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1. Some open questions in neutrino astrophysics 
• Why we do not have a “neutrino map”?

• Correlation with UHECRs and Neutrinos

• About Galactic sources

• Detecting extragalactic sources

2. Extragalactic objects
• Gamma-ray bursts and consequences

• Fast Radio Bursts

3. The multimessenger role of Gravitational waves
• Importance for particle physics

• Importance for cosmology

• Importance for astrophysics

Few, selected topics

PART II. 
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Neutrini from the Cosmos

• Flux of neutrinos at the 
surface of the Earth. 

• The three arrows near the 
x-axis indicate the energy 
thresholds for CC 
production of the charged 
lepton 
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1) Open questions for neutrino astrophysics 
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1) Open questions for neutrino astrophysics 

• Origin of IceCube's HE astrophysical neutrinos?

• Evidence of galactic “TeVatron” from -rays (e, p or both?).  
But, for p and nuclei, no “LHC” o “PeVatrons” observed 

• Neutrino: fundamental probe to identify galactic and 
extragalactic CR sources 

• Disentangle astrophysical models with multimessenger
observations: i.e., GRBs with GW, HEN and traditional 
astronomy (useful also in case of no n observation)

• Production mechanisms of high energy cosmic particles (jets?)

• Study of galactic (and extragalactic?) propagation of CR, with 
neutrinos as tracers

• Test the neutrino sector of the SM and BSM physics

5



Advantages of neutrino telescopes

• Very high duty cycle (almost 100%)

• Large observation solid angle (2p or 4p: different resolutions)

• Complementary f.o.v. for Mediterranean and South Pole 
detectors

• Adequate angular resolution, depending on the n direction, 
medium and track/shower (0.1o

→ 10o) 

• Online analysis, fast response (few seconds), immediate alert

• (Neutrinos): no significantly attenuated, no deflected, during 
propagation

• (Neutrinos): not significantly absorbed by Earth for En<100 TeV
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-ray telescopes

• Fermi-LAT (GeV)                       IACTs (TeV
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The “effective area” Aeff: quality response

• The rate of observable events [𝑁𝑜𝑏𝑠 (s-1 )] in a detector is 
given by 

• where  
𝑑𝑁

𝑑𝐸
is the the flux (cm-2 s-1 GeV-1) of  or n;

• The effective area, 𝐴𝑒𝑓𝑓 , depends on the particle cross-
section, energy, direction,  and analysis cuts (efficiencies)

• 𝐴𝑒𝑓𝑓 must computed by experiments
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Drawbacks of n detector (cross section and…)

• Large background 
• Downward going atmospheric muons

• Irreducible: atmospheric neutrinos

• Effective area Aeff: strong function En , analysis-dependent

• Energy range of neutrino telescopes partially overlapping with -ray 
observatories (LAT and IACTs)
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Fermi-LAT Aeff vs. E 

LAT IACTs

ANTARES, IceCube Aeff vs. E
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Detecting cosmic neutrinos: a threefold way 

2. Point-like events, significant excess in the sky map. 
Measurement of the neutrino direction

3. Coincident event in a restricted time/direction windows 
with EM//GW counterparts. Relaxed energy/direction 
measurement + transient/ multimessenger information
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1. Excess of HE neutrinos 
over the background of 
atmospheric events. 
Measurement of the 
n energy



IceCube signal: High Energy Starting Events

• «Contained» events (veto outside a fiducial volume), 6 y of data

• Mostly cascased events (ne and NC) with poor angular determination

• Good energy estimate, isotropic

• Excess over the energy distribution expected for background events

• Excess fitted with a power-law: 𝜱𝝂 = 𝜱𝒐𝑬
−𝜞
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• Tracks produced by nm interactions outside the volume, 6 y of data

• Relatively poor (good) energy (direction) estimate

• Only upgoing→ from the Northern sky

• Excess over the energy distribution expected for background events

• Excess fitted with a power-law: 𝜱𝝂= 𝜱𝒐𝑬
−𝜞
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IceCube signal: up-throughgoing muons

