Neutrino Overview (II)

Mariam Tórtola

IFIC, Universitat de València/CSIC

EIGHT IDPASC School 21-31 May, 2018 IFIC, Valencia

Outline

- Historical introduction to neutrino physics
- Neutrinos in the Standard Model
- Neutrino masses beyond the Standard Model
- Neutrino oscillations in vacuum and matter
- Three-flavour neutrino oscillations
- Neutrino oscillations beyond 3 flavours: sterile neutrinos
- The absolute scale of neutrino mass
- Future prospects in neutrino oscillations
- Neutrino physics beyond the Standard Model

Three-flavour neutrino oscillations

Three-neutrino oscillations

neutrino oscillation probability

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} Re(U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*) \sin^2\left(\frac{\Delta m_{ij}^2 L}{4E}\right) + 2\sum_{i>j} Im(U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*) \sin\left(\frac{\Delta m_{ij}^2 L}{2E}\right)$$

• From the experimental data we know:

 $\Delta m_{31}^2 \rightarrow \Delta m_{21}^2$ and $\theta_{13} \ll 1$

 \rightarrow 3-flavour effects are suppressed: dominant oscillations are well described by effective 2-flavour oscillations

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

all data samples are connected \rightarrow a global 3v analysis is required.

Neutrino oscillation analysis methodology

Experimental data

Methodology

- solar: Homestake, Gallex/GNO, SAGE, Borexino, SNO, Super-K
- reactor: KamLAND, Double Chooz, RENO, Daya Bay
- atmospheric: Super-K, IceCube, ANTARES
- LBL: K2K, MINOS, T2K, NovA

Parameter sensitivity

Updated global fit summary

de Salas et al, arXiv:1708.01186

The solar neutrino sector

Solar neutrinos

Radiochemical solar experiments

Homestake (Cl) experiment: 1967-2002

- gold mine in Homestake (South Dakota)
- ▶ 615 tons of perchloro-ethylene (C₂Cl₄)
- detection process (radiochemical)

$$v_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^- E_{th} = 0.814 \text{ MeV}$$

only 1/3 of SSM prediction detected:

 $\mathsf{R}_{Cl}^{\mathrm{SSM}}$ = 8.12 \pm 1.25 SNU

 R_{Cl} = 2.56 \pm 0.16 (stat.) \pm 0.16 (syst.) SNU

Gallium radiochemical experiments:

→ 50% deficit

 R_{SAGE} = 66.9 \pm 3.9 (stat.) \pm 3.6 (syst.) SNU

 $R_{GALLEX/GNO}$ = 69.3 \pm 4.1 (stat.) \pm 3.6 (syst.) SNU

 $\mathsf{R}_{Ga}^{\mathrm{SSM}}$ = 126.2 \pm 8.5 SNU

Solar neutrinos in Super-Kamiokande

Super-Kamiokade detector

- water cherenkov detector
- sensitive to all neutrino flavors: $v_x e^- \rightarrow v_x e^-$
- threshold energy ~ 4-5 MeV
- real-time detector: (E, t)

Super-Kamiokande detects less neutrinos than expected according to the SSM (40%)

The solar neutrino problem

All the experiments detect less neutrinos than expected (30-50%)
 Why the deficit observed is different?
 different type of neutrinos observed
 → radiochemical: ν_e while Super-K: ν_α

- different E-range sensitivity:
- \rightarrow Cl: E > 0.814 MeV
- \rightarrow Ga: E > 0.233 MeV
- \rightarrow Super-K: E > 5 MeV

Different energy suppression of solar fluxes

Ga experiments: pp neutrinos

$$P_{ee} = 1 - \frac{1}{2}\sin^2 2\theta$$

with $\sin^2 2\theta \simeq 0.84$ Pee > 0.5

► Cl + Super-K: ⁸B neutrinos

$$P_{ee} = \sin^2 \theta$$

 \rightarrow Pee ~ 0.3

 \rightarrow stronger neutrino deficit is expected

The Sudbury Neutrino Observatory, SNO

The solar neutrino problem

The Sun produces v_e that arrive to the Earth as 1/3 v_e + 1/3 v_{μ} + 1/3 v_{τ}

→ flavor conversion: $v_e \rightarrow v_x$

Conversion mechanism ? Neutrino oscillations ??

