulator, extracting p(y|x)!
In most cases we have NO observations with X=x*. 

Who you're gonna call ?
Density estimation methods!
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DENSITY ESTIMATION
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Density Estimation

Non-parametric: sample-based estimators. 
The most common is the histogram. NP density estimators 
have a number of attractive properties for experimental 
sciences:
• are easy to use for two things dear to HEP/astro-HEP: 

efficiency estimates (e.g. from Bernoulli trials) and for 
background subtraction

• lend themselves to be good inputs to unfolding 
methods

• are an excellent visualization tool, both in 1 and 2D

Given a sample of data X, one wishes to determine their prior PDF p(X).

One can solve this with parametric or non-parametric approaches.
Parametric: find a model within a class, which fits the observed density

→ an assumption is necessary as the starting point

S+B

B

S30



The empirical density estimate

With sparse data, the most obvious 
estimate of the density from which i.i.d. 
data {xi} are drawn is called "empirical 
probability density function" (EPDF), which 
can be obtained by placing a Dirac delta 
function at each observation xi:

መ𝑓 𝑥 =
1

𝑁


𝑖=1

𝑁

𝛿(𝑥 − 𝑥𝑖)

Of course, the EPDF is rarely useful in 
practice as a computation tool. However, it 
is a common way of visualizing 2D or 3D 
data (scatterplots)
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Histograms

Histograms are a versatile, intuitive, ubiquitous way to get a quick density estimate 
from data points:

h(x) = Sumi=1...N I (x-xi;w)
where w is the width of the bin, and I is a uniform interval function (indicator 
function),

I (x;w) = 1 for x in [-w/2,w/2], 
= 0 otherwise

The density estimate provided by h(x) is then
f(x) = h(x)/(Nw)

Yet histograms have drawbacks:
• they are discontinuous
• they lose information on the true location of each data points through the use of a 

"regularization", the bin width w
• not unique: there is a 2D infinity of histogram-based PDF estimates possible for 

each dataset, depending on binning and offset. 

w

I(x;w)

xi

x
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Kernel density estimation
A useful generalization of the histogram is obtained by substituting the indicator function 
with a suitable "kernel":

መ𝑓 𝑥 =
1

𝑁


𝑖=1

𝑁

𝑘(𝑥 − 𝑥𝑖; 𝑤)

The kernel function k(x,w) is normalized to unity. It is typically of the form

k 𝑥 − 𝑥𝑖; 𝑤 =
1

𝑤
𝐾(
𝑥 − 𝑥𝑖
𝑤

)

The advantage of using a kernel instead than a delta is evident: we obtain a continuous, 
smooth function. This comes, of course, at the cost of a modeling assumption.
A common kernel is the Gaussian distribution; the results however depend more on the 
smoothing parameter w than on the choice of the specific form of k.

The "kernelization" of the data can be operated in multiple dimensions too. The kernels 
operating in each component are identical but may have different smoothing parameters:

መ𝑓 𝑥, 𝑦 =
1

𝑁𝑤𝑥𝑤𝑦


𝑖=1

𝑁

𝐾(
𝑥 − 𝑥𝑖
𝑤𝑥

)𝐾(
𝑦 − 𝑦𝑖
𝑤𝑦

)

A different extension of the KDE idea is to adapt the smoothness parameter w to reflect the 
precision of the local estimate of the data density → adaptive kernel estimation 33



Ideograms

A further extension of KDE is the use of 
different kernels for different data points→
ideograms. This may be very useful if the data 
coordinate x comes endowed with information 
on its measurement precision σ. In that case we 
may substitute the point with a Gaussian 
kernel, whose smoothing parameter w is equal 
to the precision σ. This improves the overall 
density estimate

The ideogram method is sometimes used in 
HEP, e.g. it has been employed in top quark 
mass measurements.

The PDG uses it to report the PDF of a unknown 
parameter when the individual estimates carry 
different uncertainty AND there is tension 
between the estimates (such that the weighted 
average is not necessarily the whole story)
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Going multi-D: K-Nearest Neighbours

The kNN algorithm tries to determine the local density 
of multi-dimensional data by finding how many data points 
are contained in the surroundings of every point in feature space

One usually "weighs" data points with a suitable 
function of the distance from the test point
Problem: how to define the distance in an abstract space?

