

Multimessenger strategies for the study of the macrocosm and microcosm

Maurizio Spurio Università di Bologna e INFN maurizio.spurio@unibo.it

Few, selected topics

PART II.

1. Some open questions in neutrino astrophysics

- Why we do not have a "neutrino map"?
- Correlation with UHECRs and Neutrinos
- About Galactic sources
- Detecting extragalactic sources
- 2. Extragalactic objects
 - Gamma-ray bursts and consequences
 - Fast Radio Bursts
- 3. The multimessenger role of Gravitational waves
 - Importance for **particle physics**
 - Importance for cosmology
 - Importance for **astrophysics**

Neutrini from the Cosmos

- Flux of neutrinos at the surface of the Earth.
- The three *arrows* near the *x*-axis indicate the energy thresholds for CC production of the charged lepton

1) Open questions for neutrino astrophysics

- Origin of IceCube's HE astrophysical neutrinos?
- Evidence of galactic "TeVatron" from γ-rays (e, p or both?). But, for p and nuclei, no "LHC" o "PeVatrons" observed
- Neutrino: fundamental probe to identify galactic and extragalactic CR sources
- Disentangle astrophysical models with multimessenger observations: i.e., GRBs with GW, HEN and traditional astronomy (useful also in case of no v observation)
- Production mechanisms of high energy cosmic particles (jets?)
- Study of galactic (and extragalactic?) propagation of CR, with neutrinos as tracers
- Test the neutrino sector of the SM and BSM physics

- Very high **duty cycle** (almost 100%)
- Large observation **solid angle** (2π or 4π : different resolutions)
- Complementary f.o.v. for Mediterranean and South Pole detectors
- Adequate angular resolution, depending on the v direction, medium and track/shower (0.1° \rightarrow 10°)
- Online analysis, fast response (few seconds), immediate alert
- (Neutrinos): no significantly attenuated, no deflected, during propagation
- (Neutrinos): not significantly absorbed by Earth for E_v <100 TeV

The "effective area" A_{eff} : quality response $\frac{1}{2}$

 The rate of observable events [N_{obs} (s⁻¹)] in a detector is given by

$$N_{obs} = \int \frac{dN}{dE} \cdot A_{eff} \cdot dE$$

- where $\frac{dN}{dE}$ is the the flux (cm⁻² s⁻¹ GeV⁻¹) of γ or ν ;
- The effective area, A_{eff} , depends on the particle crosssection, energy, direction, and analysis cuts (efficiencies)
- A_{eff} must computed by experiments

 \swarrow Drawbacks of v detector (cross section and...) $\mathcal V$

- Large background
 - Downward going atmospheric muons
 - Irreducible: atmospheric neutrinos
- Effective area A_{eff} : strong function E_v , analysis-dependent
- Energy range of neutrino telescopes partially overlapping with γ -ray observatories (LAT and IACTs)

Detecting cosmic neutrinos: a threefold way

- 2. Point-like events, significant excess in the sky map. Measurement of the **neutrino direction**
- Coincident event in a restricted time/direction windows with EM/γ/GW counterparts. Relaxed energy/direction measurement + transient/ multimessenger information

CeCube signal: High Energy Starting Events

- «Contained» events (veto outside a fiducial volume), 6 y of data
- Mostly cascased events (v_e and NC) with poor angular determination
- Good energy estimate, isotropic
- Excess over the energy distribution expected for background events
- Excess fitted with a power-law: $\Phi_{\nu} = \Phi_{o} E^{-\Gamma}$

Р

Ō

Ŋ

(ICRC20

6

00 |___

CeCube signal: up-throughgoing muons

- Tracks produced by v_{μ} interactions outside the volume, 6 y of data
- Relatively poor (good) energy (direction) estimate
- Only upgoing ightarrow from the Northern sky
- Excess over the energy distribution expected for background events

The IceCube spectral anomaly

- A ~3 σ discrepancy between sample using the same $\Phi_{\nu} = \Phi_o E^{-\Gamma}$
- Harder spectrum (Γ ~ 2.1) in the Northern Hemisphere
- Softer spectrum in the Southern (Γ ~ 2.9)
- A possible explanation: [A. Palladino, MS, F. Vissani JCAP 1612 (2016)]
 - Extragalactic hard spectrum (N+S)
 - + Galactic soft component