Analysis of solar neutrino data

0.4

0.6

 $\sin^2 \theta_{12}$

0.8

0

0.2

• LMA solution: $\Delta m^2 \sim 10^{-5} \text{ eV}^2 \sin^2\theta \sim 0.30$

The KamLAND reactor experiment

Kamioka Liquid scinitillator Anti-Neutrino Detector

reactor experiment:

 $\overline{\nu}_e + p \to n + e^+$

* 55 commercial power reactors

Average distance ~ 180 km
 → E_v/L sensitivity range: △ m² ~ 10⁻⁵ eV²
 → correct order of magnitude to test solar neutrino oscillations in LMA region

* CPT invariance: same oscillation channel as solar v_e (Δm^2_{21} , θ_{12})

Combined analysis solar + KamLAND

* KamLAND confirms solar neutrino oscillations.

* Best fit point: $sin^{2}\theta_{12} = 0.321 + 0.018$ -0.016 $\Delta m^{2}_{21} = 7.56 \pm 0.19 \times 10^{-5} \text{ eV}^{2}$

* max. mixing excluded at more than 7σ

de Salas et al, arXiv:1708.01186 Bound on θ₁₂ dominated by solar data.
 Bound on Δm²₂₁ dominated by KamLAND.
 mismatch between Δm²₂₁ from solar and KamLAND

The atmospheric neutrino sector

Atmospheric neutrinos

Super-K Coll, PRL93, 101801 (2004)

$$P_{\mu\mu} = 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2}{4} \frac{L}{E_{\nu}}\right)$$

Super-K Coll., PRL 8 (1998) 1562.

Neutrino telescopes

70 m

ANTARES E_v > 20 GeV

Atmospheric neutrino experiments

 Super-Kamiokande (phases I to IV) • IceCube-DeepCore (3 years of data) Aartsen et al, arXiv:1410.7227 • ANTARES (863 days of data)

Wendell et al, PRD81 (2010) Adrián-Martínez et al, PLB 2012

de Salas et al, arXiv:1708.01186

LBL accelerator neutrino experiments

GOAL: observation of ν_{μ} disappearance, ν_{e} appearance and spectral distortions expected in the case of neutrino oscillations

- consistent with atmospheric data

 \rightarrow atm ν oscillations confirmed by laboratory exps

Accelerator LBL experiments

MINOS + T2K (neutrino + antineutrino)
NOvA (only neutrino data)

all experiments prefer mixing close to maximal

de Salas et al, arXiv: 1708.01186

Atmospheric parameters

Combined analysis atmospheric + LBL data

atmospheric parameters are mostly constrained by LBL data

de Salas et al, arXiv:1708.01186

The reactor mixing angle θ_{13}

The CHOOZ reactor experiment

- * disappearance reactor v_e
- ✤ L = 1 km, E~MeV
- * 2ν approx: Δm^2_{31} , θ_{13}

$$P_{ee} = 1 - 2\sin^2 2\theta_{13}\sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

* non-observation of v_e disappearance:

R = 1.01 ± 2.8%(stat) ± 2.7%(syst)

Exclusion plot (Δm^2_{31} , θ_{13}) plane

For $\Delta m_{31}^2 = 2.5 \cdot 10^{-3} \text{ eV}^2$ -> $\sin^2 \theta_{13} < 0.039 (90\% \text{CL})$

CHOOZ Collaboration, EPJ C27 (2003) 331.

Hints on $\theta_{13} \neq 0$ from combined analysis

solar + KamLAND

atmospheric + LBL

→ a mismatch between BFP for Δm^2 from atm and LBL data results in a prefered non-zero value for θ_{13} Forero, MT, Valle, 2012

 \rightarrow the interplay between solar and KamLAND data leads to a non-trivial constraint on θ_{13} :

 $\sin^2\theta_{13} = 0.035 \pm \frac{0.016}{0.015}$

For IH, $\sin^2\theta_{13} = 0.023 \pm \frac{0.015}{0.012}$

(1σ**)**

Schwetz, MT, Valle, NJP 13 (2011) 063004

Searches for v_e appearance at LBL

MINOMINOS Coll., PRL 110 (2013)

beam: 152 events observed vs 128.6±32.5
beam: 20 events observed vs 17.5±33.7

T2K T2K Coll., PRL 112 (2014)

- 28 v_e events observed
- 4.92±0.55 expected w/o oscillations
 - v_e appearance confirmed at 7.3 σ

New generation of reactor experiments

more powerful reactors (multi-core)
larger detector volume
2-6 detectors at 100 m - 1 km.

