

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

# Search for a CP-odd top-quark Yukawa coupling with the ATLAS experiment



**Emanuel Gouveia** (e.gouveia@cern.ch) Supervisors: Ricardo Gonçalo, António Onofre

> IDPASC-LIP students' Workshop Braga, 1-3 July 2019



CERN/FIS-PAR/0008/2017

### Outline

- 1. Motivation
- 2. Analysis strategy in ATLAS
  - SM analysis
  - Region definition for CP-odd analysis
  - CP-sensitive variables and CP BDT
  - Fit model
- 3. Expected sensitivity
- 4. Prospects for HL-LHC
- 5. Summary

## 1. Motivation

#### Motivation

- Baryon asymmetry → new sources of CP-violation required
- Can be realized in Higgs bosons with both CP-even and CP-odd components
- CP-odd component does not couple to vector bosons at tree-level
- Could reveal itself in Yukawa interaction between top quark and the 125 GeV Higgs boson:

$$\mathcal{L}_{tth} = y_t \bar{\psi}_t \kappa'_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t h$$
$$= y_t \bar{\psi}_t (\kappa_t + i\gamma_5 \tilde{\kappa}_t) \psi_t h$$

 top-Higgs coupling directly confirmed with observation of ttH production by ATLAS and CMS (Phys. Lett. B 784 (2018) 173, Phys. Rev. Lett. 120, 231801)

#### **Direct vs indirect**

- Indirect constraints exist: (Phys. Rev. D 92, 015019, 2015; JHEP 1802 (2018) 073)
  - Electron electric dipole moment (EDM)
  - LHC Run I data, including ggF Higgs production
- No direct measurement yet, the goal for my PhD thesis is to perform it
- ttH production at the LHC provides the best direct probe





#### What is different in **CP-odd ttH?**

- Smaller inclusive cross-section
- Higher Higgs p<sub>T</sub>
- Larger Δη between top quarks
- Different angles measured in boosted rest frames





### 2. Analysis strategy in ATLAS tt(H→bb) with leptons

#### SM tt(H $\rightarrow$ bb) analysis with leptons

- Two categories: **dilepton** and **single lepton**
- Define regions based on jet and b-tag multiplicities
  - Dilepton: 3 or  $\geq$ 4 jets; 3 or  $\geq$ 4 b-tags
  - Single lepton: 5 or ≥6 jets; 3 or ≥4 b-tags
    - Additionally, boosted region
- In signal regions, two multivariate discriminants employed:
  - Reconstruction BDT (resolved regions only): correctly assign jets to Higgs and top quarks, providing access to their four-vectors
  - **Classification BDT**: separate ttH signal from tt+jets background
- Profile-likelihood fit to extract signal strength
  - Scale factors for tt+c and tt+b and shape uncertainties on tt+jets modeling to accommodate known mismodeling

#### **Region definition for CP-odd analysis**

- Target high signal purity, taking advantage of signal/background discriminant (classification BDT)
- Introduce CP discriminant, simultaneously fit rate and CP-mixing angle
- Current strategy:
  - **Split 4b regions** based on classification BDT score
  - Fit CP discriminant distribution in each of the newly-defined regions

<u>≥6j</u>:

#### Will focus on single lepton today

 Collaborating closely with Manchester who are working on dilepton 5i:



#### **CP-sensitive variables**

- Good news: ttH reconstruction in place → free access to tops, Higgs and their decay products
- Many variables checked for CP-even/odd separation
  - Input variables of reconstruction and classification BDTs
  - Higgs  $p_T$ ,  $\Delta \phi$ (t,tbar),  $\Delta \eta$ (t,tbar), m(ljjjj),  $b_4 = (p_t^z . p_{\bar{t}}^z)/(|\vec{p_t}|.|\vec{p_t}|)$
  - Angular observables in boosted reference frames



### CP BDT

 New discriminant, CP BDT, trained to separate CP-even and CP-odd ttH signals

0.006

0.005

0.004

0.003

0.002

0.001

0.005

0.004

0.003

0.002

0.001







ttH CP-odd, 6ji4bi

### Fit setup

- Data and MC corresponding to full Run 2 luminosity (139 fb<sup>-1</sup>)
- Fitting κ,' and α or κ, and κ

 $\mathcal{L}_{tth} = y_t \bar{\psi}_t \kappa_t' (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t h$  $= y_t \bar{\psi}_t (\kappa_t + i\gamma_5 \tilde{\kappa}_t) \psi_t h$ 

Luísa Carvalho

Figure:  $\Delta \eta$  (*tlep*, *thad*)



0.004

0.002

- 4b regions: CP BDT Ο
- boosted region: classification BDT Ο
- Complete systematics model. Main components:
  - Theoretical: NLO gen. matching, parton shower and hadronisation, Ο initial and final state radiation, de-correlated for tt+b, tt+c and tt+light
  - Experimental: b-tagging, jet energy scale Ο

#### Signal regions (CP-even Asimov)



#### Background-only fits to data

- Fit data in control regions under the background-only hypothesis
- Test flexibility of the model, check for large pulls and constraints



- tt+light modeling and b-tag systematics pulled to correct mismodeling of tt+light
- Currently investigating fit model to understand these features and make sure the required degrees of freedom are included

### **3. Expected sensitivity** Full Run 2 (139 fb<sup>-1</sup>)

#### **Expected sensitivity - 1D scan**

#### **CP-even Asimov**

#### **CP-odd Asimov**

(-∆lnL<0.5)



- CP-even Asimov: 2.42 σ for CP-odd exclusion
- CP-odd Asimov: 1.61 σ for CP-even exclusion

(-∆InL<2)

