INTRODUCTION TO DARK MATTER

Sergio Palomares Ruíz IFIC, CSIC-U. Valencia

8th IDPASC School, Valencia, May 21-31, 2018

PLAN OF LECTURES

I Evidences and generalities

II Non-gravitational searches

Ooking back in time

Nucleosynthesis

Big Bang First galaxies form

First atoms form CMB

First stars form

LOOKING BACK IN TIME

Big Bang Nucleosynthesis

Big Bang First galaxies form

First atoms form CMB

First stars form

ORDINARY MATTER 5%

-

ORDINARY MATTER 5%

DARK MATTER 26%

ORDINARY MATTER 5%

DARK MATTER 26%

DARK ENERGY 69%

How do we infer the existence of Dark Matter?

How do we infer the existence of Dark Matter?

How did we first infer the Existence of dark matter?

Anomalies in gravitationally-inferred properties of astrophysical objects: in the limit of weak gravitational fields (most astronomical objects), $GR \rightarrow Newtonian$ gravity

How does a system react to gravity?

If the force is not resisted the system would collapse: rotation or pressure

If the system is rotationally supported (spiral galaxies): rotation curves

If the system is pressure-supported (clusters of galaxies): virial theorem

Clusters Fritz Zwicky (1898–1974)

1933 : first time the words Dark Matter were used in the modern sense along with data supporting its existence

He estimated the mass from the virial theorem using the velocities of the galaxies in the Coma cluster

The visible mass was ~100 times less than needed to hold tight the system

"dass dunkle Materie in sehr viel grosserer Dichte vorhanden ist als leuchtende Materie" "that dark matter is present in much higher density than visible matter" F. Zwicky, Helv. Phys. Acta 6:110, 1933

Coma cluster

F. Zwicky, Astrophys. J. 86:217, 1937

The Virial Theorem

If the cluster is stationary

 $-\langle E_{p} \rangle = 2\langle K \rangle$

$$-\langle \mathbf{E}_{p} \rangle \propto \frac{\mathbf{M}_{cluster}^{2}}{\langle \mathbf{R} \rangle}$$
$$2\langle \mathbf{K} \rangle = \mathbf{M}_{cluster} \langle \mathbf{v}^{2} \rangle$$

Coma cluster

F. Zwicky, Astrophys. J. 86:217, 1937

The Virlal Theorem

If the cluster is stationary

 $-\langle E_{p} \rangle = 2\langle K \rangle$

$$-\langle \mathbf{E}_{p} \rangle \propto \frac{\mathbf{M}_{cluster}^{2}}{\langle \mathbf{R} \rangle}$$
$$2\langle \mathbf{K} \rangle = \mathbf{M}_{cluster} \langle \mathbf{v}^{2} \rangle$$

FIRST ROTATION CURVES

VESTO SLIPHER (1875-1969) FRANCIS PEASE (1881-1938) MILTON HUMASON (1891-1972)

1914-1918, 1921, 1936-1939: Fírst data on rotation curves

Horace Babcock (1912–2003)

1939: Fírst extended rotation curve

M31

H. Babcock, Lick Obs. Bull. 19:41, 1939

N. U. Mayall and L. H. Aller

Astrophys. J. 95:5, 1942

NECHOLAS MAYALL (1906-1993) Lawrence Aller (1913-2003)

1942: Second extended rotation curve

	$\mathbf{T}A$	BLE 5					
MASS-LUMINOSITY RELATIONS IN M31							
x (distance from nucleus)	0'	0:5	15'	50'	80'		
Mass of column (\odot)		11000	7900	4100	2200		
Volume (cu. psc.)		5400	5300	4500	2400		
Mass density (⊙/cu. psc.)		2.1	1.5	0.9	0.9		
Log I (Redman and Shirley)	(2.00)	1.29	0.10	9.44	9.00		
I	(100)	19.5	1.26	0.276	0.100		
Luminosity density (O/cu. psc.)		1.25	0.0827	0.021	0.0144		
M/L	0.001	1.6	18	43	62		
	(Hubble)						

H. Babcock, Líck Obs. Bull. 19:41, 1939

-		I			
NEBULA	Type	Nuclear Region	Main Body	Outer Parts	MASS IN SUNS
(1)	(2)	(3)	(4)	(5)	(6)
Galaxy M 33	(Sc) Sc		5.9×10 ⁷	2.2×10 ⁸ 0.6 to 2.0×10 ⁸	1 to 2×10 ¹¹ 1.7×109
M 31 4594 4111	Sb - Sa Sa	1.1×10 ⁷ 1.4×10 ⁶	9.2×107 2.0×107	· · · · · · · · · · · · · · · · · · ·	9.5×10 ¹⁰ 2.8×10 ¹⁰
3115	E_7		4.5×106		1.5×1010