Three on-going reactor experiments

Experiment	Power (GW)	Baseline(m) Near/Far	Detector(t) Near/Far	Overburden (MWE) Near/Far	Designed Sensitivity (90%CL)
Daya Bay	17.4	470/576/1650	40//40/80	250/265/860	~ 0.008
Double Chooz	8.5	400/1050	8.2/8.2	120/300	~ 0.03
Reno	16.5	409/1444	16/16	120/450	~ 0.02

Daya Bay

Double Chooz

Reno

6 cores + 4 ND + 4 FD

2 cores + 1 ND + 1 FD

6 cores + 1 ND + 1 FD

Far

Detect

Reactor sector

Daya Bay + RENO + Double Chooz

de Salas et al, arXiv:1708.01186

Precision dominated by Daya Bay

Updated global fit summary

de Salas et al, arXiv:1708.01186

- preference for Normal Ordering with $\Delta \chi^2$ (IO-NO) ≈ 11.7
 - \Rightarrow Inverted Ordering disfavoured at 3.4 σ

Updated global fit summary

parameter	best fit $\pm 1\sigma$	3σ range	relative $I\sigma$
$\Delta m_{21}^2 \left[10^{-5} \text{eV}^2 \right]$	$7.55\substack{+0.20 \\ -0.16}$	7.05 - 8.14	2.4%
$\begin{aligned} & \Delta m^2_{31} \; [10^{-3} \text{eV}^2] \; \text{(NO)} \\ & \Delta m^2_{31} \; [10^{-3} \text{eV}^2] \; \text{(IO)} \end{aligned}$	$2.50{\pm}0.03$ $2.42^{+0.03}_{-0.04}$	2.41 – 2.60 2.31 - 2.51	1.3%
$\sin^2 \frac{\theta_{12}}{10^{-1}}$	$3.20\substack{+0.20\\-0.16}$	2.73 - 3.79	5.5%
$\frac{\sin^2 \theta_{23}}{10^{-1}} (\text{NO}) \\ \frac{\sin^2 \theta_{23}}{10^{-1}} (\text{IO})$	$5.47\substack{+0.20\\-0.30}\\5.51\substack{+0.18\\-0.30}$	4.45 - 5.99 4.53 - 5.98	4.7% 4.4%
$\frac{\sin^2 \theta_{13}}{10^{-2}} (\text{NO}) \\ \frac{\sin^2 \theta_{13}}{10^{-2}} (\text{IO})$	$2.160\substack{+0.083\\-0.069}\\2.220\substack{+0.074\\-0.076}$	1.96 – 2.41 1.99 – 2.44	3.5%
$\frac{\delta}{\pi}$ (NO) $\frac{\delta}{\pi}$ (IO)	$1.32\substack{+0.21\\-0.15}\\1.56\substack{+0.13\\-0.15}$	0.87 – 1.94 1.12 – 1.94	10% 9%

de Salas et al, arXiv:1708.01186

Neutrino oscillations beyond 3 flavours: sterile neutrinos

How many neutrinos?

• according to LEP measurements of invisible Z decay width: $\rightarrow N_{\nu} = 2.984 \pm 0.008$ (light, active neutrinos)

Experimental hints for a 4th sterile neutrino:

- + LSND signal for $\ \overline{
 u}_{\mu}
 ightarrow \overline{
 u}_{e}$ oscillations with E/L ~ 1 eV2
- MiniBooNE searches for $\overline{
 u}_\mu
 ightarrow \overline{
 u}_e$ and $u_\mu
 ightarrow
 u_e$ at similar E/L

• Reactor antineutrino anomaly: very short baseline $\overline{\nu_e}$ disappearance indicated by the reevaluated reactor neutrino fluxes

▶ Gallium anomaly: ν_e disappearance during calibration of Gallium solar experiments with radioactive sources (L ~ 1 m)
What is a sterile neutrino?

sterile neutrino = singlet fermion of the Standard Model

 \rightarrow it has no interactions (exceptions: Higgs, mixing and physics BSM)

Motivations: sterile neutrinos can explain...

