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ML IN HEP & ML INNOVATION

• In recent years, ML innovation in HEP has been growing to solve our 
domain-specific problems
• E.g. Object reconstruction, detector simulation, particle ID

• Although these problems are domain specific, their solutions normally rely 
on applying and adapting techniques developed outside of HEP

• These techniques are continually being refreshed and updated, and are 
normally presented on benchmark datasets for some specific task
• It is not always obvious whether they are appropriate for use in HEP
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HIGGS ML KAGGLE CHALLENGE
• Launched in 2014, the Higgs ML Kaggle 

competition  was designed to help 
stimulate outside interest in HEP 
problems

• The data contains simulated LHC collision 
data for Higgs to di-tau and several 
background processes

• I.e. a typical HEP search analysis

• Realistic metric and data size

• Strong baselines from both physicists and 
data scientists

• A good public dataset for testing out 
improvement impacts

3

https://www.kaggle.com/c/higgs-boson
https://www.kaggle.com/c/higgs-boson


IMPROVEMENT BREAKDOWN
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Base Model
Score = 3.38±0.02

• 4x100 NN

• ReLU 

• Constant LR

• ADAM 

• He init.

Score =
3.80±0.1



DATA AUGMENTATION FOR HEP

• Correct application of augmentation relies 
on exploiting invariances within the data: 
domain specific

• At the CMS and ATLAS detectors, the 
initial transverse momentum is zero, 
therefore final states are produced 
isotropically in the transverse plane: the 
class of process is invariant to the rotation 
in azimuthal angle

• Similarly, the beams collide head on with 
equal energy: therefore final states are 
produced isotropically in Z-axis
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SOFTWARE REQUIREMENTS

• Original study used Keras, but:
• A lot of extra code had to be written to provide the necessary functionality

• However this sometimes required working with Tensorflow, which Keras was 
meant to be abstracting

• Similarly, other Keras functions weren’t being used as intended due to data 
augmentation and the ensembling techniques

• Ensembling also difficult without dedicated classes

• Afterward the original study I rewrote the entire framework from scratch 
using PyTorch for the networks 6



LUMIN
• At its heart LUMIN contains the required 

functionality to reimplement the Higgs ML 
solution

• But it does so in an adaptable way, 
meaning it can easily be applied to other 
problems and tasks

• On top of this, it provides useful tools for 
both:

• Machine learning & data science
• HEP-specific tasks and evaluations

• LUMIN aims to become an ecosystem for 
physicists to quickly apply the best 
approaches to their analysis work 
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https://github.com/GilesStrong/lumin/tree/master


LUMIN ON HIGGS ML
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Solution LUMIN-GPU LUMIN-CPU 1st place

Method 10 DNNs 70 DNNs

Train time 20 minutes 35 minutes 24 hours

Inference 
time

15 seconds 120 seconds 1 hour

Score 3.80±0.01 3.806

Hardware Nvidia 1080 
Ti GPU

Intel Core 
i7-8559U
(MacBook 
Pro 2018)

Nvidia
Titan GPU

• Solution matches winning 
solution in performance

• On similar hardware:
• 70 times quicker to train

• 240 times quicker to apply

• Even a laptop can easily train it

• 1-cycle training schedule can 
further halve train time with only 
a minor drop in performance

https://github.com/melisgl/higgsml


USE & DISSEMINATION
• Original Higgs ML study documented in AMVA4NewPhysics D1.4

• Higgs ML study repeated using LUMIN, and being re-documented as 
standalone paper
• Public presentations: Higgs ML, LUMIN

• Similar solution applied to a di-Higgs HL-LHC projection study
• CMS-PAS-FTR-18-019, CERN-LPCC-2018-04, & eventual CERN Yellow Report 

• Bengala & Santo (LIP summer students, 2018) found a 30% improvement over a 
basic NN model

• Currently applying method to CMS di-Higgs search on 2016 & 17 data

•
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https://docs.infn.it/share/s/c9veKvvfT3-WmoC6TW66jQ
https://indico.cern.ch/event/762583/#3-recent-developments-in-deep
https://indico.cern.ch/event/766872/timetable/?view=standard#29-lumin-a-deep-learning-and-d
https://cds.cern.ch/record/2652549
https://cds.cern.ch/record/2650162/


LUMIN STATUS
• LUMIN is stored on a public Github repo: 

https://github.com/GilesStrong/lumin
• Installable from source or PIP: 

https://pypi.org/project/lumin/

• Still in beta; latest release is v0.2

• Documentation being written

• Five examples showing most of the 
capabilities:

