Neutrino Experiments

Michel Sorel (IFIC - CSIC & U. de Valencia)

8th IDPASC School, Valencia (Spain), May 2018

Plan for these lectures

Monday: neutrino experiments basics

- Neutrino open questions \checkmark
- \bullet How to measure neutrino oscillation parameters \checkmark
- Neutrino sources \checkmark
- \bullet Neutrino interactions with matter \checkmark
- Neutrino detector technologies \checkmark

Today: neutrino experiments specifics

- Selected current and future v oscillation experiments
- Neutrinoless double beta decay experiments
- Experiments for direct neutrino mass measurements

How to experimentally address neutrino questions

Selected current and future v osc. experiments

MicroBooNE

Started in 2015

• 170 ton LAr TPC in Booster Neutrino Beamline at Fermilab

Physics goals:

- MiniBooNE low-energy excess: electrons (oscillation signal) or gammas (background)?
- Neutrino cross sections on argon

R&D goals toward DUNE:

- Long drift (2.5 m)
- Cold electronics (preamplifiers in liquid)
- Purity without evacuation

DANSS Started in 2016

- Highly segmented 1 m³ plastic scintillator detector near 3.1 GW reactor in Russia
- Signal: delayed e+-n coincidence from $\overline{\nu}_e + p \rightarrow e^+ + n$
- Suppression of high backgrounds: shielding, detector segmentation
- Unique feature: movable! Distance to reactor core: 10.7 12.7 m

Prospects to discover light sterile neutrinos

- Reactor-based (and source-based) proposals sensitive to reactor+gallium anomaly:
- Accelerator-based proposals sensitive to LSND+MiniBooNE anomaly:

Selected current and future v osc. experiments Medium- and long-baseline

- Liquid scintillators measuring reactor $\overline{\nu}_{e}$ disappearance over km-long baselines
- Most precise measurement of sin²29₁₃ to date
- Consistent results from RENO and Double Chooz

Super-Kamiokande atmospheric Started in 1996

- Water Cherenkov detector measuring atmospheric neutrinos (both v_{μ} and v_{e})
- First conclusive evidence for oscillations, from zenith angle-dependent deficit of v_{μ} 's!
- Same detector also sensitive to solar neutrino interactions

T2K Started in 2010

J-PARC Accelerator and Near Detectors (ND280, INGRID)

Super-K Detector

• Super-K also sees JPARC off-axis neutrino beam

- \bullet T2K has conclusively shown that v_{μ} transform into v_{e}
 - T2K + reactors prefer maximal CP violation ($\delta = -\pi/2$)!
- Data until 2026, up to 3σ significance to CP violation

NOvA Started in 2014

• As T2K, long-baseline and off-axis

- Separately measure $v_{\mu} \rightarrow v_{e}$ and $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ to extract CP violation and mass hierarchy
- Compared to T2K:
 - Longer baseline (810 km), better for hierarchy
 - Segmented tracker rather than water Cherenkov

Hyper-Kamiokande (T2HK) Starting in 2026?

- Same concept as T2K (and NOvA): separately measure $v_{\mu} \rightarrow v_{e}$ and $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ off-axis, but:
 - More powerful beam: 1-2 MW! (x2 T2K)
 - More massive detector: 1 Mton! (x20 Super-Kamiokande)
- Mostly "counting" experiment at low (< 1 GeV) energies → water Cherenkov detector
- Mass hierarchy from atmospheric neutrinos

DUNE Starting in 2024?

- Other next-generation long-baseline (1300 km) oscillation experiment
- <u>On-axis</u> 0.5-6 GeV v + \overline{v} beam covering 1st and 2nd oscillation maximum to disentangle mass ordering and CP effects
- Requires detector for high-energy neutrinos \rightarrow LAr TPC as Far Detector (FD)

- Other next-generation long-baseline (1300 km) oscillation experiment
- <u>On-axis</u> 0.5-6 GeV v + \overline{v} beam covering 1st and 2nd oscillation maximum to disentangle mass ordering and CP effects
- Requires detector for high-energy neutrinos \rightarrow LAr TPC as Far Detector (FD)

• The neutrino mass ordering will be measured in the next few years!