- neutrino oscillation anomalies (m ~ eV)
- small neutrino masses (seesaw mechanism, m > TeV-M_{pl})
- baryon asymmetry of the universe (leptogenesis, m>> 1 GeV)
- (part of) the dark matter of the universe (m ~ keV)

Hints for $v_{\mu} \rightarrow v_{e}$ appearance

The LSND experiment

Evidence for \$\overline{\nu}_{\mu}\$ → \$\overline{\nu}_{e}\$ oscillations
Excess of \$\nu_{e}\$ events: 87.9 ± 22.4 ± 6.0 (3.8σ)
Part of the allowed region excluded by other experiments.
Δm²_{LSND} ~ 0.2-10 eV² → Δm²_{LSND} ≠ Δm²_{SOL}, Δm²_{ATM}

 $\rightarrow \Delta m^2_{LSND} \neq \Delta m^2_{SOL} + \Delta m^2_{ATM}$

 \Rightarrow 4th sterile neutrino required !!

L ~ 30m, E ~ 20–75 MeV LSND Collab., PRD 64 (2001) 112007

The MiniBooNE experiment

- Designed to test the LSND signal
- Runs in neutrino and antineutrino mode
- Observed excess:
 - \Rightarrow neutrino: 162 ± 47.8 (3.4 σ)
 - \Rightarrow antineutrino: 78.4 ± 28.5 (2.8 σ)

10

∆m² (eV³)

10

MiniBooNE Collab., PRL 110 (2013) 161801

LSND 90% C.L. LSND 99% C.L. KARMEN2 90% C.

685

90% 95%

99%

Global analysis of v_e appearance data

• Global analysis using all data from v_e appearance searches:

Poor GOF, since MiniBooNE low-E excess can not be fitted in the 3+1 scenario

Dentler et al, arXiv:1803.10661

Hints for v_e disappearance

ve disappearance in reactor experiments

 Historically, very-short-baseline reactor neutrino experiments (10-100 m) have not observed any disappearance of reactor neutrinos.

Ex: Bugey experiment

- search for reactor v disappearance at L = 15, 40, 95 m
- results in agreement with theoretical fluxes: disappearance not observed

However, recent (2011) theoretical re-evaluations of the produced neutrino flux at reactors result in higher fluxes, motivating a reanalysis of the reactor data.

The reactor antineutrino anomaly

• improved calculations of antineutrino fluxes report ~ 3% increase

Mueller et al, arXiv:1101.2663, Huber, arXiv 1106.0687

⇒ SBL reactor experiments show a deficit in the number of neutrinos detected: $R = 0.927 \pm 0.023$ (3 σ effect)

▶ can sterile neutrinos with $\Delta m^2 \sim 1 \text{ eV}^2$ explain this anomaly ?

The Gallium anomaly

▶ Calibration of Gallium solar experiments GALLEX and SAGE with intense radioactive v_e sources ⁵¹Cr and ³⁷Ar in the process:

 $\nu_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^-$

→ a reduction in the number of v_e is observed → averaged deficit of $v_{e:}$ R = 0.84 ± 0.05 (2.9 σ)

▶ L ~ 1-2 m, E ~ 0.4-0.8 MeV

 \Rightarrow L/E similar to reactor anomaly

• oscillations with $\Delta m^2 \sim 1 \text{ eV}^2$ can lead to reduction of the v_e flux in the detector volume

Recent indications: NEOS and DANNS

Observation of ratios of reactor antineutrino spectra at two baselines

Gariazzo et al, arxiv:1801.06467

 \Rightarrow 3 σ evidence of SBL ν_e oscillations based on comparisons of measured spectra at different baselines, independent of flux predictions.

Analysis of v_e disappearance data

Dentler et al, arXiv:1803.10661

Global analysis using all data from v_e disappearance searches:

-SBL reactor and gallium anomalies

-Daya Bay FD & ND

-KamLAND (180 km)

-LSND and KARMEN ($v_e + {}^{12}C \rightarrow {}^{12}N + e^{-}$)

-recent DANNS and NEOS

-($\theta_{13}-\theta_{14}$) degeneracy in solar neutrinos

Best fit: $\triangle m^{2}_{41} = 1.3 \text{ eV}^{2}$

Interpretation of the anomalies

 $\Delta m^2_{sol} \sim 8 \times 10^{-5} \text{ eV}^2 \qquad \Delta m^2_{atm} \sim 2 \times 10^{-3} \text{ eV}^2 \qquad \Delta m^2_{LSND} \sim 1 \text{ eV}^2$