• Classification & regression
• Export to ONNX & Tensorflow

• Feedback & contributions are most 
welcome: I’m hoping this can become a 
more general tool for the 
experimental-science community
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https://github.com/GilesStrong/lumin
https://pypi.org/project/lumin/
https://github.com/GilesStrong/lumin/tree/v0.2.0/examples


SUMMARY

• Have tested many changes to neural network architectures and training & 
application schemes

• These show large improvements to model performance

• Methodologies are already being applied in CMS analyses 

• Package allowing easy implementation of these improvements is now 
public and continually being developed
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EXTRA SECTION: SUPER TML
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SuperTML INTRODUCTION
• SuperTML: Two-Dimensional Word 

Embedding for the Precognition on 
Structured Tabular Data, March 2019, Sun 
et al., arxiv.org/abs/1903.06246

• Proposes to transform tabular data into 
images by printing feature values as text 
on black backgrounds, either with fixed 
font-size or varying font-size with feature 
importance

• Pretrained CNNs (SE-Net 154) (SE-Net 
154) can then be refined to perform the 
desired task as normal

• Claims to get an AMS of 3.979

• Can their result be reproduced?
TML = Tabular Machine Learning
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https://arxiv.org/abs/1903.06246


MODEL TRAINING

• Models trained in Fastai (PyTorch 
wrapper)

• Final dense layer of pretrained model 
removed and replaced with two dense 
layers with two output nodes

• Two-step training process:
• First only the final two dense layers are 

trained
• Pretrained head is unfrozen and entire 

model is trained

Pretrained Model Head

Adaptive Pooling → Flatten

BN → DO(0.25)

Dense(512)

ReLU → BN → DO(0.5)

Dense(2)

Softmax
14

https://github.com/fastai/fastai


INITIAL ATTEMPT
• Settings:

• 224x224 images - same size paper uses
• ResNet34 - smaller, simpler model

• Surprisingly, it seemed to learn something
• Validation AMS around 3
• Test AMS around 2.75

• Train-time about 47 minutes
• C.f. 20 minutes for fully-connected 

approach

• Data size: 13 GB
• Original data size = 200 MB 15



SMALLER IMAGES• Tried variety of models and encoding 
schemes

• Latest scheme uses smaller images
• (56x56) encoded as soid grey-scale blocks

• Data size → 3.1 GB

• Used SE-net 50

• Was able to move to larger batch size 
(512), train-time → 15 minutes

• Ok performance - better than single ReLU 
DNN:

• Validation AMS 3.66
• Test AMS between 3.3 - 3.5

• Similar performance to SE-Net 154 on 
224X224 pixel images, but this takes 12 
hours to train
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CURRENT STATUS
• Have tried a variety of encoding methods and models and have not been 

able to recover their 3.979 score (my highest AMS is about 3.5)
• Have also tested for a few mistakes which the authors may have made

• Github repo with solutions available here: 
https://github.com/GilesStrong/SuperTML_HiggsML_Test

• Complete presentation from recent CMS ML Workshop: 
https://github.com/GilesStrong/SuperTML_HiggsML_Test/blob/master/presentation
s/GS_CMSML_SuperTML.pdf

• Have contacted the authors with a few questions; waiting to hear back

• If the claimed improvement is realised, the method would allow the 
benefits of transfer learning to be applied to most data analysis work at 
CERN

17

https://github.com/GilesStrong/SuperTML_HiggsML_Test
https://github.com/GilesStrong/SuperTML_HiggsML_Test/blob/master/presentations/GS_CMSML_SuperTML.pdf
https://github.com/GilesStrong/SuperTML_HiggsML_Test/blob/master/presentations/GS_CMSML_SuperTML.pdf


FULL SUMMARY

• Have tested many changes to neural network architectures and training & 
application schemes

• These show large improvements to model performance

• Methodologies are already being applied in CMS analyses 

• Package allowing easy implementation of these improvements is now 
public and continually being developed

• Have investigated potentially powerful method but have not been able to 
reproduce the claimed results 18
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BACKUP SLIDES
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LUMIN TIMING
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TRAIN TIME
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TEST TIME

23



RELATIVE TRAIN-TIME INCREASE
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• All additions bring about a 20 times 
increase in train time

• Accounting for ensemble training, 2 times 
increase



RELATIVE TEST-TIME INCREASE
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• All additions bring about a 110 times 
increase in inference time

• Accounting for ensemble training, ~11 
times increase

• Increases on par with expectation
• Just under 10 times for ensembling
• NB, timing includes time for data loading - 

hence why GPU appears to show 
super-sublinear scaling for ensembling

• ~8 times for test-time augmentation (8 
sets of augmentations are applied)

• Increase for Swish due to exponential 
evaluation (and lack of JIT compilation?)