Prospects to measure leptonic CP violating phase $\delta_{CP} \neq 0$, π

- Unambiguous CPV measurement by late 2020's, provided CPV close to maximal
- Hints already here! Maximal CPV at $\delta_{CP} = -\pi/2$ favoured by current data! (M. Tortola)

Neutrinoless double beta decay Generalities

Double beta decay

- Rare $(Z,A) \rightarrow (Z+2,A)$ nuclear transition, with emission of two electrons
- Two basic decay modes

Two neutrino mode

- Observed in several nuclei
- 10¹⁹-10²¹ yr half-lives
- Standard Model allowed

Neutrinoless mode

- Not observed yet in Nature
- >10²⁶ yr half-lives
- Would signal Beyond-SM physics

Neutrinoless double beta decay and the neutrino questions

 $(\text{Rate})_{\beta\beta0\nu} = 1/T_{1/2} = G^{0\nu} \cdot |M^{0\nu}|^2 \cdot m_{\beta\beta}^2$

Majorana v mass: $m_{\beta\beta} = |\sum_{i} m_{i} U_{ei}^{2}|$

• Total number of ββ0v decays that can be observed in a detector is (exercise: derive!)

• Total number of ββ0v decays that can be observed in a detector is (exercise: derive!)

• Question: for a ¹³⁶Xe experiment with 100% efficiency and 1 year exposure time, what is the mass $M_{\beta\beta}$ required to observe <u>only one</u> $\beta\beta0\nu$ decay?

• Total number of ββ0v decays that can be observed in a detector is (exercise: derive!)

- **Question**: for a ¹³⁶Xe experiment with 100% efficiency and 1 year exposure time, what is the mass $M_{\beta\beta}$ required to observe **only one** $\beta\beta0\nu$ decay?
- Assuming that the (unknown) $\beta\beta0\nu$ half-life of ¹³⁶Xe is **T**_{1/2} = **10**²⁷ years, get:

$$M_{\beta\beta} = 326 \text{ kg!}$$

• Total number of ββ0v decays that can be observed in a detector is (exercise: derive!)

- **Question**: for a ¹³⁶Xe experiment with 100% efficiency and 1 year exposure time, what is the mass $M_{\beta\beta}$ required to observe **only one** $\beta\beta0\nu$ decay?
- Assuming that the (unknown) $\beta\beta0\nu$ half-life of ¹³⁶Xe is **T**_{1/2} = **10**²⁷ years, get:

$$M_{\beta\beta} = 326 \text{ kg!}$$

• Life is harder than this: non-perfect efficiencies and **backgrounds**

Experimental sensitivity to ββ0v

• Experiment with no background:

Experimental sensitivity to ββ0v

• Experiment with no background:

• Experiment with background:

ββ0v experimental signature

Rare process to be isolated in radio-pure detector underground

ββ0v experimental signature

Rare process to be isolated in radio-pure detector underground

ββ0v experimental signature

Rare process to be isolated in radio-pure detector underground

Comparison of BB isotopes

• $\beta\beta$ isotope choice affects relationship ($\beta\beta0v$ rate \leftrightarrow Majorana mass):

atomic, nuclear, particle physics

 $1/T_{1/2}^{0v} = G^{0v} | M^{0v} | ^{2} m_{\beta\beta}^2$

Isotope	Q-value (MeV)	Phase space G ^{0v} (yr ⁻¹ eV ⁻²)	Matrix element M ^{0v}	Isotopic abundance (%)	Cost (normalized to ⁷⁶ Ge)	Current experiments
⁷⁶ Ge	2.04	3.0×10 ⁻²⁶	≈4.1	7.8	1	GERDA, Majorana
¹³⁰ Te	2.53	2.1×10 ⁻²⁵	≈3.6	33.8	0.2	CUORE, SNO+
¹³⁶ Xe	2.46	2.3×10 ⁻²⁵	≈2.8	8.9	0.1	EXO, KamLAND- Zen, NEXT
The higher, the better The lower, the better						