2+2 neutrino scheme

This scheme requires the presence of sterile neutrinos either in solar or atmospheric neutrinos

However, solar and atmospheric data show a strong preference for active oscillations

excluded by solar and atmospheric data

Maltoni et al, NPB643 (2003), NJP06 (2004)

Global fit in 3+1 neutrino scheme

3+1 spectra include the 3 active-neutrino scenario as limiting case.
solar & atmos oscillations: mainly active v + small sterile component
disagreement between vµ appearance (LSND + MiniBooNE) and disappearance exp. (CDHS, SK, IceCube, MINOS/+, MiniBooNE-disap)

99.73% CL 2 dof 10^{1} $\Delta m^2 [eV^2]$ 10^{0} Appearance w/o DiF) Disappearance Free Fluxes Fixed Fluxes 10^{-1} 10^{-3} 10^{-2} 10^{-1} 10^{-4} $\sin^2 2\theta_{\mu e}$

 \rightarrow severe tension between appearance and disappearance results

Dentler et al, arXiv:1803.10661

eV-sterile neutrino in Cosmology

In Cosmology, sterile neutrinos with eV masses would contribute to: $\sum m_v = \text{sum of neutrino masses}$

 N_{eff} = relativistic degrees of freedom.

If the mixing active-sterile neutrino is small, one can relax limits from cosmology

• However, for mass & mixing parameters required to explain the anomalies, v_s is fully thermalized in the early universe.

$$\rightarrow \sum m_{\nu} \gtrsim 0.05 \mathrm{eV} + \sqrt{\Delta m_{41}^2}$$
 > 1 eV

 \rightarrow N_{eff} \approx 4

Hannestad et al, 1204.5861

Bounds from Cosmology

recent limits on the sum of neutrino masses:

∑m_y < 0.13 - 0.72 eV < 1 eV !!!! Lattanzi & Gerbino, arxiv:1712.07109

recent limits on the effective number of relativistic dof:

PLANCK: N_{eff} = 3.15 ± 0.23
 PLANCK + LSS: N_{eff} = 3.03 ± 0.18
 Lattanzi & Gerbino, arxiv:1712.07109

constraints can be avoided by preventing vs thermalization in the early universe, but it requires large modifications of cosmological model.
 Example: new interactions in the sterile neutrino sector that suppress their thermalization in the early Universe
 Dasgupta and Kopp, PRL112 (2014) 031803
 However: these interactions also affect CMB!! Not easy to solve
 Forastieri et al, JCAP 1707 (2017) 038

The absolute scale of neutrino mass

Constraints on neutrino masses

Technique	Type of Experiment	Sensitivity
Neutrino Oscillations	Laboratory-based (model indep)	$\Delta m_{ij}^2 = m_i^2 - m_j^2$
Cosmological modeling of Astrophysical Observations	Observational (cosmology dep)	$\sum m_i + light dof$
Neutrinoless-Double- Beta Decay (0vββ)	Laboratory-based (model dep)	$\left \sum U_{ei} ^2 e^{i\alpha(i)} m_i\right ^2$
Beta Decay Kinematics	Laboratory-based (model indep)	$\sum U_{ei} ^2 m_i^2$

From oscillations:

$$m_{\nu} \ge \sqrt{\Delta m_{31}^2 + \Delta m_{21}^2} \gtrsim 0.05 \,\mathrm{eV}$$

Bounds from cosmology

 neutrino masses may affect cosmological observables:

- \rightarrow anisotropies in the CMB spectrum
- \rightarrow Large Scale Structure formation
- \rightarrow weak gravitational lensing

▶ Fit ∧ CDM model + experimental data (WMAP, PLANCK, HST, LSS,...)

