
DEEP LEARNING IN
HIGGS PHYSICS

Giles Strong
Supervised by Michele Gallinaro & João Varela

LIP PhD Students’ Workshop, Minho University - 01/07/19
giles.strong@outlook.com

twitter.com/Giles_C_Strong
Amva4newphysics.wordpress.com

github.com/GilesStrong

mailto:giles.strong@outlook.com
https://twitter.com/Giles_C_Strong
https://amva4newphysics.wordpress.com/
https://github.com/GilesStrong

ML IN HEP & ML INNOVATION

• In recent years, ML innovation in HEP has been growing to solve our
domain-specific problems
• E.g. Object reconstruction, detector simulation, particle ID

• Although these problems are domain specific, their solutions normally rely
on applying and adapting techniques developed outside of HEP

• These techniques are continually being refreshed and updated, and are
normally presented on benchmark datasets for some specific task
• It is not always obvious whether they are appropriate for use in HEP

2

HIGGS ML KAGGLE CHALLENGE
• Launched in 2014, the Higgs ML Kaggle

competition was designed to help
stimulate outside interest in HEP
problems

• The data contains simulated LHC collision
data for Higgs to di-tau and several
background processes

• I.e. a typical HEP search analysis

• Realistic metric and data size

• Strong baselines from both physicists and
data scientists

• A good public dataset for testing out
improvement impacts

3

https://www.kaggle.com/c/higgs-boson
https://www.kaggle.com/c/higgs-boson

IMPROVEMENT BREAKDOWN

4

Base Model
Score = 3.38±0.02

• 4x100 NN

• ReLU

• Constant LR

• ADAM

• He init.

Score =
3.80±0.1

DATA AUGMENTATION FOR HEP

• Correct application of augmentation relies
on exploiting invariances within the data:
domain specific

• At the CMS and ATLAS detectors, the
initial transverse momentum is zero,
therefore final states are produced
isotropically in the transverse plane: the
class of process is invariant to the rotation
in azimuthal angle

• Similarly, the beams collide head on with
equal energy: therefore final states are
produced isotropically in Z-axis

5

SOFTWARE REQUIREMENTS

• Original study used Keras, but:
• A lot of extra code had to be written to provide the necessary functionality

• However this sometimes required working with Tensorflow, which Keras was
meant to be abstracting

• Similarly, other Keras functions weren’t being used as intended due to data
augmentation and the ensembling techniques

• Ensembling also difficult without dedicated classes

• Afterward the original study I rewrote the entire framework from scratch
using PyTorch for the networks 6

LUMIN
• At its heart LUMIN contains the required

functionality to reimplement the Higgs ML
solution

• But it does so in an adaptable way,
meaning it can easily be applied to other
problems and tasks

• On top of this, it provides useful tools for
both:

• Machine learning & data science
• HEP-specific tasks and evaluations

• LUMIN aims to become an ecosystem for
physicists to quickly apply the best
approaches to their analysis work

7

https://github.com/GilesStrong/lumin/tree/master

LUMIN ON HIGGS ML

8

Solution LUMIN-GPU LUMIN-CPU 1st place

Method 10 DNNs 70 DNNs

Train time 20 minutes 35 minutes 24 hours

Inference
time

15 seconds 120 seconds 1 hour

Score 3.80±0.01 3.806

Hardware Nvidia 1080
Ti GPU

Intel Core
i7-8559U
(MacBook
Pro 2018)

Nvidia
Titan GPU

• Solution matches winning
solution in performance

• On similar hardware:
• 70 times quicker to train

• 240 times quicker to apply

• Even a laptop can easily train it

• 1-cycle training schedule can
further halve train time with only
a minor drop in performance

https://github.com/melisgl/higgsml

USE & DISSEMINATION
• Original Higgs ML study documented in AMVA4NewPhysics D1.4

• Higgs ML study repeated using LUMIN, and being re-documented as
standalone paper
• Public presentations: Higgs ML, LUMIN

• Similar solution applied to a di-Higgs HL-LHC projection study
• CMS-PAS-FTR-18-019, CERN-LPCC-2018-04, & eventual CERN Yellow Report

• Bengala & Santo (LIP summer students, 2018) found a 30% improvement over a
basic NN model

• Currently applying method to CMS di-Higgs search on 2016 & 17 data

•
9

https://docs.infn.it/share/s/c9veKvvfT3-WmoC6TW66jQ
https://indico.cern.ch/event/762583/#3-recent-developments-in-deep
https://indico.cern.ch/event/766872/timetable/?view=standard#29-lumin-a-deep-learning-and-d
https://cds.cern.ch/record/2652549
https://cds.cern.ch/record/2650162/

