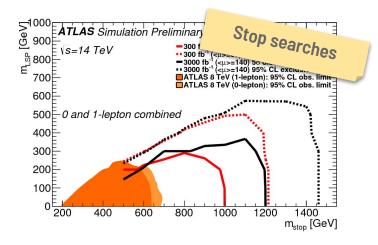
# The Hardware Track Trigger for the ATLAS upgrade

Physics performance studies and fast simulation design

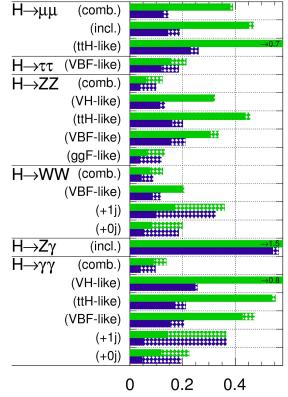
Ana Luísa Carvalho, Ricardo Gonçalo, Patricia Conde Muiño, Francesca Pastore

LIP/IDPASC students workshop, Braga 2019



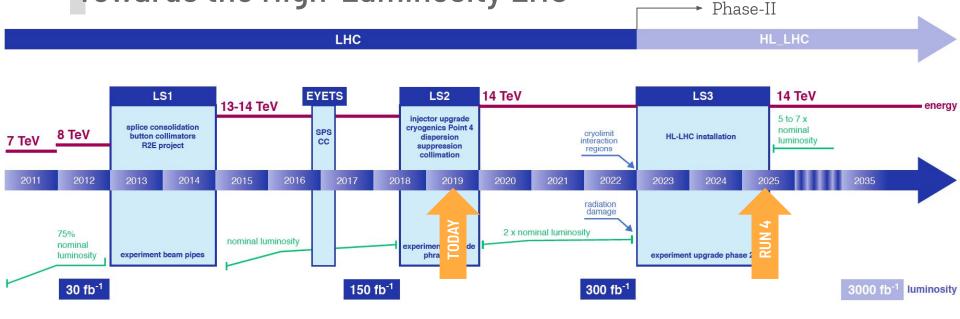

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS






# Why going to high luminosity?

- → Higgs couplings precision measurements
- → Might be only way to get clues about new physics if no discoveries happen
- ➔ Direct searches need a lot of stats




#### **ATLAS** Simulation Preliminary $\sqrt{s} = 14 \text{ TeV}: \int \text{Ldt} = 300 \text{ fb}^{-1}; \int \text{Ldt} = 3000 \text{ fb}^{-1}$

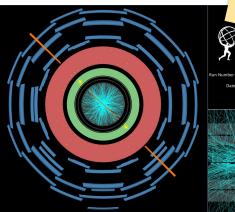


 $<sup>\</sup>Delta \mu / \mu$ 

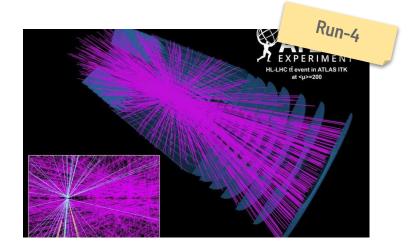
# Towards the High-Luminosity LHC



- → Increase nominal luminosity by  $\sim$  x10
- → Collect 3000 /fb at a center of mass energy of 14 TeV


# Why do we need a better detector?

ATLAS will be upgraded to handle harsher pileup


- $\rightarrow$  200 collisions per bunch crossing
- $\rightarrow$  ~ 10 000 particles per event
- → Mostly low  $p_{T}$  particles

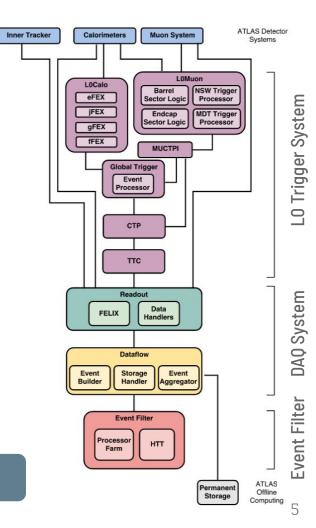
Improve trigger system

In a few  $\mu s$  the trigger selects events to be further processed








# The Hardware Track Trigger - HTT What is it ?

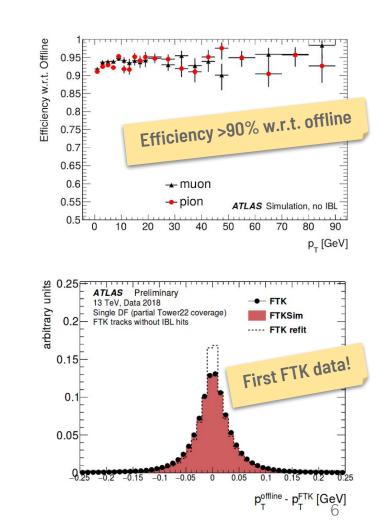
- → Highly parallel hardware-based tracking co-processor for the ATLAS upgrade
- → Capable of doing global / regional tracking at 100 kHz / 1 MHz