 $\boldsymbol{\Phi}_{\boldsymbol{\nu}} = \boldsymbol{\Phi}_{\boldsymbol{o}} \boldsymbol{E}^{-\boldsymbol{\Gamma}}$

 Γ , spectral index

1.I) Why we do not have a "neutrino map"

Multi-wavelength observation: Mrk421

Extensive multi-wavelength measurements showing the spectral energy distribution **(SED)** of **Markarian 421 from** observations made in 2009. The dashed line is a fit of the data with a leptonic model. Abdo et al. ApJ 736(2011) 131 for the references to the data

(Previous plots)

- Differential <u>5σ sensitivity</u> of current (solid) and future (dashed lines) γ-ray observatories.
 - Fermi-LAT: curve for a 10 year exposure.
 - VERITAS, MAGIC, H.E.S.S. and CTA: 50 h of observation.
 - HAWC 300, HiScore and LHAASO arrays: 5-year exposure.
 - Shaded grey regions: 100%, 10%, and 1% levels of the Crab
- II. Measurement of the MK421 flux (LAT+Magic)
- III. 7y <u>Discovery potential</u> (5 σ) for IceCube [ApJ, 835 (2017)151] analysis in different bins of neutrino energy E using an E⁻² spectrum. Three different declinations are shown: Up-going (δ =+60 \circ), horizontal (blue, δ = 0 \circ), and down-going (yellow, δ = -60 \circ) events.
- IV. Neutrino flux from pp or $p\gamma$ models

U.L. and Sensitivities (also $E_v < 100 \text{ TeV}$)

Note: these plots depend on the

- assumed spectral index of the source
- differential energy sensibility of the detector

1.II) Correlation UHECRs and Neutrinos

- Map in Galactic coor. of the significances of excesses in 12°-radius windows for E>54 EeV
 PAO events. Dashed line=super-Galactic plane; white star= Cen A
- IceCube cascades (plus signs) and high-energy tracks (crosses), and of the UHECRs detected by PAO (circles) and TA (triangles).

CR confinement in our Galaxy

~ 10^{18} eV: RC well confined within our Galaxy $\gtrsim 10^{19}$ eV: probably of extragalactic origin (@ 10^{20} eV deviation in our Galaxy smaller than 1°)

 $r(kpc) \cong \frac{E(EeV)}{ZB(\mu G)}$

- At the highest energies, huge experiments are necessary to detect few CRs
- Flux @10²⁰ eV ~ 1 particle/century/km².

Cosmic rays and atmospheric neutrinos

Cosmic rays and atmospheric neutrinos

1.III) About Galactic neutrinos

¥ ())

Models of CR propagation in the Galaxy 📼 🔆 🕖

Input Ingredients of diffusive transport models

- Distribution of source
- Galactic magnetic field
- Distribution of matter in the Galaxy
- Interaction models and cross sections

..and must reproduce data on

- Secondary nuclei
- Antimatter
- Diffuse γ-rays
- Diffuse neutrinos (still undetected)

CR propagation: a fundamental test

- Neutrinos and γ -rays produced during **CR** diffusion in the Galaxy
- Model reproduces diffuse γ -rays observed by LAT, HESS, Milagro
- No excess of neutrino events observed by ANTARES/IC

- Most galactic sources produce upgoing events in the "golden channel" (ν_{μ})
- Larger depth (~2.5 km for ANTARES, ~3.5 km for KM3NeT/ARCA) allows larger reduction of atmospheric muons
- KM3NeT: OM segmentation with small PMTs (further background reduction)
- Looser cuts select more lowenergy events
- Lower scattering in water w.r.t. ice \rightarrow better **angular resolution** $\Delta \theta$;
- Signal/background $\propto \Delta \theta^{\mbox{-}2}$

(see J. Zornoza)

2) About ExtraGalactic sources

2.I) Gamma Ray Bursts (GRBs)

- Until ~20 y ago, GRBs were the first unknown in HE astronomy.
- They were discovered serendipitously in the late 1960s by U.S. military satellites looking for Soviet nuclear testing in violation of the atmospheric nuclear test ban treaty.