LUMIN STATUS
• LUMIN is stored on a public Github repo:

https://github.com/GilesStrong/lumin
• Installable from source or PIP:

https://pypi.org/project/lumin/

• Still in beta; latest release is v0.2

• Documentation being written

• Five examples showing most of the
capabilities:

• Classification & regression
• Export to ONNX & Tensorflow

• Feedback & contributions are most
welcome: I’m hoping this can become a
more general tool for the
experimental-science community

10

https://github.com/GilesStrong/lumin
https://pypi.org/project/lumin/
https://github.com/GilesStrong/lumin/tree/v0.2.0/examples

SUMMARY

• Have tested many changes to neural network architectures and training &
application schemes

• These show large improvements to model performance

• Methodologies are already being applied in CMS analyses

• Package allowing easy implementation of these improvements is now
public and continually being developed

11

EXTRA SECTION: SUPER TML

12

SuperTML INTRODUCTION
• SuperTML: Two-Dimensional Word

Embedding for the Precognition on
Structured Tabular Data, March 2019, Sun
et al., arxiv.org/abs/1903.06246

• Proposes to transform tabular data into
images by printing feature values as text
on black backgrounds, either with fixed
font-size or varying font-size with feature
importance

• Pretrained CNNs (SE-Net 154) (SE-Net
154) can then be refined to perform the
desired task as normal

• Claims to get an AMS of 3.979

• Can their result be reproduced?
TML = Tabular Machine Learning

13

https://arxiv.org/abs/1903.06246

MODEL TRAINING

• Models trained in Fastai (PyTorch
wrapper)

• Final dense layer of pretrained model
removed and replaced with two dense
layers with two output nodes

• Two-step training process:
• First only the final two dense layers are

trained
• Pretrained head is unfrozen and entire

model is trained

Pretrained Model Head

Adaptive Pooling → Flatten

BN → DO(0.25)

Dense(512)

ReLU → BN → DO(0.5)

Dense(2)

Softmax
14

https://github.com/fastai/fastai

INITIAL ATTEMPT
• Settings:

• 224x224 images - same size paper uses
• ResNet34 - smaller, simpler model

• Surprisingly, it seemed to learn something
• Validation AMS around 3
• Test AMS around 2.75

• Train-time about 47 minutes
• C.f. 20 minutes for fully-connected

approach

• Data size: 13 GB
• Original data size = 200 MB 15

SMALLER IMAGES• Tried variety of models and encoding
schemes

• Latest scheme uses smaller images
• (56x56) encoded as soid grey-scale blocks

• Data size → 3.1 GB

• Used SE-net 50

• Was able to move to larger batch size
(512), train-time → 15 minutes

• Ok performance - better than single ReLU
DNN:

• Validation AMS 3.66
• Test AMS between 3.3 - 3.5

• Similar performance to SE-Net 154 on
224X224 pixel images, but this takes 12
hours to train

16

CURRENT STATUS
• Have tried a variety of encoding methods and models and have not been

able to recover their 3.979 score (my highest AMS is about 3.5)
• Have also tested for a few mistakes which the authors may have made

• Github repo with solutions available here:
https://github.com/GilesStrong/SuperTML_HiggsML_Test

• Complete presentation from recent CMS ML Workshop:
https://github.com/GilesStrong/SuperTML_HiggsML_Test/blob/master/presentation
s/GS_CMSML_SuperTML.pdf

• Have contacted the authors with a few questions; waiting to hear back

• If the claimed improvement is realised, the method would allow the
benefits of transfer learning to be applied to most data analysis work at
CERN

17

https://github.com/GilesStrong/SuperTML_HiggsML_Test
https://github.com/GilesStrong/SuperTML_HiggsML_Test/blob/master/presentations/GS_CMSML_SuperTML.pdf
https://github.com/GilesStrong/SuperTML_HiggsML_Test/blob/master/presentations/GS_CMSML_SuperTML.pdf

FULL SUMMARY

• Have tested many changes to neural network architectures and training &
application schemes

• These show large improvements to model performance

• Methodologies are already being applied in CMS analyses

• Package allowing easy implementation of these improvements is now
public and continually being developed

• Have investigated potentially powerful method but have not been able to
reproduce the claimed results 18

19

BACKUP SLIDES

20

LUMIN TIMING

21

TRAIN TIME

22

TEST TIME

23

RELATIVE TRAIN-TIME INCREASE

24

• All additions bring about a 20 times
increase in train time

• Accounting for ensemble training, 2 times
increase

RELATIVE TEST-TIME INCREASE

25

• All additions bring about a 110 times
increase in inference time

• Accounting for ensemble training, ~11
times increase

• Increases on par with expectation
• Just under 10 times for ensembling
• NB, timing includes time for data loading -

hence why GPU appears to show
super-sublinear scaling for ensembling

• ~8 times for test-time augmentation (8
sets of augmentations are applied)

• Increase for Swish due to exponential
evaluation (and lack of JIT compilation?)