N. U. Mayall and L. H. Aller, Astrophys. J. 95:5, 1942

	TA	ABLE 5				
	Mass-Luminosi	FY RELATIONS I	n M31			
x (distance from nucleus)	0'	0:5	15'	50'	80'	Notoralu
Mass of column (\odot)		11000	7900	4100	2200	NOCONCY
Volume (cu. psc.)		5400	5300	4500	2400	Zwicku
Mass density (⊙/cu. psc.)		2.1	1.5	0.9	0.9	
Log I (Redman and Shirley)	(2.00)	1.29	0.10	9.44	9.00	
I	(100)	19.5	1.26	0.276	0.100	
Luminosity density (O/cu. psc.)		1.95	0.0827	0.021	0.0144	
M/L	0.001	1.6	18	43	62	
	(Hubble)					

H. Babcock, Líck Obs. Bull. 19:41, 1939

-		I			
Nebula	Type	Nuclear Region	Main Body	Outer Parts	Mass in Suns
(1)	(2)	(3)	(4)	(5)	(6)
Galaxy M 33	(Sc) Sc		5.9×10 ⁷	2.2×10^{8} 0.6 to 2.0×10^{8}	1 to 2×1011 1.7×109
M 31 4594 4111	Sb - Sa Sa E7	I.IX107 I.4X10 ⁶	9.2×10^{7} 2.0 × 10^{7} 		9.5×10 ¹⁰ 2.8×10 ¹⁰

N. U. Mayall and L. H. Aller, Astrophys. J. 95:5, 1942

	TA	ABLE 5				
	Mass-Luminosi	TY RELATIONS I	м М31			
x (distance from nucleus)	0'	0:5	15'	50'	80'	Not out u
Mass of column (\odot)		11000	7900	4100	2200	NOC DRUG
Volume (cu. psc.)		5400	5300	4500	2400	Zwicku
Mass density (⊙/cu. psc.)		2.1	1.5	0.9	0.9	
Log I (Redman and Shirley)	(2.00)	1.29	0.10	9.44	9.00	
I	(100)	19.5	1.26	0.276	0.100	
Luminosity density (\odot /cu. psc.)		1 25	0.0827	0.021	0.0144	
M/L	0.001	1.6	18	43	62	
	(Hubble)					

H. Babcock, Líck Obs. Bull. 19:41, 1939

]1	PERIOD IN YEAR		турісаl	
NEBULA (1)	Түре (2)	Nuclear Region (3)	Main Body (4)	Outer Parts (5)	MASS IN SUNS (6)	galactic mass then
Galaxy M 33	(Sc) Sc		5.9×10 ⁷	2.2×10^{8} 0.6 to 2.0×10^{10}	1 to 2×10 ¹¹ 1.7×109	$\sim 10^{\circ} \mathrm{M}_{\odot}$
M 31 4594 4111 3115	Sb - Sa Sa E7	I.IX107 I.4X10 ⁶	9.2×10^{7} 2.0 × 10^{7} 		9.5×10 ¹⁰ 2.8×10 ¹⁰ 1.5×10 ¹⁰	

N. U. Mayall and L. H. Aller, Astrophys. J. 95:5, 1942

vs. mass ínferred from rotatíonal curve

50-60'S PATA

Indívídual galaxíes New data with radio astronomy: Van de Hulst (1957), Volders (1959)... Mílky Way beyond the solar círcle: Rubín (1962, 1965) Many galaxíes were studíed: Burbídge, Burbídge and Prendergast (1962) Rubín (1962): "the stellar (rotation) curve is flat, and does not decrease as is expected for Keplerían orbits"

> Bínary galaxíes Usíng the fact that the Mílky Way and Andromeda are approaching each other the mass of the system was estimated F. D. Kahn and L. Woltjer, Astrophys. J. 130:705, 1959

More data on binary galaxies: Page, Bergh, Holmberg...

50-60'S PATA

Indívídual galaxíes New data with radio astronomy: Van de Hulst (1957), Volders (1959)... Mílky Way beyond the solar círcle: Rubín (1962, 1965) Many galaxíes were studíed: Burbídge, Burbídge and Prendergast (1962) Rubín (1962): "the stellar (rotation) curve is flat, and does not decrease as is expected for Keplerían orbits"

> Bínary galaxíes Usíng the fact that the Mílky Way and Andromeda are approaching each other the mass of the system was estimated F. D. Kahn and L. Woltjer, Astrophys. J. 130:705, 1959

 $\mathbf{M} \ge 1.8 \times 10^{12} \mathbf{M}_{\odot}$

More data on binary galaxies: Page, Bergh, Holmberg...