$\sum~m_{\nu i}$ < 0.13- 0.72 eV

Lattanzi & Gerbino, arxiv:1712.07109

Direct neutrino mass experiments

electron neutrino

endpoint β spectrum for ${}^{3}H \rightarrow {}^{3}He + e^{-} + \nu_{e}$ $\rightarrow m_{\nu e} < 2 \text{ eV} (95\% \text{ CL})$

<u>muon neutrino</u>

measurement of p_{μ} in $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\rightarrow m_{\nu\mu} < 190 \text{ keV (90\% CL)}$

tau neutrino

study n π mass in $\tau \rightarrow (n\pi) + \nu_{\tau}$ $\rightarrow m_{\nu\tau} < 18.2 \text{ MeV} (95\% \text{ CL})$

$$m(\nu_{\alpha})^2 = \sum_i |U_{\alpha i}|^2 m(\nu_i)^2$$

 $m(\nu_e)^2 = \sum_{i} |U_{ei}|^2 m(\nu_i)^2$

 Mainz

 quench condensed solid T_2 source

 analysis 1998/99, 2001/02

 $m_v^2 = -1.2 \pm 2.2 \pm 2.1 \text{ eV}^2$
 $m_v \leq 2.2 \text{ eV}$ (95% CL.)

Troitsk

windowless gaseous T₂ source analysis 1994 to 1999, 2001 $m_v^2 = -2.3 \pm 2.5 \pm 2.0 \text{ eV}^2$ $m_v \leq 2.2 \text{ eV}$ (95% CL.)

effective neutrino mass:

sensitive to m_v dN/dE = K F(E,Z) p E_{tot} (E₀-E_e) $\sqrt{(E_0-E_e)^2 - "m(v_e)"^2}$

Tritium beta decay experiments

• β -decay spectrum close to the endpoint is very

3H 3He

The KATRIN experiment

(KArlsruhe TRItium Neutrino experiment)

sensitivity (90%CL) mv < 0.2 eV discovery potential $m_{\nu} = 0.35 \text{ eV} (5\sigma)$

Inauguration 11 June 2018

Neutrinoless double beta decay

test v nature

> $2\nu\beta\beta$: rare process in the SM with $t_{1/2}$ ~ 10^{21} years

• $O_{\nu\beta\beta}$: possible for massive Majorana neutrinos.

 $(A,Z) \rightarrow (A,Z+2) + e^- + e^-$

 \rightarrow not observed yet

- \rightarrow t_{1/2}~ 10²⁶-10²⁷years
- \rightarrow violates Lepton Number

 \rightarrow rate depends on m_{ν} , unknown phases and nuclear mass matrix elements

$$\Gamma_{0\nu\beta\beta} = G^{0\nu} |M^{0\nu}|^2 < m_{\beta\beta} >^2$$

$$\langle m_{\beta\beta} \rangle = |\sum_{i} U_{ei}^2 m_i|$$

→ good separation $2\nu\beta\beta$ from $0\nu\beta\beta$ → low bg $0\nu\beta\beta$ peak region

Bounds from OvBB decay experiments

⁷⁶Ge (GERDA, Majorana)
 ⁸²Se (Super NEMO)
 ¹³⁰Te (CUORE, SNO+)
 ¹³⁶Xe (EXO, KamLAND-Zen, NEXT)

At 90% CL: m_{ββ} < 140-400 meV CUORE m_{BB} < 147-398 meV EXO-200 $m_{\beta\beta}$ < 120-270 meV GERDA II $m_{\beta\beta}$ < 61–165 meV KL-Zen \rightarrow degenerate region explored \rightarrow next generation: full IH region 3σ discovery sensitivity 20 meV Lattanzi & Gerbino, arxiv:1712.07109 Future prospects in neutrino oscillations: mass ordering and δ_{CP}

Future sensitivity on δ_{CP} at T2K + NOvA

combined analysis > 1σ sensitivity over 75% of δ_{CP} range C. Nielsen, Moriond 2016

▶ to cover full δ_{CP} range, future LBL experiments needed

Prospects for CP violation searches

 \rightarrow > 5 σ sensitivity for some fraction of δ_{CP}

Mass ordering with v telescopes

Upgraded versions neutrino telescopes IceCube and ANTARES

more densely instrumented subdetector: threshold E ~ 1 GeV PINGU

ORCA

• Matter effects induce diffs (up to 20%) in $P_{\mu\mu}$ for NH and IH (δ_{CP} indep)

▶ in 3-4 years of operation, 3σ significance on NMH can be achieved

Intermediate baseline reactor experiments

▶ 2 proposals: JUNO (China), RENO-50 (KOREA)

very large detector mass ~ 20 kton

reactor experiments with baselines ~ 50 km

experiment at the first Δm^2_{21} oscillation maximum

▶1% precision measurement oscillation parameters:

	Current	JUNO
Δm_{12}^2	~3%	~0.6%
Δm_{23}^2	~5%	~0.6%
$sin^2\theta_{12}$	~6%	~0.7%
sin ² θ_{23}	~20%	N/A
sin ² θ_{13}	~14% → ~4%	~15%

Intermediate baseline reactor experiments

determination neutrino mass ordering

experiment at the first Δm^2_{21} oscillation maximum

 $(\Delta m^2_{31} - \Delta m^2_{32})$ interference term sensitive to mass ordering

→ Precision energy spectrum measurement

20 kton detector with 3% energy resolution -> MH at 4σ in 6 years.