METHOD SUMMARIES

26

Learning rate finder

• “[The Learning Rate] is often the single most important hyperparameter
and one should always make sure that it has been tuned” - Bengio, 2012

• Previously this required running several different trainings using a range of
LRs

• The LR range test (Smith 2015 & 2018) can quickly find the optimum LR
using a single epoch of training

27

https://arxiv.org/abs/1206.5533
https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1803.09820

Learning rate finder

1. Starting from a tiny LR (~1e-7),
the LR is gradually increased after
each minibatch

28

Learning rate finder

1. Starting from a tiny LR (~1e-7),
the LR is gradually increased after
each minibatch

2. Eventually the network starts
training (loss decreases)

29

Learning rate finder

1. Starting from a tiny LR (~1e-7),
the LR is gradually increased after
each minibatch

2. Eventually the network starts
training (loss decreases)

3. At a higher LR the network can
no longer train (loss plateaus),
and eventually the network
diverges (loss increases) 30

Learning rate finder

• The optimum LR is the highest LR at which the loss is still decreasing

• Further explanation in this lesson

31

https://www.youtube.com/watch?v=JNxcznsrRb8&feature=youtu.be&t=4m55s

ACTIVATION FUNCTIONS

• Whilst ReLU is a common activation
function, newer ones are continually being
introduced

• SELU uses carefully derived scaling
coefficients allow networks to
self-normalise, removing any need for
batch normalisation

• SELU Example

• Swish, found via reinforcement learning,
provides a region of negative gradient

• Swish example
32

https://arxiv.org/abs/1706.02515
https://github.com/GilesStrong/lumin/blob/master/examples/Multiclass_Classification.ipynb
https://arxiv.org/abs/1710.05941
https://github.com/GilesStrong/lumin/blob/master/examples/Binary_Classification.ipynb

Data augmentation

• Data augmentation involves applying
transformations to input data such that
the a new data point is created, but the
underlying class is unchanged

• This is well used in image classification to
artificially increase the amount of training
data (train-time augmentation), e.g
Krizhevsky et al. 2012

• It can also be applied at test time by
predicting the class of a range of
augmented data and then taking an
average of the predictions.

33

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Data augmentation
• Correct application of augmentation relies

on exploiting invariances within the data:
domain specific

• At the CMS and ATLAS detectors, the
initial transverse momentum is zero,
therefore final states are produced
isotropically in the transverse plane: the
class of process is invariant to the rotation
in azimuthal angle

• Similarly, the beams collide head on with
equal energy: therefore final states are
produced isotropically in Z-axis

• Alternative is to remove symmetries by
setting common alignment for events

• Data augmentation example
• Data fixing example

34

https://github.com/GilesStrong/lumin/blob/master/examples/Binary_Classification.ipynb
https://github.com/GilesStrong/lumin/blob/master/examples/Multi_Target_Regression.ipynb

LINEAR CYCLING
• Adjusting the LR during training is a

common technique for achieving better
performance

• Normally this involves decreasing the LR
once the validation loss becomes flat

• Smith 2015 suggests instead to cycle the
LR between high and low bounds

• Smith 2017 showed that the additional
application of an out-of-phase schedule to
the optimiser momentum/beta1 coefficient
can sometimes lead to super convergence

• Linear cycle example 35

https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1708.07120
https://github.com/GilesStrong/lumin/blob/master/examples/Single_Target_Regression.ipynb

COSINE ANNEALING

• Loshchilov and Hutter 2016 instead
suggests that the LR should be decay as a
cosine with the schedule restarting once
the LR reaches zero

• Huang et al. 2017 later suggests that the
discontinuity allows the network to
discover multiple minima in the loss
surface

• 2016 paper demonstrates on image and
EEG classification

• Cosine annealing example
36

Lower figure - Huang et al., 2017, arXiv:1704.00109

https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1704.00109
https://github.com/GilesStrong/lumin/blob/master/examples/Binary_Classification.ipynb
https://arxiv.org/abs/1704.00109

ONE CYCLING
• Smith 2018 introduces the 1cycle schedule

which further improves the super
convergence

• This involves running through a single
cycle of increasing and then decreasing the
lR, with a similar, inverted schedule
applied to momentum/beta1