Also, your features might include real numbers, categories, days of the week, etcetera... 
In general, it is useful to remove the dimensional nature of the features

General recipe: standardization
- for continuous variable x: find variance σ2, obtain standardized variable y2 = x2 /σ2

- for categorical variable c: 
- if target has large variance along c, can keep it as is (defines hyperplane, will only 

use data with c*=c to estimate local density)
- otherwise may still try to standardize

35



More on kNN

Once the data is properly standardized one can construct an Euclidean 
distance:

𝐷 𝑦, 𝑦′ =

𝑖=1

𝐷

(𝑦 − 𝑦′)2

kNN density estimates can be endowed with several parameters to 
improve their performance

Most obvious is k: how many events in the ball?

Rule of thumb: estimating a mean → if target varies a lot, can use small 
k; if variation small, k needs to allow precise estimate

Common to have k=20-50, but it of course depends on dimensionality D 
and size N of training data 36



kNN, continued

Also crucial to assess:

- relative importance of variables: assign larger weight to more meaningful 
components in the feature space (ones along which target has largest 
variance)

- local gradients-aware: one may try and adapt the shape of the 
"hyperellipsoid" to reflect how much target y(x) is variable in each 
direction, at test point x*

In general, kNN estimates suffer from a couple of shortcomings:

• The evaluation of local density requires to use all data for each point of 
feature space → CPU expensive (but there are shortcuts)

• The curse of dimensionality: for D>8-9, they become insensitive to local 
density (see next slide)
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One example

In 2003 the Tevatron  experiments assessed their 
chances to observe the Higgs with more data / 
improved detectors

One of the crucial issues: Mbb regression

Customized kNN 
algorithm with balls 
shaped by local 
gradient ("Hyperball 
algorithm") brought 
down relative mass 
resolution from 17% 
to 10% → large 
increase in 
observability

38



The Curse of Dimensionality

The estimate of density in a D-dimensional space is usually impossible, due to the 

lack of sufficient labeled data for the calculation to be meaningful. An adequate

amount of data must grow exponentially with D for a good representation

For high problem dimensionality, the k "closest" events 

are in no way close to the point where an estimate of 

the density is sought:

This makes kNN impractical for D > 8-10 dimensions

1/edgelength=(fraction of volume) D

In 10 dimensions, if a hypersphere captures 1% of the feature space, it has a radius of 63%

in each variable span

HEP analyses often have >10 important variables so the kNN has limited use as a generative 

algorithm for S/B discrimination

But, one can apply dimensional reduction techniques to still use it, or resample subspaces 39



What If We Ignore Correlations?

All PDF-estimation methods similarly fail when D is large.

A "Naïve Bayesian" approach consists in ignoring altogether the correlations 

between the variables of the feature space

That is, one only looks at the "marginals": 
D

i

i 0

P( ) P( )
=

x x P is a product of 

"marginal PDFs" Pi

One usually models the Pi with a smoothing of histograms

The method works if correlations are unimportant.
In HEP, however, this is not usually the case!

The P(x) thus obtained can be used to construct
a discriminant (a likelihood ratio), or more simply,
to assign the class label to the highest p(x) given x
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A small diversion: 
parametric density estimators

Given an empirical density estimate p(x) obtained by N i.i.d. data points {xi}, we might 
want/need to formulate our problem as that of finding parameters of a function q(θ) 
such that it gets "closer" to p(x).
The focus is what "closer" means!

The density estimation problem can be 
summarized formally as follows:

What we need is to construct a probability divergence D(Q; P) between two smooth 
probability densities Q:Rd

→R+ and P:Rd
→R+, where Q is defined by a parametric 

generative model with parameters θ, and P is a target density. 