Time in Seconds

The 2704 BATSE GRBs

- Map of the locations of a total of 2704 GRBs recorded with the BATSE on board NASA's CGRO during the nine-year mission.
- GRBs are detected roughly once per day, from random directions in the sky by satellite experiments;

- The isotropy of the GRB distribution is evident from this figure.
- The projection is in galactic coordinates; the plane of the Milky Way Galaxy is along the horizontal line at the middle of the figure

Long and short GRBs

- As recently as the early 1990s, astronomers didn't even know if GRBs originated in our Galaxy or at cosmological distances
- Two classes of GRBs: long- and short-duration bursts.
- Long GRBs last more than 2 s; short-duration ones less than 2 s;
- Long and short duration GRBs are created by fundamentally different physical properties

- Possible candidates for long GRBs are core collapse of a special kind of very massive star. This core collapse occurs while the outer layers of the star explode in an especially energetic supernova (the "hypernova", 100 times the SN).
- Possible candidates for short GRBs are mergers of neutron star binaries (or NS-BH), which lose angular momentum and undergo a merger (kilonova)

Why they were so important?

- GRBs are the most energetic transient eruptions observed in the Universe
- GRBs are observed up to z ~ 9
- The discovery of GRBs stimulated a series of space experiments dedicated for their searches that greatly improved our knowledge during the last 20 y;
- As transient, a dedicated network of observatories was created: the GCN (Gamma-ray burst Coordinates Network)
- The GCN system distributes the locations of GRBs and other transients detected by spacecraft and ground experiments.
- The Fireball model is the most widely used theoretical framework to describe the physics of the GRBs.
- It originates from considerations on the total energy release of a GRB and its extremely short variability time

The GCN network

- The **GCN** is a system that distributes information about the location of GRB, called *notices*, when a burst is detected by various spacecraft.
- The GCN also automatically receives and distributes messages, called *circulars*, about follow-up observations to interested individuals and institutions.
- Follow-up observations may be made by ground-based and space-based optical, radio, X-ray and meutrino observatories

Breaking news

Many Messengers

Over three and a half weeks in 2017, astronomers observed the same celestial event—what they believe to be a flare-up from matter falling into a supermassive black hole—through multiple wavelengths of light, as well as particles called neutrinos. The combined observations offer scientists much more information about these mysterious phenomena than any measurement alone.

...and, what FRBs are?

- Distance: same history of GRBs before Beppo-SAX
- Distance: dispersion measure DM*. Cosmological distances *total column density of free electrons between the observer and the source
- Identification of host Galaxy: only one case FRB121102*
 - White dwarf at z=0.19
- Repetition: only one case FRB121102, no other EM counterparts
- **Progenitors**: nearby extragalactic origin (100-200 Mpc)
 - Supergiant flares in the magnetosphere of young (<100 y) and fast (ms) rotating NS embedded in a dense environment
- **Progenitors**: cosmological origin (1-20 Gpc)
 - Massive NS's collapse: magnetic blast wave, shock front within the SNR.
 - Merger: Magnetic reconnection between the two merging magnetospheres.
 - Magnetar: flares in the magnetosphere of a magnetar (associated to SGR).
- Neutrino production mechanism?

Time-domain astroparticle physics

ANTARES Multimessenger program

- UHE events [Auger]
- Neutrinos [IceCube]

Time-dependent searches:

- GRB [Swift, Fermi, IPN] MNRAS 469, 906–915 (2017)
- Fast radio burst [Radiotelescopi] MNRAS 475, 1427–1446 (2018)
- Micro-quasar and X-ray binaries [Fermi/LAT, Swift, RXTE]
- Gamma-ray binaries [Fermi/LAT, IACT]
- Blazars [Fermi/LAT, IACT, TANAMI...]
- Crab [Fermi/LAT]
- Supernovae Ib,c [Optical telescopes]

3) The multimessenger role of GWs waves

EM vs Gravitational waves

- The **EM radiation** emitted is an • incoherent superposition from sources >> λ ;
- **GW radiation** comes from systems • with sizes R << λ . Hence, the signal reflects the coherent motion of extremely massive objects.
- Effect of EM radiation falls as 1/r² (intensity). GWs as 1/r (phase).
- GWs suffer a very small absorption • when passing through ordinary matter.
- **Experimental methods** • complementary to that developed in particle physics and traditional astronomy
- The **observables** contain direct • information on mass, distance, spin

The role of Gravitational waves

For the movie: <u>https://www.ligo.caltech.edu/video/ligo20171016v3</u>

The most wanted object: NS+NS (NS+BH)

(*) By radioactive decay of heavy elements produce via r-process nucleosynthesis in the neutron-rich merger ejecta

https://www.ligo.caltech.edu/video/ligo20171016v2

Jets and Debris from Neutron Star Collision

Particle physics with GWs (from NS+NB/BH)

- Tidal effects are important because they contain information on the nuclear equation of state (EOS) for NSs.
- Tidal effects affect the phase of the GW and become significant above f> 600 Hz, potentially observable by interferometers.
- Unfortunately, in the O2 run, they were not sufficiently sensitive above 400 Hz.