Li et al, arXiv:1303.6733

Neutrino physics beyond the Standard Model

Non-standard neutrino interactions

Non-unitary neutrino mixing

Non-Standard Interactions (NSI)

NSI appear in models of neutrino masses

NSI may affect oscillation parameters,

- \Rightarrow precision measurements at current experiments
- \Rightarrow sensitivity reach of upcoming experiments (degeneracies and ambiguities)
- Information about the size of NSI could be very useful for neutrino model building

NSI: Notation

$$\begin{split} \mathcal{L}_{\text{CC-NSI}} &= -2\sqrt{2}G_F \,\epsilon_{\alpha\beta}^{ff'X} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\ell_{\beta}\right) \left(\bar{f}'\gamma_{\mu}P_Xf\right) \\ \Rightarrow \text{ may affect neutrino production and detection} \\ \epsilon_{\alpha\beta}^s \left(\text{source}\right) \quad \epsilon_{\alpha\beta}^d \text{ (detector)} \\ \\ \\ \mathcal{L}_{\text{NC-NSI}} &= -2\sqrt{2}G_F \,\epsilon_{\alpha\beta}^{fX} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}P_Xf\right) \\ \\ \epsilon_{\alpha\beta} \neq 0 \qquad \rightarrow \text{NSI violate lepton flavor (FC-NSI)} \\ \\ \epsilon_{\alpha\alpha} - \epsilon_{\beta\beta} \neq 0 \qquad \rightarrow \text{NSI violate LF universality (NU-NSI)} \\ \Rightarrow \text{ mainly affecting neutrino propagation in matter:} \quad \epsilon_{\alpha\beta}^m \\ \\ \text{(but also detection, e.g., Super-K and Borexino)} \end{split}$$

NSI in the solar sector

NSI in the solar sector

Gonzalez-Garcia et al, JHEP 2013

How to probe LMA-Dark?

 ⇒ combination with neutrino scattering experiments: CHARM, NuTeV Escrihuela et al, PRD 2009, Coloma et al, JHEP 2017
 ⇒ combination with coherent neutrino-nucleus scattering Coloma et al, PRD 2017

NSI in the solar sector

solar + KamLAND analysis prefer non-zero NSI

spectrum flattening below 3 MeV and larger D/N asymmetry expected for NSI removes tension between KamLAND and solar data

Maltoni & Smirnov, EPJ 2015
NSI at future LBL experiments

($\theta_{23} - \epsilon_{\tau\tau}$) degeneracy in DUNE

Gouvea and Kelly, NPB 2016

Coloma, JHEP 2016

NSI at future LBL experiments

NSI significantly spoil sensitivity to CP violation in DUNE

Masud and Mehta, PRD 2016

Non-unitary light neutrino mixing

Most models of neutrino masses -> extra heavy states
 Ex: type I seesaw, inverse seesaw

 $\left(\begin{array}{cc} 0 & M_D \\ M_D^T & M_R \end{array}\right)$

 $\left(\begin{array}{cccc}
0 & M_D & 0 \\
M_D^T & 0 & M \\
0 & M^T & \mu
\end{array}\right)$

Minkowski 1977, Gell-Mann Ramond Slanski 1979, Yanagida 1979, Mohapatra Senjanovic 80, Schechter Valle 1980.