If H is a space of densities (𝐻 = 𝑝:𝑅𝑑 → 𝑅+, 𝑝 = 1 ), we can define a probability 
divergence D(P;Q) as a map D:H2

→R+ that enjoys some properties (next slide)

The goal is to have a consistent interpretation of D(Q; P) as well as use it to modify the 
parameters so that Q approaches P.
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Divergence measures
In general, one could argue that all we need is to find some D which guarantees 

- D(Q,P) = 0 → Q=P
- D(Q,P) >= 0

There are additional properties we might want D to have; e.g., be a metric. A metric 
also has the properties that
- D(Q,P) = D(P,Q)
- D(A,C) < D(A,B) + D(B,C) (triangle inequality)

The improved interpretability of distance between densities that is offered by these 
added properties is an important property.

But we might rather prefer our divergence to have other properties. In particular, we 
wish to make our D a measure of relative information.

This is what makes the Kullbach-Leibler divergence KL so useful.

42



The Kullback-Leibler divergence

The KL divergence has its origins in information theory, where one wishes to 
quantify the amount of information contained in data.
One defines Entropy H for a probability distribution as 

In base 2, H is the minimum number of bits that encode the available 
information of p. If we know this, we have a way to quantify the information in 
our data. 
Given that, we can extract the information loss we incur in, if we substitute 
the data p with a model q of it. This is given by the KL divergence, defined as 
(for discrete datasets)
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KL / continued

What the KL divergence provides is the expectation of the log difference between the 
probability of data in the original distribution with the approximating distribution. So 
we could write it as

The value of DKL gives us a measure of the number of bits we lose if we approximate p 
with q. As such, it does not possess one of the properties of a true metric, as 

DKL(p;q) != DKL(q;p). 

But its importance cannot be underestimated in ML, as it provides exactly what we 
need in our attempts to estimate densities by successive approximations.
→ often used in the definition of loss functions

Another way to see DKL: expected number of bits that we have to transmit to a 
receiver in order to communicate the density Q given that the receiver already knows 
the density P

44



Example: comparison of divergences 

The minimization of different divergence 
measures for a Gaussian model of the data 
provides quite different answers →

This shows that it is important to know what 
we are using in our minimization problem!

Below are some formulations of different choices for probability divergence measures; 
p is the data and q is the model

45



RESAMPLING TECHNIQUES
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Resampling Techniques
Resampling techniques are pivotal for a number of ML tasks:

• hypothesis testing (construction of discriminative methods)
• estimation of bias and variance (optimization of predictors)
• cross-validation (estimate accuracy of predictors)

Resampling allows you to avoid modeling assumptions, as you construct a 
non-parametric model from the data themselves. The benefits can be huge
(as measured e.g. by performance of boosting methods)

Here we only briefly flash the generalities of three basic ingredients:
– permutation tests
– bootstrap
– jacknife
– cross-validation techniques will treat later

The theoretical basis for resampling methods lies with their (usually very 
good) asymptotic properties of consistency and convergence (in probability) 47



Permutation Sampling

Permutation sampling is mainly used in hypothesis tests; 
usually the question is: are datasets A {x1...XNA

} and B 
{x1...xNB

} sampled from the same parent PDF?

The way to answer is to form a sensitive statistic T (say: 
the mean of the observations) and compare 
quantitatively the difference between TA and TB

ΔT* = TA-TB

with what one would expect if the PDF were the same.

ΔT*

ΔT
𝑃 ∆𝑇∗ = න

∆𝑇∗

∞

∆𝑇

The comparison requires to know how T distributes under the null hypothesis (green 
curve).  
Here permutation comes in: we assume A=B, merge A+B=C, and sample the NA+NB
observations creating all possible pairs of splits A', B' still of size {NA,NB}, computing 
distances ΔT=TA'-TB'.

This provides all the information in the data about the distribution of ΔT. The permutation 
test makes no model assumptions, so it is called an exact test.

A

B

x

x
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The Bootstrap

The Bootstrap (B.Efron, 1979) is called this way 
because it allows to "pull oneself up from 
one's own bootstraps".

Motivating problem: get the variance of an estimator መ𝜃(𝑥) of a parameter θ,
for a sample of i.i.d. observations {x1...xN}.

We may generate M replicas of the dataset X by repeatedly picking N 
observations at random from X, with replacement.

