INTRODUCTION TO DARK MATTER

Sergio Palomares Ruíz IFIC, CSIC-U. Valencia

8th IDPASC School, Valencia, May 21-31, 2018

PLAN OF LECTURES

I Evidences and generalities

11 Non-gravitational searches

Disclaimer: Not all experimental techniques will be discussed Axion searches Sterile neutrino signals

Primordial Black Holes

DIRECT DETECTION

Nuclear recoil produced by DM scattering

COLLEDER searches Missing energy, mono-jets (bosons)

ENDERECT DETECTION Products of DM

annihilation/decay

DIRECT DETECTION

Nuclear recoil produced by DM scattering

ASTRO/COSMO PROBES

effects on observables

Collider Searches

Míssíng energy, mono-jets(bosons)

DETECTION DETECTION

Products of DM annihilation/decay

Annihilation

thermal freeze-out (early universe) indirect detection (now)

Scattering dírect detection capture in Sun/Earth

Production colliders

astro/cosmo probes

- Effects on **BBN**
- Changes in the ionization history (CMB) 21 cm signal
- Modification of structure formation
- Modification of stars dynamics
- Planet warming

 $\delta T_b(v) \propto x_{HI} \left(1 - \frac{T_{CMB}}{T_S} \right)$

Fraction of neutral H

spin temperature: occupation of the two states

Astrophysical processes decouple T_S from T_{CMB}

Dark matter annihilation: injects energy into the IGM

Chen'03, Hansen'03, Pierpaoli'03, Padmanabhan'05, Shchenikov'06, Furlanetto'06, Valdes'07, Chuzhoy'07, Cumberbatch'08, Natarajan'09, Yuan'09, Valdes'12, Evoli'14

From A. C. Vincent

L. Lopez-Honorez, O. Mena, A. Molíné, SPR and A. C. Vincent, JCAP 1608:004, 2016

EFFECTS ON THE CMB

L. Lopez-Honorez, O. Mena, SPR and A. C. Vincent, JCAP 1307:046, 2013

Padmanabhan & Finkbeiner '05, Zhang et al.'06, Finkbeiner et al. '08, Gallí et al. '09, Slatyer et al. '09, Kanzakí et al. '09, Gallí et al. '11, Hutsí et al. '11, Evolí et al. '12, Giesen et al. '12, Evolí et al. '12, Slatyer '12, Fry & Reid '13, Clíne & Scott '13, Weníger et al. '13, Lopez-Honorez et al. '13, Gallí et al. '13, Díamantí et al. '14, Madhavacheríl et al. '14, Slatyer '16, Poulín et al. '15, Kawasakí et al, '16, Slatyer & Wu '17

It modifies the propagation of photons from the LSS (reionization history) and affects CMB temperature and polarization anisotropies

Advantage over other DM annihilation probes:

do not suffer from astrophysics uncertainties

DM-RADIATION INTERACTIONS

Collisional damping

C. Boehm, P. Fayet and R. Schaeffer, Phys. Lett. B518:8, 2001

It suppresses structure formation at small scales

Mon. Mot. Roy. Astron. Soc. 449:3587, 2015

See also: A. Molíné et al., JCAP 1608:069, 2016

This can be used to set constraints on the largest allowed cross section from CMB and galaxy counts 10^{-9} 2 1 Excluded 1 $N_{\rm gal} > 85$ CL m_{WDM} (keV) at 95% ↑ Excluded ↑ 3 4 5

M. Escudero et al., arXiv:1803.08427 (accepted in JCAP)

0.8 1.0

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 $M_{\rm MW}^{200}$ (10¹² M_{\odot})

6

TRACT DETECTION

Y-rays Fermí-LAT, MAGIC, VERITAS, HESS, radío telescopes...

Antimatter PAMELA, AMS...

Expected signal: annihilation (decay) products

Challenges: absolute rates díscrímination against other sources

Need to know: local density, halo profile, amount of substructure...

Neutrínos IceCube, SuperKamíokande...

