Measurement of $t\bar{t}$ quark pair cross-section with tau lepton in final state and lepton universality test

Oleksii Toldaiev supervised by Michele Galinaro and Joao Varela

LIP, CMS

1 July 2019

- Measurement in $tar{t}
 ightarrow bar{b} l au$ channel
- Improved systematic uncertainties
- A spin-off measurement with the ratio to dilepton channel

$\Gamma(\tau^+\nu)/\Gamma(e^+\nu)$					Γ_4/Γ_2	
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
1.046±0.023 OUR FIT						
$0.961 \!\pm\! 0.061$	980	⁴² ABBOTT	00D	D0	$E_{cm}^{p\overline{p}} = 1.8 \text{ TeV}$	
0.94 ± 0.14	179	⁴³ ABE	92E	CDF	$E_{cm}^{p\overline{p}} = 1.8 \text{ TeV}$	
$1.04\ \pm 0.08\ \pm 0.08$	754	⁴⁴ ALITTI	92F	UA2	$E_{cm}^{p\overline{p}}$ = 630 GeV	
$1.02\ \pm 0.20\ \pm 0.12$	32	ALBAJAR	89	UA1	$E_{cm}^{p\overline{p}} = 546,630 \text{ GeV}$	
 We do not use the following data for averages, fits, limits, etc. 						
$0.995 \!\pm\! 0.112 \!\pm\! 0.083$	198	ALITTI	91C	UA2	Repl. by ALITTI 92F	
$1.02\ \pm 0.20\ \pm 0.10$	32	ALBAJAR	87	UA1	Repl. by ALBAJAR 89	
from P	arti	cle Data	Gro	oup	(2012)	

Features of $tar{t} ightarrow bar{b}\ell au$ channel, measurement method

Many particular final products:

- 2 b-jets (displaced vertex of jet)
- 1 lepton (muon or electron)
- 2 neutrinos
- 1 hadronicaly decaying tau lepton
- Sample of *t* \bar{t} events is selected with simple cuts and identification requirements.
- Main background from fake taus in $t\bar{t}
 ightarrow \ell
 u_\ell q \bar{q}$ channel.
- The events are separated into background-rich and signal-rich categories according to kinematics of jets.
- The shape fit of $M_T(\ell, E_T^{miss})$ distributions is performed.
- Both methods constrain background of misidentified taus and cross-check each other.

Reconstruction algorithms and event selection

Standard algorithms are employed: Particle Flow for basic objects, anti-Kt jet clustering, MVA-based b-tagging, quality requirements for muons and electrons, MVA-based tau ID etc.

Require: 1 lepton, \geq 3 jets, \geq 1 b-tagged and 1 tau lepton.

Jets mis-identified as taus cause a lot of trouble:

- the mis-identification probability varies significantly with different properties of jets
- it cannot be simply measured in any convenient region
- and the simulation is not perfectly trustworthy

Means to handle it:

- target the processes which produces mis-identified taus instead of taus
- use kinematic information which distinguishes the signal from these processes
- for example the transverse mass between the lepton and E_T^{miss} and the kinematics of jets
- if this kinematic information does not correlate with the mis-identified taus, the fit of the kinematic shapes constrains the background significantly

- Background- or signal-rich categories are defined by jet kinematics. Profile likelihood ratio fit is performed in bins of M_T distribution.
- Likelihood function includes per-bin yields and systematic uncertainties as constraint nuisance parameters:

$$\mathcal{L}(\boldsymbol{\mu}, \theta_i) = \prod_k \mathcal{P}_{oisson} \left[N_k | \hat{N}_k(\boldsymbol{\mu}, \theta_i) \right] \cdot \prod_i pdf(\theta_i, 0, 1)$$
(1)

• Based on the likelihood function the PLR test statistic is defined:

$$\lambda(\boldsymbol{\mu}) = \frac{\mathcal{L}(\boldsymbol{\mu}, \hat{\hat{\theta}}_i(\boldsymbol{\mu}))}{\mathcal{L}(\hat{\boldsymbol{\mu}}, \hat{\theta}_i)}$$
(2)

— scans over $\lambda(\mu)$ provide estimation of uncertainties.