#### How does it work ?

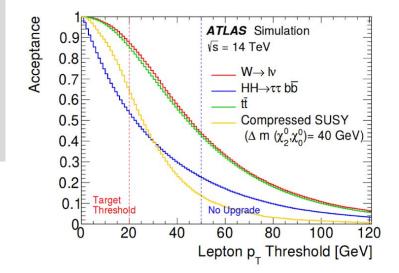
→ Pattern bank with track templates to fit to inner detector hits

Reduce Event Filter farm by factor 10

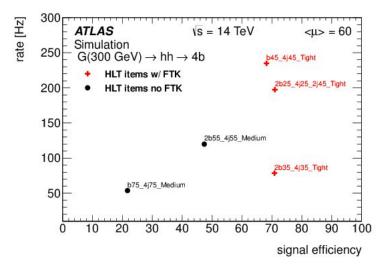



# The FastTracKer legacy - FTK

#### How does it work ?


- → Global tracking only
- → Provides full tracking for every event passing the Level-1 trigger at 100 kHz
- $\rightarrow$  ~<sup>1</sup>/<sub>2</sub> the number of FPGAs

#### FTK status


- → Precedes HTT already in Run-3
- → Production is underway
- → First data with FTK already collected



## Upgrade and FTK / HTT physics case



→ The Phase-II TDAQ upgrade | Lower single lepton threshold to 20 GeV from 50 GeV



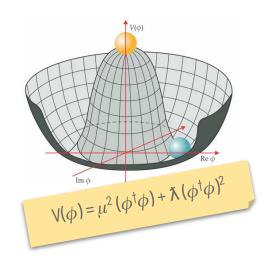
→ B-jet triggers for hh→4b | FTK helps reduce the rates at HLT

# Our contribution to HTT

#### Physics performance studies : $hh \rightarrow 4b$

→ Understand how the HTT performance will influence the analyses

#### **Development of fast simulation**


- → Full simulation is extremely time and CPU consuming
- → Tracking is one of the most expensive steps of the simulation
- → Performance studies require a lot of statistics

# Physics performance : $hh \rightarrow 4b \rightarrow jets$

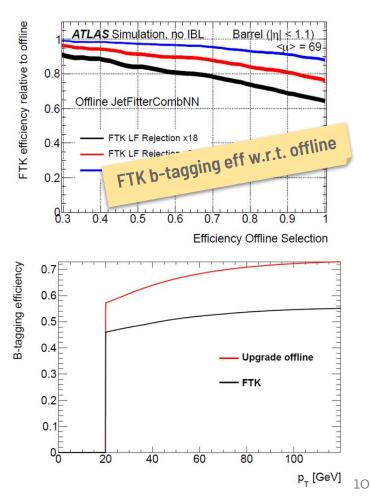
#### Why hh $\rightarrow$ 4b ?

- $\rightarrow$  Sensitivity to shape of Higgs potential
- → Key benchmark channel for the HL-LHC

#### Analysis strategy



- → Apply b-tagging parameterization based on jet's truth flavor to offline jets
- → Evaluate how b-tagging affects triggers used in hh→4b searches

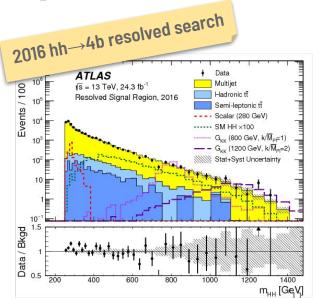

| TRIGGER                   | Level 1 (L1)                        | High Level Trigger (HLT) |
|---------------------------|-------------------------------------|--------------------------|
| HLT_2b35_2j35_L1_4j15     | <sup>≫</sup> 4j15                   | ≥ 2j35, ≥ 2b35           |
| HLT_b225_L1_j100          | ≥j100                               | ≥b225                    |
| HLT_2b55_j100_L1_3j20_j75 | <sup>≫</sup> j75, <sup>≫</sup> 3j20 | ≥ j100, ≥ 2b55           |

# **B-Tagging Parameterization**

- → Start with offline b-tagging efficiencies
- → Worsen efficiency to emulate trigger
  b-tagging performance