Underground detectors

- Some backgrounds originated outside detector by cosmic-ray interactions
- All ββ0v experiments located deep underground, using rock as shield

Laboratorio Subterraneo de Canfranc

Radiopure detectors

Minimise contamination from natural radioactivity in all detector components

ββ0v experimental status

Main experiments, current generation:

- No convincing evidence for ββ0v
- Best limits:

Experiment	T _{1/2} 0v limit (yr)	m _{ββ} limit (meV)	
KamLAND- Zen	> 1.07×10 ²⁶	< 61-165	
GERDA	> 5.3×10 ²⁵	< 150-330	

Neutrinoless double beta decay

A selection of experiments

GERDA experiment Started in 2011

- High-purity germanium diodes enriched in ⁷⁶Ge immersed in LAr
- Advantages: energy resolution, radiopurity → background-free!

GERDA experiment Started in 2011

- High-purity germanium diodes enriched in ⁷⁶Ge immersed in LAr
- Advantages: energy resolution, radiopurity → background-free!

CUORE experiment Started in 2013

- Towers of TeO₂ crystals. $\beta\beta$ energy measured as temperature increase
- Advantages: energy resolution, mass scalability

CUORE experiment Started in 2013

- Towers of TeO₂ crystals. $\beta\beta$ energy measured as temperature increase
- Advantages: energy resolution, mass scalability

KamLAND-Zen experiment Started in 2011

- Liquid scintillator with 300-750 kg of ¹³⁶Xe gas dissolved in it
- Advantages: mass scalability, radiopure, veto region \rightarrow leading the field

KamLAND-Zen experiment Started in 2011

- Liquid scintillator with 300-750 kg of ¹³⁶Xe gas dissolved in it
- Advantages: mass scalability, radiopure, veto region \rightarrow leading the field

NEXT experiment Started in 2016

- Time projection chamber filled with high-pressure (10-15 bar) ¹³⁶Xe gas
- Advantages: energy resolution, image electron tracks

NEXT phases

NEXT-White construction

NEXT-White installation at the LSC

How to move forward?

• Support to build 2-3 next-generation ββ0v experiments. Which ones?

Goal for next-generation experiments

15 meV Majorana neutrino mass sensitivity

Recipe for next-generation experiments

Ton-scale detector and need for background R&D

- Ton-scale detector necessary but not sufficient requirement
- Need <u>at least</u> 1-2 orders of magnitude background reduction with respect to current-generation
- R&D on active background reduction techniques

Direct neutrino mass measurements

Radioactive decays

A reminder

- Three types of (1st order) nuclear transitions producing neutrinos or antineutrinos:
 - β decay: (Z,A) \rightarrow (Z+1,A) + e⁻ + $\overline{\nu}_{e}$

•
$$\beta^+$$
 decay: (Z,A) \rightarrow (Z-1,A) + e^+ + v_e

- Electron Capture (EC): $(Z,A) + e^{-} \rightarrow (Z-1,A)^{*} + v_{e}$ $\rightarrow (Z-1,A) + \gamma/e^{-} + v_{e}$
- Information on neutrino mass from kinematics of emitted electrons (and photons)

45

3H 3H

Beta-decay energy spectrum

- Phase space determines electron energy spectrum
- Massive neutrinos distort the end-point spectrum:

Experimental requirements

$dN/dK_e \propto F(K_e,Z) \cdot p_e \cdot (K_e + m_e) \cdot (E_0 - K_e) \cdot [(E_0 - K_e)^2 - m_\beta^2]^{1/2}$