Example of fit in both $e\tau_h$ and $\mu\tau_h$ in simulation

Impacts of uncertainties on signal strength.

Results show agreement with SM and uncertainty of about 6-7% in both channels. Plots show simultaneous fit over both channels. The largest uncertainty is 5% from Tau ID.

Oleksii Toldaiev (LIP, CMS)

Lepton universality in W decays

$\Gamma(\tau^+\nu)/\Gamma(e^+\nu)$					Γ_4/Γ_2	
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
1.046±0.023 OUR FIT	•					
$0.961 \!\pm\! 0.061$	980	⁴² АВВОТТ	00 D	D0	$E_{cm}^{p\overline{p}} = 1.8 \text{ TeV}$	
0.94 ± 0.14	179	⁴³ ABE	92E	CDF	$E_{cm}^{p\overline{p}} = 1.8 \text{ TeV}$	
$1.04\ \pm 0.08\ \pm 0.08$	754	⁴⁴ ALITTI	92F	UA2	$E_{cm}^{p\overline{p}} = 630 \text{ GeV}$	
$1.02\ \pm 0.20\ \pm 0.12$	32	ALBAJAR	89	UA1	$E_{cm}^{p\overline{p}} = 546,630 \text{ GeV}$	
 We do not use the following data for averages, fits, limits, etc. 						
$0.995 \!\pm\! 0.112 \!\pm\! 0.083$	198	ALITTI	91C	UA2	Repl. by ALITTI 92F	
$1.02\ \pm 0.20\ \pm 0.10$	32	ALBAJAR	87	UA1	Repl. by ALBAJAR 89	
from Particle Data Group (2012)						

$W \rightarrow e \nu$	$(10.75\pm 0.13)\%$
$W \to \mu \nu$	$(10.57\pm 0.15)\%$
$W \to \tau \nu$	$(11.25\pm 0.20)\%$

- excess of about 2.5σ in current measurements:
 - performed at LEP in WW channel (off mass shell)
 - Tevatron in W+jets (triggering on tau)
 - relative uncertainty $\approx 3.5\%$
- at LHC:
 - enough energy for on-shell dibosons and $t\bar{t}$
 - similar measurements (like searches for charged Higgs) lack precision (about 6-10%, when 2% needed)
 - with the amount of luminosity we can sacrifice efficiency for purity

Lepton universality test in $t\bar{t}$

The goal is to measure precisely the ratio $\frac{W \rightarrow \tau \nu}{W \rightarrow \ell \nu}$ within $t\bar{t}$ decay:

Roughly the ratio of the two channels looks like:

$$\sigma(\mu\tau_h) = \sigma_{pp}(t\bar{t})B(W \to \mu)B(W \to \tau \to \tau_h)$$

$$\sigma(\mu\mu) = \sigma_{pp}(t\bar{t})B(W \to \mu)(B(W \to \mu) + B(W \to \tau \to \mu))$$
(3)

$$\frac{\sigma(\mu\tau_h)}{\sigma(\mu\mu)} = \frac{B(W \to \tau \to \tau_h)}{B(W \to \mu) + B(W \to \tau \to \mu)} = \frac{\frac{B(W \to \tau)}{B(W \to \mu)}B(\tau \to \tau_h)}{1 + \frac{B(W \to \tau)}{B(W \to \mu)}B(\tau \to \mu)}$$
(4)

The ratio cancels most of systematic uncertainties. But the remaining uncertainty due to tau ID is big (about 5%).

Oleksii Toldaiev (LIP, CMS)

Fit many channels in one model:

- constraint from simultaneous fit with different number of taus (both hadronic and leptonic) in final state
- $\bullet\,$ consider kinematic difference between ℓ and τ_ℓ

- aggressively cut on tau ID
- consider tau fakes in Opposite Sign and Same Sign event selections
- use 3π tau decays and cut on high significance Secondary Vertex

Feasibility study of the measurement in full Run2 data

The construction of the double ratio with DY together with hard cuts on tau ID is expected to result in small enough uncertainty in full Run2 data:

Questions