• Original paper used linear interpolation

• FastAI found a cosine interpolation was
better

• LUMIN includes both interpolations

• Onecycle example 37

https://arxiv.org/abs/1803.09820
https://github.com/GilesStrong/lumin/blob/master/examples/Multiclass_Classification.ipynb

ENTITY EMBEDDING
• Categorical features = features with

discrete values and no numerical
comparison

• Normal to 1-hot encode as Boolean
vector (Monday → 1000000)

• But potentially means a large number of
extra inputs to NN (day of year = 365
inputs)

• Guo 2016 learns lookup tables which
provide a compact, but rich,
representation of categorical values as
vector of floats (Monday →
0.3,0.9,0.4,0.7) 38

https://arxiv.org/abs/1604.06737

ENTITY EMBEDDING

• Embedding values start from random
initialisation

• Receive gradient during backpropagation
and are learnt just like any other network
parameter

• Once learnt, embeddings can then be
transferred to other tasks which require
embedding the same, or similar, feature
(better than random init.)

• Random init. Example

• Embedding loading example
39

https://github.com/GilesStrong/lumin/blob/master/examples/Binary_Classification.ipynb
https://github.com/GilesStrong/lumin/blob/master/examples/Multiclass_Classification.ipynb

ENSEMBLING
• Basic ensembling requires training multiple models, and then averaging

over their predictions
• Advantages:

• Greater generalisation to unseen data

• Often a more powerful model

• Provides resistance against possibility of bad training

• Disadvantages
• Increases train time

• Increases inference time

• Basic ensembling example
40

https://github.com/GilesStrong/lumin/blob/master/examples/Binary_Classification.ipynb

SNAPSHOT ENSEMBLING

• SSE uses the idea that a warm-restarted
LR will find multiple minima across the
loss surface

• Just before the LR jump, when the
network is in a minima, a snapshot of the
model weights is saved

• The model then jumps out and begins
converging to different minima

• This allows one to create an ensemble of
models in a single training

41

Figures - Huang et al., 2017, arXiv:1704.00109

https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1704.00109

FAST GEOMETRIC ENSEMBLING

• FGE further improves on SSE by finding
that loss minima are connected by curves
of constant loss (rare to find true minima
- almost certainly a saddlepoint/valley
given dimensionality)

• Using a high-frequency linearly cycled LR
it aims to direct the model along these
curves, saving snapshots along the way

• FGE example

42

Figures - Garipov et al., Feb. 2018, arXiv:1802.10026

https://arxiv.org/abs/1802.10026
https://github.com/GilesStrong/lumin/blob/master/examples/Single_Target_Regression.ipynb
https://arxiv.org/abs/1802.10026

STOCHASTIC WEIGHT AVERAGING

• Both SSE and FGE solve the problem of
increased training time, but still incur an
increased inference time

• SWA solves this problem by averaging in
weight space rather than model space

• As the model is trained, a running average
of the model parameters is kept

• Can be used with both constant, cycled,
and annealed LR schedules

• SWA example
43

Figures - Izmailov et al., Mar. 2018, arXiv:1803.05407

https://arxiv.org/abs/1803.05407
https://github.com/GilesStrong/lumin/blob/master/examples/Multi_Target_Regression.ipynb
https://arxiv.org/abs/1803.05407

STOCHASTIC WEIGHT AVERAGING

• Published SWA requires setting a priori
when to start averaging

• Too early = spoilt by initial weights being
bad

• Too late = no exploration

44

STOCHASTIC WEIGHT AVERAGING

• LUMIN’s implementation can track
multiple averages, replacing and restarting
them if new averages would be better

• Slightly slower, but ensures you never
need to train once beforehand to know
when to start averaging

45

PERMUTATION IMPORTANCE
• Method to quantify the importance of

each input feature
a. Loss of trained mode evaluated on

training data
b. Copy of data made and one feature

column is shuffled = info destroyed
c. Loss re-evaluated
d. Increase in loss corresponds to feature

importance - Large change implies heavy
reliance by model

• Can either be used interpret a trained
model, or to reduce input feature-space

• Does not work for collinear features -
model can recover information from
another feature, so importance is
reported to be lower than it actually is

46

FEATURE DEPENDENCE
• For data with collinear feature, feature

dependence can be evaluated
• This involves training regressors to

predict the value of a certain feature given
the other features

• The more performant the regressor, the
more information about that feature is
carried by the other features

• Can be used to carefully remove training
features

• See this for more information:
https://explained.ai/rf-importance/index.html 47

https://explained.ai/rf-importance/index.html