Then we estimate θ in each replica, and proceed to obtain a sample mean 
and variance with the 𝜃𝑖(𝑥),

ҧ𝜃 =
1

𝑀
σ𝑖=1
𝑀 𝜃𝑖

𝑠2𝜃 =
1

𝑀−1
σ𝑖=1
𝑀 ( መ𝜃𝑖 − ҧ𝜃)2

You get an estimate of variance
without assumptions of the distribution
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Bootstrap-cum-density estimation 
example: hh→bbbb CMS 2017

In a recent CMS search of hh→bbbb production 
(CMS-PAS-HIG-17-017), the background was 
dominated by QCD multijet production – notoriously 
a difficult process to model with MC simulations

In order to train a classifier, you need a good multi-D 
model of the features...

A synthetic background sample was constructed by 
mixing hemispheres
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The idea is that QCD gives two hard quarks or gluons that scatter off one another,
and the complexity arises independently, as a combination of FSR, pileup, MI
→ can try to create models of single "halves" of the events



The mixing procedure

1) For each event in the original 
sample:

- Find transverse thrust axis
i.e., determine angle φ such that 

is maximized
T = σ𝑝𝑇

𝑗𝑒𝑡𝑐𝑜𝑠(φT − φjet)

φ

T axis

x

y



The mixing procedure

1) For each event in the original 
sample:

- Find transverse thrust axis
- Divide event in two halves 

using plane orthogonal to it
This defines two jet collections 
for each event (hemispheres)

T axis



The mixing procedure

1) For each event in the original 
sample:

- Find transverse thrust axis
- Divide event in two halves 

using plane orthogonal to it
- Store resulting hemispheres 

in the "hemisphere library"



Mixing procedure - 2

x

y
T axis

2) Take again original sample: for 
each event

– Find transverse thrust axis, 



Mixing procedure - 2 T axis

2) Take again original sample: for 
each event

– Find transverse thrust axis, 
identify the two hemispheres 
making it up



Mixing procedure - 2 T axis

2) Take again original sample: for 
each event

– Find transverse thrust axis, 
identify the two hemispheres 
making it up

– Look in hemisphere library for 
two SIMILAR hemispheres



Mixing procedure - 2
2) Take again original sample: for 
each event

– Find transverse thrust axis, 
identify the two hemispheres 
making it up

– Look in hemisphere library for 
two SIMILAR hemispheres

– Construct an artificial event 
with them



Mixing procedure - 2
2) Take again original sample: for 
each event

– Find transverse thrust axis, 
identify the two hemispheres 
making it up

– Look in hemisphere library for 
two SIMILAR hemispheres

– Construct an artificial event 
with them

The procedure creates an artificial 
dataset which can be used for 
modeling purposes

Hemisphere similarity criteria : 
• Number of jets (req. equal)
• Number of b-tags (req. equal)
• Thrust  
• Thrust minor
• Hemisphere mass
• Sum of jets pz components
The 4 continuous variables are used to 
define a kNN distance which yields the 
similarity measure:

ORIGINAL DATASET

ARTIFICIAL DATASET



Modeling the target function

A residual bias in the modeling of 
the BDT distribution was suspected 
by studying the modeling 
agreement in control samples 

It was then estimated by bootstrap 
resampling of the same data 
sample

This allowed to extract a bias 
function, which improved the 
model accuracy significantly

A test in a separate control sample 
confirmed the improvement
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Jackknife resampling
The jackknife is called after the large pocket knife one brings 
around in an excursion – it is indeed a versatile statistics tool.
Again the most common use is determining the bias and variance of an estimator. 
One works out n different estimates of the estimator by leaving out in turn each one 
of the n i.i.d. data points {x1...xn}.