Flux x Propagation effects x Effective area x Time

Effective area

Cross section × Detector's size × Efficiency

particle physics

astro/cosmo

thermal value? velocity-independent?

local density presence of substructure mínímum halo mass dístríbutíon ín dífferent systems dependence wíth redshíft

velocity distribution

H. Yuksel, S. Horíuchí, J. F. Beacom and S. Ando, Phys. Rev. D76:123506, 2007

NUMERICAL SIMULATIONS

Credit: Aquarius simulation

NUMERICAL SIMULATIONS

Credit: Aquarius simulation

we can only see the local neighborhood (few kpc): diffusion, convection, energy losses, spallations...

propagation affects positrons mainly at low energies the spectral shape for antiprotons does not change much

Positron fraction

Antiprotons

Electrons+positrons

L. Accardo et al. [AMS Collaboration], Phys. Rev. Lett. 113:121101, 2014 M. Aguilaret al. [AMS Collaboration], Phys. Rev. Lett.117, no.9:091103, 2016

10

G. Ambrosiet al. [DAMPE Collaboration], Nature 552:63, 2017

Positron fraction

Antiprotons

Electrons+positrons

0.3 ¹GeV² Positron Fraction 0.2 ALL INTERNATIONS ŝ Ē Flux Е3 100 200 300 400 500 10 10 10 Energy [GeV] Energy [GeV] 1,000 10.000 |Rigidity| [GV]

L. Accardo et al. [AMS Collaboration], Phys. Rev. Lett. 113:121101, 2014 M. Aguilaret al. [AMS Collaboration], Phys. Rev. Lett.117, no.9:091103, 2016 G. Ambrosiet al. [DAMPE Collaboration], Nature 552:63, 2017

posítron excess can be interpreted as a DM signal... but it needs a very large annihilation cross section (or astrophysical boost factor) and suppressed hadronic channels $\langle \sigma v \rangle \approx 10^{-23} \text{cm}^3/\text{s}$

Positron fraction

Antiprotons

Electrons+positrons

0.3 GeV Fraction 0.2 ositron Flux 400 100 200 300 500 10 10 10 Energy [GeV] Energy [GeV] 1,000 10.000 |Rigidity| [GV]

L. Accardo et al. [AMS Collaboration], Phys. Rev. Lett. 113:121101, 2014 M. Aguilaret al. [AMS Collaboration], Phys. Rev. Lett.117, no.9:091103, 2016 G. Ambrosiet al. [DAMPE Collaboration], Nature 552:63, 2017

posítron excess can be interpreted as a DM signal... but it needs a very large annihilation cross section (or astrophysical boost factor) and suppressed hadronic channels $\langle \sigma v \rangle \approx 10^{-23} \text{ cm}^3/\text{s}$

... and there are also astrophysical explanations: pulsars

Flux x Effective area x Time

Effective area Cross section × Detector's size × Efficiency

GALACTIC CENTER

Galactic Bulge

Cygnus X-3

SS433 Cassiopeia A Crab Nebula

rab Sun bula NGC 3603

Circinus X-1

brightest DM source large backgrounds and uncertainties

GALAXY GLUSTERS

GALACTIC MALO

Galactic⁺ Bulge

SS433 Cassiopeia A Crab Nebula

b Sun la NGC 3603

Circinus X-1

angular information lower galactic backgrounds

GALACTIC SUBSTRUCTURE

Galact

Galactic Bulge

SS433

Cygnus X-3

Cassiopeia A

Crab Sun Nebula NGC 3603

Circinus X-1

relatively easy discrimination (if found) bright enough?

contribution from all z large uncertainties in the signal

Galactic Bulge

Peden:

Cincinus X-1

SX3 CASSOPIA CAD SU VEDIA COSSIMODE OCTOCAL SOURCES

contribution from all z large uncertainties in the signal

x3 assure A and x4 and

Reaching

GENERAL COMMENTS EXAMPLE: GALACTIC SIGNALS

Particle Physics

Astrophysics

 $\rho(r(s,\Omega))ds$

decay

- $\frac{dE_{v}}{dE_{v}}\left(E_{v},\Delta\Omega\right) = \frac{1}{\tau_{\chi}m_{\chi}}\sum_{i}\frac{dE_{v}}{dE_{v}}BR_{i}$
- $\langle \sigma v \rangle$: annihilation cross section
- τ_{χ} : DM lifetime
- m_{χ} : DM mass

 dN_v^i

 dE_{ν}

BR_{*i*} : branching ratio into channel *i*

neutrino spectrum for channel *i*

$\Delta \Omega$: field of view

 4π $\int_{\Delta\Omega}$ \int_{los}

 ρ : DM density profile

To stay as model-independent as possible, explore all possible annihilation/decay channels into SM particles

GAMMA-RAY SIGNAL

prompt emession Lines

Continuum

From the hadronízatíon, fragmentatíon and decay of products of DM anníhílatíons

DM annihilations into photon(s)

SECONDARY EMISSION

Sharp features

Internal bremsstrahlung DM anníhílatíons ínto a metastable state

ICS

upscattering of ambient photons

Bremsstrahlung

soft gammas from bremsstrahlung radío-waves from synchrotron emíssíon

Synchrotron

Pion decays

soft γ-rays from CR ínteractíons

GAMMA-RAY SIGNAL

prompt emession Lines

From the hadronízatíon, fragmentation and decay of products of DM annihilations

Continuum

DM annihilations into photon(s)

SECONDARY EMISSION

not affected by the ISM

Sharp features

Internal bremsstrahlung DM anníhílatíons ínto a metastable state

ICS

Bremsstrahlung

upscattering of ambient photons soft gammas from bremsstrahlung radío-waves from synchrotron emíssíon

Synchrotron

Pion decays

soft γ-rays from CR ínteractíons

GAMMA-RAY SIGNAL

prompt emission Lines

From the hadronízatíon, fragmentatíon and decay of products of DM annihilations

Continuum

DM annihilations into photon(s)

SECONDARY EMISSION

not affected by the ISM

Sharp features

Internal bremsstrahlung DM anníhílatíons ínto a metastable state

ICS

Bremsstrahlung

upscattering of s ambient photons

soft gammas from bremsstrahlung radío-waves from synchrotron emíssíon

Synchrotron

depend on the ISM

Pion decays

soft γ-rays from CR ínteractíons

Space-borne

small effective area large field of view upper threshold <300 Gev

Ground-based large effective area

small field of view lower thresold >40 Gev

FERMI - LAT

MyExSxS

VERETAS

CTA

Lines from GC

M. Ackermann et al. [Fermí-LAT Collaboration], Phys. Rev. D91:122002, 2015

M. Ackermann et al. [Fermí-LAT Collaboration], JCAP 1509:008, 2015

M. L. Ahnen et al. [Fermi-LAT and MAGIC Collaborations], JCAP 1602:039, 2016 **Dwarf gallaxies**

V. A. Acciari et al. [VERITAS Collaboration], Astrophys. J. 720:1174, 2010

NEUTRINO DETECTION ICECUBE ANTARES SUPER- BAKSAN KAMIOKANDE

 $\sim V_{\mu}$

Key of detection: traveling faster than light

Cherenkov detectors

scintillator detector Main signal:

> Cherenkov light from muons and electrons

Well-known background: atmospheric neutrinos

NEUTRINO DETECTION ICECUBE ANTARES SUPER- BAKSAN KAMIOKANDE

Cherenkov detectors

scintillator detector Main signal:

> Cherenkov light from muons and electrons

Well-known background: atmospheric neutrinos

Key of detection: traveling faster than light

M. G. Aartsen et al [IceCube Collaboration], Eur. Phys. J. C77, no.9:627, 2017 S. Adrían-Martínez et al. [ANTARES Collaboration], JCAP 1510:068, 2015 M. G. Aartsen et al [IceCube Collaboration], Eur. Phys. J. C75:20, 2015