M31 Improved optical observations

V. C. Rubín and W. K. Ford, Astrophys. J. 159:379, 1970

21-cm radio observations

V. C. Rubín and W. K. Ford, Astrophys. J. 159:379, 1970

M31 extended 21-cm observations

V. C. Rubín and W. K. Ford, Astrophys. J. 159:379, 1970

Astron. Astrophys. 26:483, 1973 and Roberts, Whitehurst, Rogstad, Shostak

V. C. Rubín and W. K. Ford, Astrophys. J. 159:379, 1970

and Roberts, Whitehurst, Rogstad, Shostak

extended optical observations

THEORETICAL INPUT

Stability of 2D N-body systems

R. H. Miller and K. Prendergast, Astrophys. J. 151: 699, 1968; 161:903, 1970 F. Hohl, Astrophys. J. 168:343, 1971

Dísk of particles supported (almost entirely) by rotation: they expected that equilibrium implies the gravitational force is balanced by rotation (centripetal force) → the shape of the system should not change

THEORETICAL INPUT

Stability of 2D N-body systems

R. H. Miller and K. Prendergast, Astrophys. J. 151: 699, 1968; 161:903, 1970 F. Hohl, Astrophys. J. 168:343, 1971

Dísk of partícles supported (almost entírely) by rotation:
they expected that equilibrium implies the gravitational force is
balanced by rotation (centripetal force)
→ the shape of the system should not change

However, this is not what they obtained! After a few rotation periods, an elongated shape developed, which later dissolved, keeping particles in elongated ellipses at random angles

The system changes from being supported by rotation to being supported by pressure

N-body símulatíons: 300 partícles spíral galaxíes are unstable and would form a bar

virial theorem:

 $2\langle \mathbf{K} \rangle + \langle \mathbf{E}_{p} \rangle = 0 \qquad \text{if } t > t \\ \text{the matrix} \\ \langle \mathbf{K} \rangle = \langle \mathbf{K} \rangle_{rot} + \langle \mathbf{K} \rangle_{ran} \qquad \text{rotation} \\ \frac{\langle \mathbf{K} \rangle_{rot}}{-\langle \mathbf{E}_{p} \rangle} + \frac{\langle \mathbf{K} \rangle_{ran}}{-\langle \mathbf{E}_{p} \rangle} = \frac{1}{2} \equiv t + w$

If t>0.14, the system is unstable: the moment of inertia increases and the rotational energy decreases, conserving the angular momentum

Mílky Way: t~0.49

J. P. Ostríker and P. J. E. Peebles, Astrophys. J. 186:4670, 1973

CARK HALOS

N-body símulations: 300 particles spíral galaxies are unstable and would form a bar

virial theorem:

 $2\langle \mathbf{K} \rangle + \langle \mathbf{E}_{p} \rangle = 0 \qquad \text{if } t > t \\ \text{the matrix} \\ \langle \mathbf{K} \rangle = \langle \mathbf{K} \rangle_{rot} + \langle \mathbf{K} \rangle_{ran} \qquad \text{rotation} \\ \frac{\langle \mathbf{K} \rangle_{rot}}{-\langle \mathbf{E}_{p} \rangle} + \frac{\langle \mathbf{K} \rangle_{ran}}{-\langle \mathbf{E}_{p} \rangle} = \frac{1}{2} \equiv t + w$

If t>0.14, the system is unstable: the moment of inertia increases and the rotational energy decreases, conserving the angular momentum

Mílky Way: t~0.49

J. P. Ostríker and P. J. E. Peebles, Astrophys. J. 186:4670, 1973

virial theorem:

 $2\langle \mathbf{K} \rangle + \langle \mathbf{E}_{p} \rangle = 0 \qquad \text{if } t > t \\ \text{the matrix} \\ \langle \mathbf{K} \rangle = \langle \mathbf{K} \rangle_{rot} + \langle \mathbf{K} \rangle_{ran} \qquad \text{rotation} \\ \frac{\langle \mathbf{K} \rangle_{rot}}{\langle \mathbf{K} \rangle_{rot}} + \frac{\langle \mathbf{K} \rangle_{ran}}{-\langle \mathbf{E}_{p} \rangle} = \frac{1}{2} \equiv t + w$

If t>0.14, the system is unstable: the moment of inertia increases and the rotational energy decreases, conserving the angular momentum

Mílky Way: t~0.49

Solution: add a dark halo that contributes to the potential energy, but not to the rotational energy

"the halo (spherical) mass interior to the disk must be comparable to the disk mass"

"the halo solution seems the most likely solution for our own Galaxy"

J. P. Ostríker and P. J. E. Peebles, Astrophys. J. 186:4670, 1973

oark Malos

Following the arguments of Kahn and Woltjer: dynamical mass of several systems at different scales