One may then get e.g. an estimate of the variance of the mean:

Given an estimator θ, we may also compute its bias in a similar way: if the jacknife average is

where መ𝜃(𝑖)is the estimate obtained by leaving out the i-th value,

then the bias on the estimator is 

What is better between bootstrap and jackknife? it depends on the problem! For smallish N
jackknife is faster; however the bootstrap uses more information with non-linear estimators.60



THE DATA
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The data
A set of multi-dimensional data is made of N individual events (AKA cases or 
examples), made up each of D variables (or features, or attributes, or 
predictors)

We can think of our data as a table, where each column is an observed 
feature, each line a different event: we can organize them in a NxD matrix

In physics and astrophysics, typically N is large and D is small: these data are 
called "tall"

In other disciplines one instead frequently encounters "wide" data, with few 
examples and many features: e.g. in DNA testing one may have thousands of gene 
sequences 

The distinction is useful as different ML algorithms apply more successfully to 
the analysis of data depending on their shape; wide data is often problematic

– BDTs can handle wide data just as well as tall data
– resampling techniques may help with wide data
– but kNN and other simple methods do not work well with wide data
– also, linear discriminant analysis encounters difficulties with wide data as 

inversion matrix gets singular for N<D 62



Data preprocessing
An important part of data analysis concerns its preprocessing – a sometimes annoying 
chore, which forces you to fiddle with non-high-tech tools

You have to preprocess your data if
• some of the features are missing in a few of the events
• there are outliers that spoil the accuracy of your model
• some of the features are categorical

A preprocessing is not mandatory:
- you can remove incomplete events (but see below)
- you may decide to ignore the effect of outliers
- you may split the data in subsets with homogeneous categories and proceed with 

each, or use methods that are robust to their existence
In general, the proper handling of missing data, outliers, and categorical features can 
significantly improve your model

A common mistake to be avoided: ignore preprocessing, rush to build the most 
performant super-duper classifier or regressor. Later, find out that the performance loss 
you took by ignoring the former step is not made up by the care you put on the latter
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Categories of missing values

There are three categories of data with missing values. Understanding to which case 
your data belongs is important

• MCAR: missing completely at random
– e.g. you are combining energy and timing observations of GRBs from two telescopes T1 and 

T2, and T2 is inactive on Sundays → there is no correlation between the lack of T2-related 
features of GRB candidate events and the GRB-related parameters of interest 

• MAR: missing at random
– e.g. T2 is overall less sensitive to GRBs in a specific area of the sky, so we can predict with a 

probabilistic model the lack of T2 data from T1 readings

In general, for MCAR and MAR the mechanism that produces missing data can be ignorable, if it 
does not interact with the mechanism by which data are generated

• MNR: missing not at random
– e.g. T2 is less sensitive in a certain energy range, where it may fail to read a signal above 

instrumental noise: the lack of data depends on the properties (detectable energy) of the 
missing data themselves

→ the mechanism producing incomplete data affects the observed population!
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Should I worry about missing values?

You should apply hypothesis testing to determine what is the situation of your 
missing values

- may compare the marginal distribution of each non-missing feature in 
data that has/lacks values of each one of features at a time 

- but beware of multiple testing: you will likely find that there is a significant 
difference in marginals for one feature, if you had many to test → apply usual 
Bonferroni-type corrections to handle this

- or may do some global MVA test (e.g. assuming multivariate normality) 
between complete and incomplete data in the considered feature

In general, insight in the way the feature went missing is very important to 
understand whether you are in MCAR/MAR or MNAR. You can often ignore 
the issue of missing data in the former case, you must address it in the latter. 

65



When it matters and why

Narsky 2014 describes the formal argument defining why we can ignore the 
presence of missing values in training data, in the case of MCAR or MAR.

The probability to observe data X with missing values described by an indicator 
function I can be written p(x,i|θ,φ). x is D-dimensional and in is zero if the n-th 
component xn is missing; θ are the parameters of interest and φ track the 
mechanism whereby values are missing

We can factorize p if the θ are distinct from the φ:

𝑝 𝑥 𝑖 = 𝑝(𝑥 𝜃 𝑝(𝑖|𝑥, 𝜑)

An observation x belonging to X can have missing or non missing data, 𝑥 ∈
𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠 ; the probability of observing it can then be written 

𝑝 𝑥𝑜𝑏𝑠, 𝑖; 𝜃, 𝜑 = 𝑝 𝑥𝑜𝑏𝑠, 𝑥𝑚𝑖𝑠; θ 𝑝 𝑖 𝑥𝑜𝑏𝑠, 𝑥𝑚𝑖𝑠; 𝜑 𝑑𝑥𝑚𝑖𝑠
66



MCAR and MAR probability densities

(From the previous slide):