Cosmic neutrinos
hidden by

atmospheric
neutrinos

Unfolding



The IceCube spectral anomaly

• A 3 discrepancy between sample using the same Φ𝜈 = Φ𝑜𝐸
−Γ

• Harder spectrum ( 2.1) in the Northern Hemisphere

• Softer spectrum in the Southern ( 2.9) 

• A possible explanation:     [A. Palladino, MS, F. Vissani JCAP 1612 (2016)]

• Extragalactic hard spectrum (N+S)

• + Galactic soft component

up
muons

HESE
like

M. G. Aartsen et al. ApJ, 833:3 (2016)
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1.I) Why we do not have a “neutrino map”?
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Welcome to ncat
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Multi-wavelength observation: Mrk421 

Extensive multi-wavelength measurements showing the spectral energy distribution (SED) of 
Markarian 421 from observations made in 2009. The dashed line is a fit of the data with a leptonic
model. Abdo et al. ApJ 736(2011) 131 for the references to the data



• -ray observations alone in 
most cases inconclusive.

• Only n may tell us if there 
are accelerated hadrons
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 and n discovery potential
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MRK 421
d =+38°

M. Santander arXiv:1606.09335
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 and n discovery potential
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MKR 421
d =+38° IceCube, 7y

d =+60°

IceCube, 7y
d =0°

IceCube, 7y
d =-60°

M. Santander arXiv:1606.09335



[ApJ, 835 (2017)151] 

MRK421: n from 
photohadronic
origin

MRK421: n from 
hadronic origin



(Previous plots)

I. Differential  5 sensitivity of current (solid) and future
(dashed lines) -ray observatories.
• Fermi-LAT: curve for a 10 year exposure.
• VERITAS, MAGIC, H.E.S.S. and CTA: 50 h of observation.
• HAWC 300, HiScore and LHAASO arrays: 5-year exposure.
• Shaded grey regions: 100%, 10%, and 1% levels of the Crab 

II. Measurement of the MK421 flux (LAT+Magic)

III. 7y Discovery potential (5) for IceCube [ApJ, 835 (2017)151] 
analysis in different bins of neutrino energy E using an E−2

spectrum. Three different declinations are shown: Up-going 
(d=+60◦), horizontal (blue, d = 0◦), and down-going (yellow, 
d = −60◦) events. 

IV. Neutrino flux from pp or p models
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U.L. and Sensitivities (also En<100 TeV)
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arXiv:1706.01857
IC signal:
1 p. source    →

10 p. sources →

100 p. sources→

Note: these plots depend on the 
• assumed spectral index of the source
• differential energy sensibility of the detector 

Galactic 
Center

→

http://arxiv.org/abs/arXiv:1706.01857


1.II) Correlation UHECRs and Neutrinos
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• Map in Galactic coor. of the significances of excesses in 12o-radius windows for E>54 EeV
PAO events. Dashed line=super-Galactic plane; white star= Cen A 

• IceCube cascades (plus signs) and high-energy tracks (crosses), and of the UHECRs 
detected by PAO (circles) and TA (triangles). 

CR
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~ 1018 eV: RC well confined within our Galaxy
≳ 1019 eV: probably of extragalactic origin (@ 1020

eV deviation in our Galaxy smaller than 1°) )(

)(
)(

GZB

EeVE
kpcr

m


CR confinement in our Galaxy

• At the highest energies, huge experiments are necessary to detect few CRs
• Flux @1020 eV  1 particle/century/km2 .
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CR

Galactic

SNRs (?)
ExtraGalactic

AGN, GRBs (?)



Cosmic rays and atmospheric neutrinos
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Cosmic rays and atmospheric neutrinos

• PeVatrons in our Galaxy?

• Disantangle among 
lepton and hadrons not 
assured with -rays alone

• CR origin of the n signal
near source, origin of the 
n background on Earth!