Experimental requirements

$dN/dK_e \propto F(K_e,Z) \cdot p_e \cdot (K_e+m_e) \cdot (E_0-K_e) \cdot [(E_0-K_e)^2 - m_\beta^2]^{1/2}$

Isotope	Q_{β} -value (keV)
зН	18.6
¹⁶³ Ho	2.3-2.8
¹⁸⁷ Re	2.5

• Low endpoint energy $E_0 \rightarrow {}^{3}H$, ${}^{187}Re$, ${}^{163}Ho$

Experimental requirements

$dN/dK_e \propto F(K_e,Z) \cdot p_e \cdot (K_e+m_e) \cdot (E_0-K_e) \cdot [(E_0-K_e)^2 - m_\beta^2]^{1/2}$

• Low endpoint energy $E_0 \rightarrow {}^{3}H$, ${}^{187}Re$, ${}^{163}Ho$

Isotope	Q_{β} -value (keV)
зН	18.6
¹⁶³ Ho	2.3-2.8
¹⁸⁷ Re	2.5

- High energy resolution
- High luminosity
- Low background

MAC-E-Filters or Bolometers

<u>Magnetic</u> <u>A</u>diabatic <u>C</u>ollimation combined with an <u>E</u>lectrostatic Filter

<u>Magnetic</u> <u>A</u>diabatic <u>C</u>ollimation combined with an <u>E</u>lectrostatic Filter

1. Electrons emitted isotropically at T₂ source

<u>Magnetic</u> <u>A</u>diabatic <u>C</u>ollimation combined with an <u>E</u>lectrostatic Filter

1. Electrons emitted isotropically at T₂ source

2. Guided magnetically on a cyclotron motion

<u>Magnetic</u> <u>A</u>diabatic <u>C</u>ollimation combined with an <u>E</u>lectrostatic Filter

1. Electrons emitted isotropically at T₂ source

2. Guided magnetically on a cyclotron motion

3.Transform cyclotron motion into long. motion \rightarrow Broad beam almost parallel to B field lines

<u>Magnetic</u> <u>A</u>diabatic <u>C</u>ollimation combined with an <u>E</u>lectrostatic Filter

1. Electrons emitted isotropically at T_2 source

2. Guided magnetically on a cyclotron motion

3.Transform cyclotron motion into long. motion \rightarrow Broad beam almost parallel to B field lines

4.Beam running against electrostatic potential formed by cylindrical electrodes

<u>Magnetic</u> <u>A</u>diabatic <u>C</u>ollimation combined with an <u>E</u>lectrostatic Filter

1. Electrons emitted isotropically at T₂ source

2. Guided magnetically on a cyclotron motion

3.Transform cyclotron motion into long. motion \rightarrow Broad beam almost parallel to B field lines

4.Beam running against electrostatic potential formed by cylindrical electrodes

5.Detect electrons with enough energy to pass electrostatic barrier

→ Integrating high-energy pass filter

<u>Magnetic</u> <u>A</u>diabatic <u>C</u>ollimation combined with an <u>E</u>lectrostatic Filter

1. Electrons emitted isotropically at T₂ source

2. Guided magnetically on a cyclotron motion

3.Transform cyclotron motion into long. motion \rightarrow Broad beam almost parallel to B field lines

4.Beam running against electrostatic potential formed by cylindrical electrodes

5.Detect electrons with enough energy to pass electrostatic barrier

→ Integrating high-energy pass filter

Measure β spectrum endpoint by varying electrostatic potential close to Q-value

Mainz and Troitsk experiments

No evidence for non-zero neutrino mass from β decay experiments

Troitsk

Mainz

 $dN/dK_e \propto F(K_e, Z) \cdot p_e \cdot (K_e + m_e) \cdot (E_0 - K_e) \cdot [(E_0 - K_e)^2 - m_\beta^2]^{1/2}$

 $m_{\beta^2} = -2.3 \pm 2.5 \pm 2.0 \text{ eV}^2$

 $m_{\beta} < 2.3 \text{ eV} (95\% \text{ CL})$

KATRIN experiment Starting in 2018

- Tritium source
 - Low end-point (18.6 keV), intense (10¹¹ β decays/sec))
- Electron energy analysis + detection
 - MAC-E-Filter technique with largest spectrometer to date!