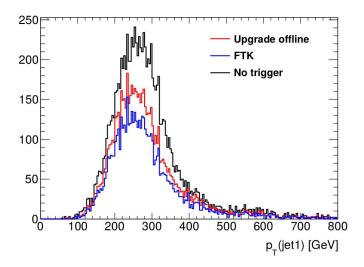
Understand how bad can the b-tagging performance at the trigger be such that the physics analysis does not suffer

|          | B-TAGGING EFFICIENCY | C-MISTAG | L-MISTAG |
|----------|----------------------|----------|----------|
| OFFLINE  | 0.72                 | 0.05     | 0.001    |
| FTK LIKE | 0.56                 | 0.1      | 0.002    |




### Monte Carlo samples

#### Signal and dominant background samples


 $\rightarrow$  Full simulation (detailed detector simulation) samples at 14 TeV

| PROCESS                                                                                          | NO. EVENTS | CROSS SECTION [fb]   |
|--------------------------------------------------------------------------------------------------|------------|----------------------|
| Signal hh→G(800 GeV)→4b                                                                          | 100 000    | 130                  |
| Dijet w/ O <pt<20 (jzo)<="" gev="" th=""><th>1 000 000</th><th>8 x 10<sup>13</sup></th></pt<20>  | 1 000 000  | 8 x 10 <sup>13</sup> |
| Dijet w/ 20 <pt<80 (jz1)<="" gev="" th=""><th>999 800</th><th>2 x 10<sup>10</sup></th></pt<80>   | 999 800    | 2 x 10 <sup>10</sup> |
| Dijet w/ 80 <pt<200 (jz2)<="" gev="" th=""><th>997 800</th><th>3 x 10<sup>8</sup></th></pt<200>  | 997 800    | 3 x 10 <sup>8</sup>  |
| Dijet w/ 200 <pt<500 (jz3)<="" gev="" th=""><th>999 300</th><th>3 x 10<sup>6</sup></th></pt<500> | 999 300    | 3 x 10 <sup>6</sup>  |
| ttbar                                                                                            | 995 900    | 4 x 10 <sup>5</sup>  |
|                                                                                                  |            |                      |



# Preliminary results - triggerHLT rates<br/>Dijet JZO sampleRate = $\mathscr{L} \times \varepsilon \times \sigma$ TRIGGEROFFLINE RATE [Hz]FTK RATE [HZ]HLT\_2b35\_2j35\_L1\_4j15 $3.0 \pm 0.5$ $1.0 \pm 0.3$ B-tagging purity#true b-jets / #b-tagged jets

|                  | #tiue b-je | is / #b-layyeu |
|------------------|------------|----------------|
| PARAMETER        | OFFLINE    | FTK-LIKE       |
| TOTAL NO. B-TAGS | 27±6       | 24±5           |
| NO. TRUE B-JETS  | 17±5       | 11±3           |
| PURITY (%)       | 63±5       | 46±2           |

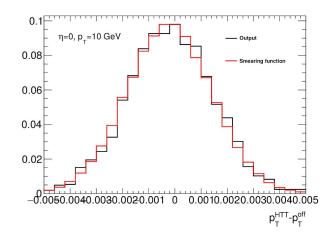


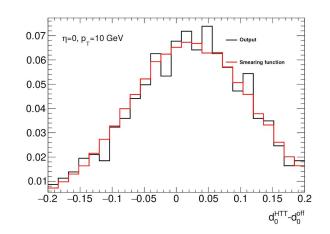
- → Slightly smaller rate for FTK | Most events passing the trigger have true b-jets
- → Lower b-tagging purity for FTK | As expected from lower track resolution

# Physics performance studies

Next steps

#### Include other b-tagging parameterization points


→ Possibly Summer student project


#### Estimate impact on physics analysis

- $\rightarrow$  Kinematic distributions
- $\rightarrow$  Signal acceptance
- $\rightarrow$  Background rejection
- → Sensitivity



→ Compare smearing functions for given  $\eta$  and  $p_T$  with track resolution for tracks in same  $\eta$  and  $p_T$ 





#### Implement Athena tool to do the smearing

# Fast Simulation

Next steps

Increase complexity/precision of simulation

- $\rightarrow$  Include fake tracks estimation
- → Keep drawing inspiration from FTK

# Summary

- ➔ Presented work being done towards the development of the Hardware Track Trigger for the ATLAS upgrade
- → This is part of my qualification task that started in January
- → Good HTT performance fundamental to guarantee efficient data selection during Phase-II
- → In addition, collaborating in ttH(H→bb) analysis (see Emanuel's talk)
- → Physics performance | Results seem promising but there is still very large uncertainties regarding the b-tagging parameterization
- → FastSim | Very simple approach is implemented, keep adding features in order to increase precision

# Thank you !