Mohapatra-Valle, 86

 NxN mixing matrix with: N(N-1)/2 mixing angles and (N-1)(N-2)/2 Dirac CP phases

 \rightarrow (3x3) light neutrino mixing matrix non-unitary in general

Non-unitary at neutrino oscillations

•fit of neutrino oscillation results without assuming unitarity: $U\alpha\beta$

Parke and Ross-Lonergan, PRD93 2016

General parameterization of NU mixing

• NxN mixing matrix:

Okubo, PTP1962

 $U^{n \times n} = \omega_{n-1 n} \, \omega_{n-2 n} \, \dots \, \omega_{1 n} \, \omega_{n-2 n-1} \, \omega_{n-3 n-1} \, \dots \, \omega_{1 n-1} \, \dots \, \omega_{2 3} \, \omega_{1 3} \, \omega_{1 2}$

 $\omega_{ij} \equiv \text{complex rotation} \qquad \omega_{13} = \begin{pmatrix} c_{13} & 0 & e^{-i\phi_{13}}s_{13} \\ 0 & 1 & 0 \\ -e^{i\phi_{13}}s_{13} & 0 & c_{13} \end{pmatrix}$ $U^{n \times n} = \begin{pmatrix} N & W \\ V & T \end{pmatrix} \qquad \text{Hettmansperger et al, JHEP2011}$

and the (3x3) light block: $N = N^{NP} U^{3\times3} = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} U^{3\times3}$ See Xing, PRD2012 for n=6 Escrihuela et al, PRD92 (2015)

See also Fernandez-Martinez et al, PLB2007

CP degeneracies in Pµe with NU

 $P_{\mu e} = (\alpha_{11}\alpha_{22})^2 P_{\mu e}^{3\times3} + \alpha_{11}^2 \alpha_{22} |\alpha_{21}| P_{\mu e}^I + \alpha_{11}^2 |\alpha_{21}|^2$

 $P_{\mu e}^{3 \times 3} = 4 \left(\cos^2 \theta_{12} \cos^2 \theta_{23} \sin^2 \theta_{12} \sin^2 \Delta_{21} + \cos^2 \theta_{13} \sin^2 \theta_{13} \sin^2 \theta_{23} \sin^2 \Delta_{31} \right) \\ + \sin 2\theta_{12} \sin \theta_{13} \sin 2\theta_{23} \sin 2\Delta_{21} \sin \Delta_{31} \cos \left(\Delta_{31} + \delta_{CP} \right)$

 $P_{\mu e}^{I} = -2\sin 2\theta_{13}\sin \theta_{23}\sin \Delta_{31}\sin (\Delta_{31} + \delta_{CP} + \phi)$ $-\cos \theta_{13}\cos \theta_{23}\sin 2\theta_{12}\sin 2\Delta_{21}\sin \phi$

Miranda, MT, Valle, PRL 117 (2016)

NU neutrino oscillations in DUNE

The standard oscillation picture in DUNE gets modified due to NU Here: $\alpha_{ii} = 1$, $|\alpha_{21}| = 0.02$, ϕ free (α_{3i} enter in $P_{\mu e}$ through matter effects)

 \rightarrow (δ , ϕ) degeneracies in $P_{\mu e}$ for E \gtrsim 3 GeV in both channels

Escrihuela et al, NJP 2017

CP violation searches in DUNE

> 5σ sensitivity for some fraction of δ_{CP}

E. Worcester, DUNE Collaboration

DUNE CP sensitivity with NU

Escrihuela et al, NJP 2017

probing maximal CP violation may be a challenge for large α₂₁.
 the impact of α₃₁ and α₃₂ is less relevant.
 weaker effect wrt probability analysis due to wide beam in DUNE

Summary (I)

Neutrinos play an important role in many physical and astrophysical scenarios

Important discoveries on neutrino physics along last century have provided the first evidence for physics beyond the Standard Model

Extensions of the SM can explain the smallness of neutrino mass, although the flavor structure is not well understood yet

Neutrino oscillations are well stablished with observations in several experiments, with natural and artificial sources.

• Oscillation parameters are measured quite accurately (\leq 6%) by the combination of different experiments.

First indications for normal mass ordering and maximal CP violation.

Summary (II)

there are several indications for sterile neutrinos at eV scale.

• signal from v_e disappearance at reactor and Gallium experiments are consistent, and not in disagreement with other data samples

• hint from $\nu_{\mu} \rightarrow \nu_{e}$ appearance in LSND and MiniBooNE are in disagreement with negative signals in ν_{μ} disappearance experiments.

consistent picture of eV-sterile neutrinos in tension with cosmology

the absolute scale of neutrino mass is bounded from cosmological and laboratory measurements, below 1 eV.

new physics beyond the SM may affect significantly the current picture of neutrino oscillations.

▶ NSI with matter and Non-unitary mixing expected in models of neutrino masses may reduce the sensitivity at current and future experiments.