#### **Expected sensitivity - 2D scans**



### 4. Prospects for HL-LHC

#### **Prospects for HL-LHC**

- NLO samples (√s=13 TeV), fast detector simulation, select signal-rich region, full kinematical reconstruction
- Confidence level of CP-odd exclusion from as a function of luminosity



- Good choice of observables could mean less few hundred fb<sup>-1</sup> needed at HL-LHC to probe CP
- Mixed scenarios much harder to exclude than almost pure CP-odd

# 5. Summary

### Summary

- A source of CP violation in the Higgs sector could manifest itself in Yukawa couplings
  - ttH production is the best direct probe to the largest (top-quark)
     Yukawa coupling
- Implemented CP BDT to use as a discriminant, which includes input variables from phenomenology work @ LIP
- Fit model with complete set of systematics for single lepton, dilepton and combination, built "on top" of SM analysis
- Results in terms of  $\kappa_t$  and  $\alpha$  or  $\kappa_t$  and  $\tilde{\kappa}_t$
- Analysis chain necessary for CP measurement in tt(H→bb) is in place, with expected exclusion of CP-odd at 2.4σ in single lepton alone
- Fits to data under background-only hypothesis show large pulls

#### Next steps

- Improve tt+jets modeling and systematics→common effort with SM analysis
- Re-train SM analysis multivariate discriminants, with a CP-even+CP-odd mixture as signal sample
- Re-optimize region definition and CP BDT
- Thesis writing until next summer

# Thank you!

# What is different in CP-odd ttH?

- Lower inclusive cross-section
- Higher Higgs p<sub>T</sub>
- Top quarks much farther from each other in η and closer in φ
- Different angles measured in boosted rest frames







- General purpose detector at the LHC
- Magnetic fields: inner solenoidal field and outer toroidal field
- Inner tracker, electromagnetic calorimeter, hadronic calorimeter and muon spectrometer
- Reconstruction and identification of leptons, photons, missing transverse energy and hadronic jets, which can be "b-tagged" (identified as resulting from b-quark hadronisation)
- Trigger system: filter up to 40 MHz of collision rate down to ~1.5 kHz, a rate manageable for storage

### **CP BDTs**

- Trained BDTs to separate CP-even ttH from CP-odd ttH
- Trained separately in 5j,≥4b and ≥6j,≥4b
- Start with many variables, remove one by one and check that performance is not significantly affected
- Ended with 12 inputs for 5j and 15 inputs for ≥6j (full list in backup)



#### Dan Mori

#### **CP-sensitive variables**

- Good news: ttH reconstruction in place → free access to tops, Higgs and their decay products
- Many variables checked for CP-even/odd separation
  - Input variables of reconstruction and classification BDTs



- Higgs  $p_T$ ,  $\Delta \phi(t, tbar)$ ,  $\Delta \eta(t, tbar)$ , m(Ijjjjj),  $b_4 = (p_t^z \cdot p_{\bar{t}}^z)/(|\vec{p_t}| \cdot |\vec{p_t}|)$
- Angular observables in boosted reference frames



#### **CP BDT 5j inputs**

```
\Delta\eta_{bb}^{\max\Delta\eta}
\Delta \eta_{il}^{\max \Delta \eta}
m_{ljjjjj}
m_{bb}^{\max p_T}
m_{bb}^{\min\Delta R}
\Delta \phi_{t\bar{t}} (TTHReco)
\Delta R_{H,leptop} (TTHReco)
m_{H,b_{leptop}} (TTHReco)
\Delta \eta_{t\bar{t}} (TTHReco)
 sin(\theta_{I/q1(A)}^{H})
 sin(\theta_{t(B)}^{ttH})sin(\theta_{b(A)}^{H})
 sin(\theta_{lep. t}^{ttH})sin(\theta_{lep}^{H})
```

#### **CP BDT 6j inputs**

 $\Delta \eta_{bb}^{\max \Delta \eta}$  $\Delta \eta_{il}^{\max \Delta \eta}$  $m_{ljjjjj}$  $m_{bb}^{\max p_T}$  $m_{bb}^{\max m}$  $\Delta \phi_{t\bar{t}}$  (TTHReco)  $b_{4}^{ll}$  (TTHReco)  $\Delta \eta_{t\bar{t}}$  (TTHReco)  $\Delta R_{b1H,bhadtop}$  (TTHReco)  $\Delta R_{b1H,lep}$  (TTHReco)  $p_T^{Higgs}$  (TTHReco)  $m_{lepW,bhadtop}$  (TTHReco)  $sin(\theta_{t(B)}^{ttH})sin(\theta_{b(A)}^{H})$  $\cos(\theta_{b1(H)}^{t(A)})\cos(\theta_{b2(H)}^{t(A)})$  $sin(\theta_{lep.t}^{ttH})sin(\theta_{W(had.t)}^{H})$ 

#### **Boosted region**



 No shape difference between CP-odd and CP-even, to investigate CP-sensitive variables in this region

#### tH and CP-odd ttH coupling

- Large destructive interference in SM
- Great cross-section enhancement as we move through CP-even -> CP-odd -> CP-even negative coupling
- Unlike ttH, for which cross-section decreases
- tH region in ttH(bb) fit could add constraining tension





#### Next steps

- Improve morphing of tH sample templates
- Study CP discriminant for boosted region
- Get better understanding of tt+jets mismodeling → common effort with SM analysis
  - Apply corrections to improve pre-fit data/MC agreement
  - Introduce degrees of freedom in the fit to account for it
- Validate data/MC of CP BDT inputs
- Perform more fits to data and pseudo-data to gain confidence in the fit model before unblinding
- Re-train reconstruction and classification BDTs, with a CP-even+CP-odd mixture as signal sample
- Re-optimize region definition and CP BDT