M. G. Aartsen et al. [IceCube Collaboration], Phys. Rev. D88:122001, 2013

NEUTRINOS FROM THE SUN

J. Sílk, K. A. Olíve and M. Srednickí, Phys. Rev. Lett. 55:257, 1985 T. K. Gaisser, G. Steigman and S. Tílav, Phys. Rev. D34:2206, 1986 M. Srednickí, K. A. Olíve and J. Sílk, Phys. B279:804, 1987 K. Griest and D. Seckel, Nucl. Phys. B283:681, 1987

NEUTRINOS FROM THE SUN

WIMPS elastically scatter with the nuclei of the Sun to a velocity smaller than the escape velocity, so they remain trapped inside

Additional scattering give rise to an isothermal distribution

$$C_{\odot} \simeq 9 \times 10^{23} \text{s}^{-1} \left(\frac{\rho_{\odot}}{0.3 \text{ GeV/cm}^3} \right) \left(\frac{270 \text{ km/s}}{\overline{\nu}_{\text{local}}} \right)^3 \left(\frac{\sigma_{\text{SD}}}{10^{-3} \text{ pb}} \right) \left(\frac{50 \text{ GeV}}{m_{\chi}} \right)^3$$

Trapped WIMPS can annihilate into SM particles

After some time, annihilation and capture rates equilibrate Detector

$$\Gamma(t_{\odot}) = \frac{1}{2} C_{\odot} \tanh^2 \left(\frac{t_{\odot}}{\tau_{\odot}}\right) \approx \frac{1}{2} C_{\odot}$$

Only neutrínos can escape

J. Sílk, K. A. Olíve and M. Sredníckí, Phys. Rev. Lett. 55:257, 1985 T. K. Gaísser, G. Steigman and S. Tílav, Phys. Rev. D34:2206, 1986 M. Sredníckí, K. A. Olíve and J. Sílk, Phys. B279:804, 1987 K. Gríest and D. Seckel, Nucl. Phys. B283:681, 1987

steps in the calculation

use local DM density and velocity distribution

Compute capture and annihilation rates

Determine neutrino fluxes at production for different annihilation channels

Oscillate neutrinos from the Sun to the Earth

Compute the event spectra at neutrino detectors

Compare with data

SENSITIVE TO SCATTERING CROSS SECTIONS

Spin-independent cross section (coherent interaction)

Scattering amplitudes (same for neutrons and protons) add coherently

$$\sigma_{SI} \propto \mu_A^2 \left(Z f_p + (A - Z) f_n \right)^2 \propto A^4$$

Spín-dependent cross section

Scattering amplitude changes sign with spin direction, so paired nucleons do not contribute: only the residual unpaired nucleons