METHOD SUMMARIES
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Learning rate finder

• “[The Learning Rate] is often the single most important hyperparameter 
and one should always make sure that it has been tuned” - Bengio, 2012

• Previously this required running several different trainings using a range of 
LRs

• The LR range test (Smith 2015 & 2018) can quickly find the optimum LR 
using a single epoch of training
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https://arxiv.org/abs/1206.5533
https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1803.09820


Learning rate finder

1. Starting from a tiny LR (~1e-7), 
the LR is gradually increased after 
each minibatch
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Learning rate finder

1. Starting from a tiny LR (~1e-7), 
the LR is gradually increased after 
each minibatch

2. Eventually the network starts 
training (loss decreases)

29



Learning rate finder

1. Starting from a tiny LR (~1e-7), 
the LR is gradually increased after 
each minibatch

2. Eventually the network starts 
training (loss decreases)

3. At a higher LR the network can 
no longer train (loss plateaus), 
and eventually the network 
diverges (loss increases) 30



Learning rate finder

• The optimum LR is the highest LR at which the loss is still decreasing

• Further explanation in this lesson
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https://www.youtube.com/watch?v=JNxcznsrRb8&feature=youtu.be&t=4m55s


ACTIVATION FUNCTIONS

• Whilst ReLU is a common activation 
function, newer ones are continually being 
introduced

• SELU uses carefully derived scaling 
coefficients allow networks to 
self-normalise, removing any need for 
batch normalisation

• SELU Example

• Swish, found via reinforcement learning, 
provides a region of negative gradient

• Swish example
32

https://arxiv.org/abs/1706.02515
https://github.com/GilesStrong/lumin/blob/master/examples/Multiclass_Classification.ipynb
https://arxiv.org/abs/1710.05941
https://github.com/GilesStrong/lumin/blob/master/examples/Binary_Classification.ipynb


Data augmentation

• Data augmentation involves applying 
transformations to input data such that 
the a new data point is created, but the 
underlying class is unchanged

• This is well used in image classification to 
artificially increase the amount of training 
data (train-time augmentation), e.g 
Krizhevsky et al. 2012

• It can also be applied at test time by 
predicting the class of a range of 
augmented data and then taking an 
average of the predictions.
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https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


Data augmentation
• Correct application of augmentation relies 

on exploiting invariances within the data: 
domain specific

• At the CMS and ATLAS detectors, the 
initial transverse momentum is zero, 
therefore final states are produced 
isotropically in the transverse plane: the 
class of process is invariant to the rotation 
in azimuthal angle

• Similarly, the beams collide head on with 
equal energy: therefore final states are 
produced isotropically in Z-axis

• Alternative is to remove symmetries by 
setting common alignment for events

• Data augmentation example
• Data fixing example
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https://github.com/GilesStrong/lumin/blob/master/examples/Binary_Classification.ipynb
https://github.com/GilesStrong/lumin/blob/master/examples/Multi_Target_Regression.ipynb


LINEAR CYCLING
• Adjusting the LR during training is a 

common technique for achieving better 
performance

• Normally this involves decreasing the LR 
once the validation loss becomes flat

• Smith 2015 suggests instead to cycle the 
LR between high and low bounds

• Smith 2017 showed that the additional 
application of an out-of-phase schedule to 
the optimiser momentum/beta1 coefficient 
can sometimes lead to super convergence

• Linear cycle example 35

https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1708.07120
https://github.com/GilesStrong/lumin/blob/master/examples/Single_Target_Regression.ipynb


COSINE ANNEALING

• Loshchilov and Hutter 2016 instead 
suggests that the LR should be decay as a 
cosine with the schedule restarting once 
the LR reaches zero

• Huang et al. 2017 later suggests that the 
discontinuity allows the network to 
discover multiple minima in the loss 
surface

• 2016 paper demonstrates on image and 
EEG classification

• Cosine annealing example
36

Lower figure - Huang et al., 2017, arXiv:1704.00109
 

https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1704.00109
https://github.com/GilesStrong/lumin/blob/master/examples/Binary_Classification.ipynb
https://arxiv.org/abs/1704.00109


ONE CYCLING
• Smith 2018 introduces the 1cycle schedule 

which further improves the super 
convergence

• This involves running through a single 
cycle of increasing and then decreasing the 
lR, with a similar, inverted schedule 
applied to momentum/beta1