𝑝 𝑥𝑜𝑏𝑠, 𝑖; 𝜃, 𝜑 = න𝑝 𝑥𝑜𝑏𝑠, 𝑥𝑚𝑖𝑠; θ 𝑝 𝑖 𝑥𝑜𝑏𝑠, 𝑥𝑚𝑖𝑠; 𝜑 𝑑𝑥𝑚𝑖𝑠

For MCAR data the mechanism of missing data is independent on observed and 
missed values, in which case 𝑝 𝑖 𝑥𝑜𝑏𝑠, 𝑥𝑚𝑖𝑠; 𝜑 = 𝑝(𝑖, 𝜑)
so the integral simplifies to 𝑝 𝑥𝑜𝑏𝑠, 𝑖; 𝜃, 𝜑 = 𝑝 𝑥𝑜𝑏𝑠, 𝜃 𝑝(𝑖; 𝜑)

For MAR data the missing data mechanism is explained by the observed data, 
𝑝 𝑖 𝑥𝑜𝑏𝑠, 𝑥𝑚𝑖𝑠; 𝜑 = 𝑝(𝑖|𝑥𝑜𝑏𝑠, 𝜑)

so we find
𝑝 𝑥𝑜𝑏𝑠, 𝑖; 𝜃, 𝜑 = 𝑝 𝑥𝑜𝑏𝑠, 𝜃 𝑝(𝑖|𝑥𝑜𝑏𝑠, 𝜑)

→ In both MCAR and MAR, we see that the observed data carries sufficient 
information on the parameter of interest.

This is not the case of MNAR, when the pattern of missing data may affect the 
estimates one produces with the unprocessed data.
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Listwise deletion and imputation

If your data are MCAR or MAR, you may (or should, depending on what you 
will do next) manipulate them  
Listwise deletion is the removal of events containing missing features. 
Excluding MNR, this introduces no bias, but reduces power

Inputation is the procedure of inserting values for the missing features. This 
avoids the defaulting result of elimination of an event from the data set 
(commonly applied by statistical packages).

The value is usually an estimate of the missing entry dependent (by 
regression, e.g. using a fit) or not (e.g. in mean substitution, by averaging the 
available entries) on the other features of the same event. Each choice has 
drawbacks.

Another common practice is to use the so-called hot deck imputation: one 
sorts the data using some of the features, then replaces the missing entry 
with that of the event that precedes it. A better idea (similar to regression) 
may be to use some form of kNN, averaging elements close to the one with 
the missing entry 68



More preprocessing: 
Centering, scaling, reflections

Some ML algorithms benefit from preprocessing of the features by 
standardization procedures, operated with univariate transforms

Centering: 
Centering consists in subtracting means off the marginals. 
If X = {x1,..,xN} are the relevant coordinates of your N data examples, centering 
produces 

X' = {x1-μ*,...,xN-μ*}, 

where μ* is the observed mean. 

Note that since μ* != μ, E[X]!=0 in general.
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Scaling and reflections

Scaling: Multiplying each feature by a positive constant
Reflection: multiplication by negative constant

The main application of scaling is to force all features to have the same variance 
(usually chosen to be 1.0 → standardization).
By scaling one can "remove" the dimensional character of different features, to 
facilitate the interpretation of the resulting Euclidean distance

When should you use these preprocessing steps?

• Centering is useless for decision trees, random forests, BDTs
• Centering can instead improve training stability for neural networks (when 

applied with scaling)
• Scaling is useful in kNN applications, which are instead insensitive to 

centering or reflection. The same is true for distance-based methods
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Data with unbalanced classes

In classification applications, it is usually the case that the amount of training 
data for each class differs. Most algorithms confronted with unbalanced 
training samples will learn more about one class than the other → smaller 
classification error for the oversampled class

To handle this, one can use Bayes theorem, obtaining from the learned p(x|ci) 
a posterior probability p(ci|x) by accounting for the class population in the 
training:

𝑝 𝑐1 𝑥 =
𝑝 𝑥 𝑐1 𝑝(𝑐1)

𝑝 𝑥 𝑐1 𝑝 𝑐1 +𝑝 𝑥 𝑐2 𝑝(𝑐2)

This procedure is also known as "weighting" the training data.