25
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1.III) About Galactic neutrinos
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Models of CR propagation in the Galaxy

Input Ingredients of diffusive transport models

• Distribution of source

• Galactic magnetic field

• Distribution of matter in the Galaxy

• Interaction models and cross sections

..and must reproduce data on

• Secondary nuclei

• Antimatter

• Diffuse -rays

• Diffuse neutrinos (still undetected)
27
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Diffuse -rays CR



CR propagation: a fundamental test
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arXiv:1707.03416

arXiv:1705.00497

• Neutrinos and -rays produced during CR diffusion in the Galaxy

• Model reproduces diffuse -rays observed by LAT, HESS, Milagro

• No excess of neutrino events observed by ANTARES/IC 

CR

PRD 96, 062001 (2017)

Diffuse n ’ sCR

http://arxiv.org/abs/arXiv:1707.03416
http://arxiv.org/abs/arXiv:1705.00497


Mediterranean vs. South Pole telescopes 

• Most galactic sources produce upgoing events in the “golden 
channel” (nm)

• Larger depth (2.5 km for ANTARES, 3.5 km for 
KM3NeT/ARCA) allows larger reduction of atmospheric muons

• KM3NeT: OM segmentation with small PMTs (further 
background reduction)

29

• Looser cuts select more low-
energy events

• Lower scattering in water 
w.r.t. ice → better angular 
resolution Dq;

• Signal/background  Dq-2



2) About ExtraGalactic sources

• GW

• FRBs

• GRBs

30

?
Bartos+ 2016

CR



2.I) Gamma Ray Bursts (GRBs)
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BATSE
on CGRO

• Until 20 y ago, GRBs were the first unknown in HE astronomy. 
• They were discovered serendipitously in the late 1960s by U.S. military 

satellites looking for Soviet nuclear testing in violation of the atmospheric 
nuclear test ban treaty. 

• These satellites carried -ray detectors since a 
nuclear explosion produces -rays. 

• GRBs are short-lived 
bursts of -rays. 

• At least some of them are 
associated with a special 
type of Sne; 

• GRBs shine hundreds of 
times brighter than a 
typical SN, making them 
the brightest source of -

rays in the observable 
Universe. 



The 2704 BATSE GRBs
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• The isotropy of the GRB distribution is evident from this figure. 
• The projection is in galactic coordinates; the plane of the Milky Way Galaxy is 

along the horizontal line at the middle of the figure

• Map of the locations 
of a total of 2704 GRBs  
recorded with the 
BATSE on board 
NASA's CGRO during 
the nine-year mission.  

• GRBs are detected 
roughly once per day, 
from random 
directions in the sky by 
satellite experiments;



Long and short GRBs
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• Possible candidates for long GRBs  are core collapse of a special kind of very 
massive star. This core collapse occurs while the outer layers of the star explode in 
an especially energetic supernova (the “hypernova”, 100 times the SN). 

• Possible candidates for short GRBs are mergers of neutron star binaries (or NS-
BH), which lose angular momentum and undergo a merger (kilonova)

• As recently as the early 1990s, 
astronomers didn't even know if 
GRBs originated in our Galaxy or at 
cosmological distances

• Two classes of GRBs: long- and 
short-duration bursts. 

• Long GRBs last more than 2 s; 
short-duration ones less than 2 s;

• Long and short duration GRBs are 
created by fundamentally different 
physical properties



Why they were so important?
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• The Fireball model is the most 
widely used theoretical 
framework to describe the 
physics of the GRBs. 

• It originates from 
considerations on the total 
energy release of a GRB and its 
extremely short variability time

• GRBs are the most energetic transient eruptions observed in the Universe
• GRBs are observed up to z  9
• The discovery of GRBs stimulated a series of space experiments dedicated 

for their searches that greatly improved our knowledge during the last 20 y;
• As transient, a dedicated network of observatories was created: the GCN 

(Gamma-ray burst Coordinates Network)
• The GCN system distributes the locations of GRBs and other transients 

detected by spacecraft and ground experiments.



The GCN network

• The GCN is a system that distributes information about the location of 
GRB, called notices, when a burst is detected by various spacecraft. 