• Original paper used linear interpolation

• FastAI found a cosine interpolation was 
better

• LUMIN includes both interpolations

• Onecycle example 37

https://arxiv.org/abs/1803.09820
https://github.com/GilesStrong/lumin/blob/master/examples/Multiclass_Classification.ipynb


ENTITY EMBEDDING
• Categorical features = features with 

discrete values and no numerical 
comparison

• Normal to 1-hot encode as Boolean 
vector (Monday → 1000000)

• But potentially means a large number of 
extra inputs to NN (day of year = 365 
inputs)

• Guo 2016 learns lookup tables which 
provide a compact, but rich, 
representation of categorical values as 
vector of floats (Monday → 
0.3,0.9,0.4,0.7) 38

https://arxiv.org/abs/1604.06737


ENTITY EMBEDDING

• Embedding values start from random 
initialisation

• Receive gradient during backpropagation 
and are learnt just like any other network 
parameter

• Once learnt, embeddings can then be 
transferred to other tasks which require 
embedding the same, or similar, feature 
(better than random init.)

• Random init. Example

• Embedding loading example
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https://github.com/GilesStrong/lumin/blob/master/examples/Binary_Classification.ipynb
https://github.com/GilesStrong/lumin/blob/master/examples/Multiclass_Classification.ipynb


ENSEMBLING
• Basic ensembling requires training multiple models, and then averaging 

over their predictions
• Advantages:

• Greater generalisation to unseen data

• Often a more powerful model

• Provides resistance against possibility of bad training

• Disadvantages
• Increases train time

• Increases inference time

• Basic ensembling example
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https://github.com/GilesStrong/lumin/blob/master/examples/Binary_Classification.ipynb


SNAPSHOT ENSEMBLING

• SSE uses the idea that a warm-restarted 
LR  will find multiple minima across the 
loss surface

• Just before the LR jump, when the 
network is in a minima, a snapshot of the 
model weights is saved

• The model then jumps out and begins 
converging to different minima

• This allows one to create an ensemble of 
models in a single training
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Figures - Huang et al., 2017, arXiv:1704.00109
 

https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1704.00109


FAST GEOMETRIC ENSEMBLING

• FGE further improves on SSE by finding 
that loss minima are connected by curves 
of constant loss (rare to find true minima 
- almost certainly a saddlepoint/valley 
given dimensionality)

• Using a high-frequency linearly cycled LR 
it aims to direct the model along these 
curves, saving snapshots along the way

• FGE example
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Figures - Garipov et al., Feb. 2018, arXiv:1802.10026
 

https://arxiv.org/abs/1802.10026
https://github.com/GilesStrong/lumin/blob/master/examples/Single_Target_Regression.ipynb
https://arxiv.org/abs/1802.10026


STOCHASTIC WEIGHT AVERAGING

• Both SSE and FGE solve the problem of 
increased training time, but still incur an 
increased inference time

• SWA solves this problem by averaging in 
weight space rather than model space

• As the model is trained, a running average 
of the model parameters is kept

• Can be used with both constant, cycled, 
and annealed LR schedules

• SWA example
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Figures -  Izmailov et al., Mar. 2018, arXiv:1803.05407
 

https://arxiv.org/abs/1803.05407
https://github.com/GilesStrong/lumin/blob/master/examples/Multi_Target_Regression.ipynb
https://arxiv.org/abs/1803.05407


STOCHASTIC WEIGHT AVERAGING

• Published SWA requires setting a priori 
when to start averaging

• Too early = spoilt by initial weights being 
bad

• Too late = no exploration

44



STOCHASTIC WEIGHT AVERAGING

• LUMIN’s implementation can track 
multiple averages, replacing and restarting 
them if new averages would be better

• Slightly slower, but ensures you never 
need to train once beforehand to know 
when to start averaging
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PERMUTATION IMPORTANCE
• Method to quantify the importance of 

each input feature
a. Loss of trained mode evaluated on 

training data
b. Copy of data made and one feature 

column is shuffled = info destroyed
c. Loss re-evaluated
d. Increase in loss corresponds to feature 

importance - Large change implies heavy 
reliance by model

• Can either be used interpret a trained 
model, or to reduce input feature-space

• Does not work for collinear features - 
model can recover information from 
another feature, so importance is 
reported to be lower than it actually is
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FEATURE DEPENDENCE
• For data with collinear feature, feature 

dependence can be evaluated
• This involves training regressors to 

predict the value of a certain feature given 
the other features

• The more performant the regressor, the 
more information about that feature is 
carried by the other features

• Can be used to carefully remove training 
features

• See this for more information: 
https://explained.ai/rf-importance/index.html 47

https://explained.ai/rf-importance/index.html