If one wants to mix data in equal proportions, one may undersample the 
majority class or oversample the minority class. The former reduces CPU but 
also information; the latter is effective IF one does it by synthetizing new 
observations. This can be done e.g. using local density estimates (e.g. kNN)
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THE MODEL
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The mathematical model

Machine learning relies on building a model of your data: a mathematical 
characterization of the studied system, in probabilistic terms

To build a model, you need
- to understand the structure of your data
- to clarify the problem you want to solve: e.g. regression, classification, clustering, ...

Based on the above inputs, you may choose the most appropriate ML method

E.g. 
- for a low-D regression task, you might want to specify a family of parametric functions, 
and proceed to find the best choice of parameters
- for a complex classification task, you might focus on designing a proper architecture for 
a DNN

The method will learn the model parameters from available training data
The learned model wil allow to make predictions or inference on previously unseen data
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Parametric or non-parametric?

• Parametric models are fully defined by a 
function, with a fixed set of parameters

f(x;θ) = ....
– They can be a good choice when you want to 

retain insight in what is learned
– They involve an assumption on the behaviour of 

the data → bias

• Non-parametric models do not have a fixed set 
of parameters, and they may become arbitrarily 
more complex as you let them learn more 
information from training data
– Assumption free (almost)
– Higher variance, less bias
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Going forward or backward

In most applications of interest to fundamental science we observe natural phenomena 
and try to decrypt them by constructing a model, then doing inference on its parameters 

We are helped by simulations that, based on the model, allow to artificially generate
observations based on chosen parameter values.

Problem:  the generative 
process is usually affected by 
stochasticity → cannot be 
reversed trivially, as same θ
lead to different x at random

We have no analytic likelihood!
The inference process 
becomes intractable, forcing
us to use work-arounds.
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Cases when we can only go forward / 1
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Cases when we can only go forward / 2
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Cases when we can only go forward / 3
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How to deal with this?

We resort to the construction of proper summary statistics, which have a much lower 
dimensionality than the observed data. 

This in general throws away information, unless T is sufficient

Statistical sufficiency: the definition stems from the factorization theorem of Fisher-
Neyman.

T is sufficient for X if

f(X|θ) = h(X) g(T(X)|θ)

in other words, all the information on the unknown parameters θ provided by data X is 
accessible through the function T

The problem is that finding sufficient statistics is very hard, when at all possible. 
Machine learning methods are however capable of extracting summaries from the data 
that offer useful surrogates
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Generative and Discriminative models

In the light of the ill-defined nature of the PDFs we deal with in our physics 
problems, and bearing in mind the Neyman-Pearson lemma, the goal then 
becomes: estimate p(x|S) and p(x|B), and then construct their ratio r(x)

Many MVA algorithms do precisely that: they approximate multivariate densities. 
Among them are kernel density estimators, nearest neighbors...

→ generative algorithms

or one may approximate the “likelihood ratio”, or a monotonous function of it, 
directly: finding hyperplanes in the observation space where r(x) is constant 
allows then to separate S from B pseudo-optimally

There is a bunch of ways to learn a monotonous function of the LR: linear 
discriminators, BDTs, neural networks. These are globally called 

→ discriminative algorithms
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LECTURE 1 CONCLUSIONS
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Conclusions for lecture 1

• Machine learning has a large overlap with statistical learning, which 
has been around for much longer. 
– Emphasis is on large-scale applications, and on prediction accuracy (as 

opposed to emphasis on models and their uncertainty) 

• Density estimation is an important ingredient of many ML methods
– especially when they require pdfs as inputs

• Data preprocessing may be an essential step that pays dividends in 
performance later on

• In fundamental science we often deal with the lack of analytic 
likelihoods
– ML methods can provide effective approximations to summary 

statistics to carry out the inference work
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