KATRIN design sensitivity

Assuming 3 years exposure

- Sensitive to ~ mass-degenerate neutrinos only (no sensitivity to mass ordering)
- KATRIN inauguration: June 11th, 2018!

- Sensitivity down to $m_{\beta} = 0.2 \text{ eV}$ at 90% CL
 - One order of magnitude improvement over Mainz and Troitsk
- Discovery potential:
 - 3.5 σ if $m_{\beta} = 0.3 \text{ eV}$
 - 5σ if $m_{\beta} = 0.35 \text{ eV}$

Electron capture of ¹⁶³Ho: ECHo, HOLMES

- Detectors with small heat capacity C_{tot}
 → operate at ultra-low temperatures: T < 100 mK
- Small deposited energy ΔE results in large temperature increase: ΔT = ΔE/Ctot
- Only detectors capable of measuring <3 keV energy with high precision

Electron capture of ¹⁶³Ho: ECHo, HOLMES

- Detectors with small heat capacity C_{tot}
 → operate at ultra-low temperatures: T < 100 mK
- Small deposited energy ΔE results in large temperature increase: ΔT = ΔE/Ctot
- Only detectors capable of measuring <3 keV energy with high precision

Advantage:

Electron capture of ¹⁶³Ho: ECHo, HOLMES

- Detectors with small heat capacity C_{tot}
 → operate at ultra-low temperatures: T < 100 mK
- Small deposited energy ΔE results in large temperature increase: ΔT = ΔE/Ctot
- Only detectors capable of measuring <3 keV energy with high precision

Electron capture of ¹⁶³Ho: ECHo, HOLMES

- Detectors with small heat capacity C_{tot}
 → operate at ultra-low temperatures: T < 100 mK
- Small deposited energy ΔE results in large temperature increase: ΔT = ΔE/Ctot
- Only detectors capable of measuring <3 keV energy with high precision

Advantage:

Neutrino mass scale summary

What is the best experimental strategy?

Neutrino mass scale summary

What is the best experimental strategy?

Less stringent, but less model-dependent More stringent, but more model-dependent

A wealth of neutrino experiments!

Experiments to be presented at Neutrino 2018 Conference

Super-Kamiokande ICAL CONUS PROSPECT ANITATRISTAN STEREO SNO XENON1T AXEL CANDLES-III_{IsoDAR} NuLat PTOI GRAND ARA Borexino MICE ICARUSIceCube MiniBooNE_{AMore} PICO Daya-Bay EMPHATIC KATRIN KM3NeTT2K Solid WAGA WAGASCI CUORE COBRA MAJORANA Project LEGEND MicroBooNE GERDA NINJATroitsk SuperNEMO Baikal-GVD HALO-1kT DARWIN ANNIE TRIMS Theia ANTARES XMASS NEOS IFS RENO NuDot EXO NOVA HOI COHERENT Neutrino ARIANNA CENNS OS EGADS KamLAND-Zen Double-Chooz nEXO

The life of a neutrino experimentalist

The life of a neutrino experimentalist

•Build powerful neutrino sources...

The life of a neutrino experimentalist

•Build powerful neutrino sources...

•and massive neutrino detectors...

The life of a neutrino experimentalist

•Build powerful neutrino sources...

•and massive neutrino detectors...

•in a low-background environment...

The life of a neutrino experimentalist

•Build powerful neutrino sources...

•and massive neutrino detectors...

•in a low-background environment...

•to answer known neutrino questions and be prepared for the unexpected!