$$\sigma_{SD} \propto \mu_A^2 J (J+1) \propto A^2$$

M. G. Aartsen et al. [IceCube Collaboration], JCAP 1604:022, 2016

ANTARES analysis: 5 years

S. Adrián-Martínez et al. [ANTARES Collaboration], Phys. Lett. B759:69, 2016

SK analysis: 3903 days

K. Choi et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 114:141301, 2015

Baksan analysis: 24.12 years

M. M. Bolíev, S. V. Demídov, S. P. Míkheyev and O. V. Suvorova, JCAP 1309:019, 2013

M. G. Aartsen et al. [IceCube Collaboration], JCAP 1604:022, 2016

ANTARES analysis: 5 years

S. Adrián-Martínez et al. [ANTARES Collaboration], Phys. Lett. B759:69, 2016

SK analysis: 3903 days

K. Choi et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 114:141301, 2015

Baksan analysis: 24.12 years

M. M. Boliev, S. V. Demidov, S. P. Mikheyev and O. V. Suvorova, JCAP 1309:019, 2013

M. G. Aartsen et al. [IceCube Collaboration], JCAP 1604:022, 2016

ANTARES analysis: 5 years

S. Adrián-Martínez et al. [ANTARES Collaboration], Phys. Lett. B759:69, 2016

SK analysis: 3903 days

K. Choi et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 114:141301, 2015

Baksan analysis: 24.12 years

M. M. Bolíev, S. V. Demídov, S. P. Míkheyev and O. V. Suvorova, JCAP 1309:019, 2013

M. G. Aartsen et al. [IceCube Collaboration], JCAP 1604:022, 2016

ANTARES analysis: 5 years

S. Adrián-Martínez et al. [ANTARES Collaboration], Phys. Lett. B759:69, 2016

SK analysis: 3903 days

K. Choi et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 114:141301, 2015

Baksan analysis: 24.12 years

M. M. Bolíev, S. V. Demídov, S. P. Míkheyev and O. V. Suvorova, JCAP 1309:019, 2013

otrect offetterton

Galactic Bulge

* *

Cygnus X-3

EE+22

Cassiopeia A

Crab Sun Nebula NGC 3P03

Expected signal: nuclear recoil: 10's kev featureless exponential low rates < 0.1/kg/day

Challenges: low energy threshold large radioactive backgrounds Need to know: local densíty, velocíty dístríbutíon...

Circinus X-L

ozrect ortection

Cygnus X-3

Expected signal: nuclear recoil: 10's kev featureless exponential low rates < 0.1/kg/day 13 Cassiopeia A

b Su la

Challenges:

low energy threshold large radioactive backgrounds Need to know: local densíty, velocíty dístríbutíon...

Exclusion plot

recoil energy spectrum depends on: local DM density DM velocity distribution Earth movement wrt halo scattering cross section $\sigma \propto \sigma_{\rm N}^{\rm SI} {\rm A}^4 \times {\rm nuclear form factor}$ $\sigma \propto \sigma_{\rm N}^{\rm SD} {\rm A}^2 \times {\rm nuclear form factor}$

P. Salatí, PoS Cargese 009, 2007

Phys. Rev. Lett. 116:161302, 2016

Very model/operator dependent decays subproducts + missing energy monojets or monoboson events

but also invisible decays, dileptons...

Very model/operator dependent decays subproducts + missing energy monojets or monoboson events

but also invisible decays, dileptons...

BUT ALSO FIXED TARGET BEAMS

Example: Scalar Mediator

SCALAR DM (HIGGS MEDIATOR)

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right)^2 - \frac{1}{2} m_{\phi}^2 \phi^2 - \frac{\lambda_{\phi}}{4} \phi^2 H^{\dagger} H$$

A discrete Z_2 symmetry under which H is even and ϕ is odd would prevent ϕ – H mixing and make ϕ stable

Límíts from ínvísíble Híggs decays, íf $m_{\rm H} > 2 m_{\phi}$ dírect detectíon experiments (spín-índependent), íf $m_{\rm H} < 2 m_{\phi}$ s-wave annihílatíons

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right)^{2} - \frac{1}{2} m_{\phi}^{2} \phi^{2} + \overline{\chi} \left(i \partial - m_{\chi} \right) \chi - g_{\chi} \phi \overline{\chi} \chi - g_{SM} \phi \sum_{f} \frac{y_{f}}{\sqrt{2}} \overline{f} f$$

A. De Símone and T. Jacques, Eur. Phys. J. C76:367, 2016

spín-índependent ínteractions p-wave annihilations

If the Higgs is the mediator, LUX limits rule out this case for masses < 1 TeV

Operator-dependent limits

within EFT: jet+missing transverse momentum

ATLAS Collaboration, JHEP 04:075, 2013 T. Aaltonen et al [CDF Collaboration], Phys. Rev. Lett. 108:211804, 2012 CMS Collaboration, JHEP 09:094, 2012

Dark matter exists

We know how much there is

We know it is not baryonic and not within the SM

We live in the golden era of dark matter: a lot of theoretical developments and data, some hints... and hopefully soon a convincing discovery