• The GCN also automatically receives and distributes messages, 
called circulars, about follow-up observations to interested individuals 
and institutions. 

35

• Follow-up observations 
may be made by 
ground-based and 
space-based optical, 
radio, X-ray and 
meutrino observatories



Breaking news
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…and, what FRBs are?

• Distance: same history of GRBs before Beppo-SAX

• Distance: dispersion measure DM*.  Cosmological distances 
*total column density of free electrons between the observer and the source

• Identification of host Galaxy: only one case FRB121102*
• White dwarf at z=0.19

• Repetition: only one case FRB121102, no other EM counterparts

• Progenitors: nearby extragalactic origin (100-200 Mpc)
• Supergiant flares in the magnetosphere of young (<100 y) and fast (ms) 

rotating NS embedded in a dense environment

• Progenitors: cosmological origin (1-20 Gpc)
• Massive NS’s collapse: magnetic blast wave, shock front within the SNR.

• Merger: Magnetic reconnection between the two merging magnetospheres.

• Magnetar: flares in the magnetosphere of a magnetar (associated to SGR).

• Neutrino production mechanism? 
37



Time-domain astroparticle physics

38

(GCN) Alerts

All data 
to shore

Filtering

Online 
reconstruction 

Fast Alert (5s) 
sending (TAToO)

Online Searches

(later) Offline 
reconstruction



ANTARES Multimessenger program

Real-time (follow-up of the selected neutrino events):
• optical telescopes [TAROT, ROTSE, ZADKO, MASTER]
• X-ray telescope [Swift/XRT]
• Soft -rays [INTEGRAL]
• GeV-TeV γ-ray telescopes [HESS, HAWC]
• radio telescope [MWA]
• Online search of fast transient sources [GCN, Parkes]

Multi-messenger correlation with:
• Gravitational wave [Virgo/Ligo]
• UHE events [Auger]
• Neutrinos [IceCube]

Time-dependent searches:
• GRB [Swift, Fermi, IPN] MNRAS 469, 906–915 (2017)
• Fast radio burst [Radiotelescopi] MNRAS 475, 1427–1446 (2018)
• Micro-quasar and X-ray binaries [Fermi/LAT, Swift, RXTE]
• Gamma-ray binaries [Fermi/LAT, IACT]
• Blazars [Fermi/LAT, IACT, TANAMI…]
• Crab [Fermi/LAT]
• Supernovae Ib,c [Optical telescopes]
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Up to Feb.2018:

→ 272 alerts sent
→ 14  
→ 4 
→ 2
→ 22 

GW



3) The multimessenger role of GWs waves
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EM vs Gravitational waves

• The EM radiation emitted is an 
incoherent superposition from 
sources >> l; 

• GW radiation comes from systems 
with sizes R << l. Hence, the signal 
reflects the coherent motion of 
extremely massive objects.

• Effect of EM radiation falls as 1/r2

(intensity). GWs as 1/r  (phase) .

• GWs suffer a very small absorption 
when passing through ordinary 
matter. 

• Experimental methods
complementary to that developed in 
particle physics  and traditional 
astronomy

• The observables contain direct 
information on mass, distance, spin

41
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The role of Gravitational waves

•BH+BH =

42

GW
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NS + NS = 

43

 GW

For the movie: 
https://www.ligo.caltech.edu/video/ligo20171016v3

https://www.ligo.caltech.edu/video/ligo20171016v3


The most wanted object: NS+NS (NS+BH)

• A rich variety of phenomena in the case of NS-NS merging

• standard “sirene”

• Neutrinos

• EM counterpart
• Fast emission (GRB)

• Beamed emission

• Afterglow (X-ray,…)

• Kilonova (*)

• Isotropic emission

• Neutron-rich ejecta

• Radio emission 

• UHECR’s acceleration?