- For GW170817, data disfavor EOS that predict less compact stars;
- objects more compact than
 NS, such as quark stars,
 black holes, or more exotic
 objects, are not excluded

Cosmology with the "standard sirene"

- Type I SNe → Electromagnetic *"standard candles"* in cosmology
- Schutz (1986) recognized that NS+NS can be precise **luminosity distance indicators**, via measurement of GW signal during the inspiral and merger.
- GWs can act as "standard sirens" as cosmological probes, although the NS+NS do not require any assumption to be made about their intrinsic 'luminosity'
- A realistic target for the upcoming global network of advanced detectors is measurement of the Hubble constant, H0, using standard sirens.
- A standard siren measurement of *H*0 will present a major multi-messenger challenge. To estimate the Hubble constant requires comparison of distance with redshift, and the latter will not generally be measurable from GW data alone
- This measurement of course first **requires the prompt observation of an EM counterpart** and the unique identification of the host galaxy (as GW170817)
- The expected reach of advanced detectors will be too shallow to permit exploration of **dark energy models** and the accelerated expansion of the Universe

The reason why kilonovae are so important

1 H		big bar	cosmic ray fission 🦷 🔫													
3 Li	4 Be	merging neutron stars				exploding massive stars 📓					5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg	dying low mass stars				exploding white dwarfs 🌌					13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 - K	20 Ca	21 2 Sc T	2 23 i V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	- 36 Kr
37 Rb	38 Sr	39 4 Y Z	0 41 r Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 ≓d	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	7 H	2 73 f Ta	74 W	75 Re	76 Os	- 77 - Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra															
		5	7 58	59	60	61	62	63	64	65	66	67	68	69	70	71
		L 8	a Ce 9 90	91	Nd 92	Pm	Sm	Eu	Gd	ТЬ	Dy	Ho	Er	Tm	УБ	Lu
		A	c Th	Pa	U											

Isaac Newton Master of the Royal Mint

NS + NS =

- The GW signal was the input for the EM follow-up
- A simultaneous short GRB was observed by FERMI-GBM and INTEGRAL satellites. Alone, these signals are not sufficient to trigger EM position (position not known)
- The network of GW observatories can provide directionality information on the event position
- The observation of a coincident neutrino can provide directionality information as well
- In addition, v's can provide additional info on the acceleration mechanism
- The key of the success: we know the kinematics of the merging objects, and the energy loss in GW

For the future (optimistic)

- We know that SNe explode in Nature
- SNe do not explode in computer
 - i.e., we do not know the details of the dynamic process
 - We do not know exactly the GW signal of a SN
 - It is difficult to search for SN in the laser interferometers
- Neutrinos can be detected for a SN in our Galaxy (or in neighbouring satellite galaxies)
 - The neutrino signal can provide information on t₀
 - It can provide some directional information
 - Neutrino can be detected also if the light is obscured
- The neutrino can trigger an off-line search of the SN signal in the GW data
 - Retrive information of the dynamic process of SN explosion

Conclusions

- Multi-messenger is a young field
- Combine the information from traditional astronomy, γ -rays, charged cosmicrays, neutrinos and gravitational waves
- Use information from instruments (close) to the technology limits
- New instruments:
 - SKA (radio), Webb (IR), CTA (TeV)
 - aLIGO, adVIRGO: Astrophysics with GW signals
 - Neutrino telescopes with multi-km3 effective volumes
- Different opportunities for particle physics
 - Dark matter searches
 - Mass of the neutrino
 - Propagation of neutral particle (Transparency of the Universe)
 - Energy of the vacuum axions;
 - Tests of Lorentz Invariance; Quantum gravity (space time structure of vacuum)
 - ..
- cosmology
 - Alternative measurement of the cosmological parameters
- and astrophysics
 - Sources of Galactic CRs
 - Origin on cosmic neutrinos observed by IceCube
 - Origin and type of UHECRs
 - ...