(*) By radioactive decay of heavy elements produce via r-process nucleosynthesis 
in the neutron-rich merger ejecta

44
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The most wanted object: NS+NS (NS+BH)

45

GW

https://www.ligo.caltech.edu/video/ligo20171016v2

https://www.ligo.caltech.edu/video/ligo20171016v2


Particle physics with GWs (from NS+NB/BH)
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• Tidal effects are important because they 
contain information on the nuclear equation 
of state (EOS) for NSs.

• Tidal effects affect the phase of the GW and 
become significant above f> 600 Hz, 
potentially observable by interferometers. 

• Unfortunately, in the O2 run, they were not 
sufficiently sensitive above 400 Hz.

• For GW170817, data 
disfavor EOS that predict 
less compact stars; 

• objects more compact than 
NS, such as quark stars, 
black holes, or more exotic 
objects, are not excluded

GW



Cosmology with the “standard sirene”
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• Type I SNe→ Electromagnetic  “standard candles” in cosmology

• Schutz (1986) recognized that NS+NS can be precise luminosity distance 
indicators, via measurement of GW signal during the inspiral and merger. 

• GWs can act as “standard sirens” as cosmological probes, although the NS+NS 
do not require any assumption to be made about their intrinsic ‘luminosity’

• A realistic target for the upcoming global network of advanced detectors is 
measurement of the Hubble constant, H0, using standard sirens.

• A standard siren measurement of H0 will present a major multi-messenger 
challenge. To estimate the Hubble constant requires comparison of distance 
with redshift, and the latter will not generally be measurable from GW data 
alone 

• This measurement of course first requires the prompt observation of an EM 
counterpart and the unique identification of the host galaxy (as GW170817)

• The expected reach of advanced detectors will be too shallow to permit 
exploration of dark energy models and the accelerated expansion of the 
Universe 

GW



Hubble’s constant measured with GW170817
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H0=67.74+/-0.46 km/s Mpc-1

H0=73.24+/-1.74 km/s Mpc-1

H0=70+12
-8 km/s Mpc-1

GW



The reason why kilonovae are so important

Isaac Newton Master of the Royal Mint
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NS + NS = 

• The GW signal was the input for the 
EM follow-up

• A simultaneous short GRB was 
observed by FERMI-GBM and 
INTEGRAL satellites. Alone, these 
signals are not sufficient to trigger 
EM position (position not known)

• The network of GW observatories 
can provide directionality 
information on the event position

• The observation of a coincident 
neutrino can provide directionality 
information as well

• In addition, n’s can provide 
additional info on the acceleration 
mechanism 

• The key of the success: we know 
the kinematics of the merging 
objects, and the energy loss in GW

50
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For the future (optimistic)

• We know that SNe explode in Nature

• SNe do not explode in computer
• i.e., we do not know the details of the dynamic process

• We do not know exactly the GW signal of a SN

• It is difficult to search for SN in the laser interferometers

• Neutrinos can be detected for a SN in our Galaxy (or in 
neighbouring satellite galaxies) 
• The neutrino signal can provide information on t0

• It can provide some directional information

• Neutrino can be detected also if the light is obscured

• The neutrino can trigger an off-line search of the SN signal in the 
GW data
• Retrive information of the dynamic process of SN explosion
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Conclusions

• Multi-messenger is a young field 

• Combine the information from traditional astronomy, -rays, charged cosmic-
rays, neutrinos and gravitational waves

• Use information from instruments (close) to the technology limits

• New instruments:
• SKA (radio), Webb (IR), CTA (TeV)
• aLIGO, adVIRGO: Astrophysics with GW signals
• Neutrino telescopes with multi-km3 effective volumes

• Different opportunities for particle physics 
• Dark matter searches
• Mass of the neutrino
• Propagation of neutral particle (Transparency of the Universe)
• Energy of the vacuum - axions; 
• Tests of Lorentz Invariance; Quantum gravity (space time structure of vacuum) 
• …

• cosmology 
• Alternative measurement of the cosmological parameters

• and astrophysics
• Sources of Galactic CRs
• Origin on cosmic neutrinos observed by IceCube
• Origin and type of UHECRs
• …
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