"ít is necessary to adopt an alternative hypothesis: that the clusters of galaxies are stabilised by hidden matter" J. Einasto, A. Kaasik and E. Saar, Nature 250:309, 1974

with available observational data: M/L(r) and Ω ~ 0.2

"Currently available observations strongly indicate that the mass of spiral galaxies increases almost linearly with radius to nearly 1 Mpc. This means [...] $200 (M_{\odot}/L_{\odot})$ "

J. P. Ostríker, P. J. E. Peebles and A. Yahíl, Astrophys. J. 193:1, 1974

EVIDENCE FROM BBN

The Universe originated in a hot Big Bang and the primordial elements were synthesized after a few minutes R. A. Alpher, H. Bethe and G. Gamow, Phys. Rev. 73:803, 1948

More refined calculations followed the CMB discovery

P. J. E. Peebles, Phys. Rev. Lett 16:410, 1966 R. V. Wagoner, W. A. Fowler and F. Hoyle, Astrophys. J. 148:3, 1967

Evidence from the cmb

A. Penzías and R. Wilson discovered the CMB in 1964

Penzias and Wilson

Very smooth background

If DM is only baryons: perturbations at ~0.01% level

However, COBE showed they are at ~0.001% level

Evidence from the cmr

A. Penzías and R. Wilson discovered the CMB in 1964

very smooth background

If DM is only baryons: perturbations at ~0.01% level

However, COBE showed they are at $\sim 0.001\%$ level

Evidence From The CMB

A. Penzías and R. Wilson discovered the CMB in 1964

Very smooth background

If DM is only baryons: perturbations at ~0.01% level

However, COBE showed they are at ~0.001% level

Densíty fluctuations can grow earlier if DM is non-baryonic

A. D. Chernín, Astron. Zh. 58:25, 1981P. J. E. Peebles, Astrophys. J. 263:L1, 1982

Evidence from the cmb

A. Penzías and R. Wilson discovered the CMB in 1964

Very smooth background

If DM is only baryons: perturbations at ~0.01% level

However, COBE showed they are at ~0.001% level

Densíty fluctuations can grow earlier if DM is non-baryonic A. D. Chernín, Astron. Zh. 58:25, 1981 P. J. E. Peebles, Astrophys. J. 263:L1, 1982

LARGE SCALE STRUCTURE

50 galaxíes

N. U. Mayall, Ann. Astrophys. 23:344, 1960

LARGE SCALE STRUCTURE

G. Chincarini and H. J. Rood, W. G. Tifft and S. A. Gregory, Nature 257:294, 1975 Astrophys. J. 205:696, 1976

Large Scale Structure

G. Chincarini and H. J. Rood, W. G. Tifft and S. A. Gregory, Nature 257:294, 1975 Astrophys. J. 205:696, 1976 Lick Survey

1 million galaxies

M. Seldner, B. Síebers, E. J. Groth and P. J. E. Peebles, Astrophys. J. 82:249, 1977

Large Scale Structure

M. J. Geller and J. P. Huchra, Science 246:897, 1989

G. Chincarini and H. J. Rood, W. G. Tifft and S. A. Gregory, Nature 257:294, 1975 Astrophys. J. 205:696, 1976 Lick Survey

1 million galaxies

M. Seldner, B. Síebers, E. J. Groth and P. J. E. Peebles, Astrophys. J. 82:249, 1977

cfA2 Survey

LARGE SCALE STRUCTURE

M. J. Geller and J. P. Huchra, Science 246:897, 1989

5800 galaxíes

CFA2 Survey

G. Chincarini and H. J. Rood, W. G. Tifft and S. A. Gregory, Nature 257:294, 1975 Astrophys. J. 205:696, 1976 Lick Survey

1 million galaxies

M. Seldner, B. Síebers, E. J. Groth and P. J. E. Peebles, Astrophys. J. 82:249, 1977

M. M. Colless et al., Mon. Not. R. Astr. Soc. 328:1039, 2001

LARGE SCALE STRUCTURE

LARGE SCALE STRUCTURE 2006: 2010: 0, 350000 spectra +200000 spectra SDSS + SDSS LRGS + 2.0 2.5 0 BOSS . CD Redshift z 000 No. ao

all a

Líght bends after passing through a gravitational potential well

ackaround gata

A. Einstein, Science 84:506, 1936

Líght bends after passing through a gravitational potential well

The observation of such gravitational lens effects promises to furnish us with the simplest and most accurate determination of nebular masses

F. Zwicky, Astrophys. J. 86:217, 1937

A. Einstein, Science 84:506, 1936

D. R. Walsh, R. Carswell and R. Weymann, Nature 279:38, 1979

First lensed QSO

Abell Cluster 2218

First lensed QSO

COLLIDING CLUSTERS BULLET CLUSTER

gravitational lensing: total mass

COLLIDING CLUSTERS BULLET CLUSTER

gravitational lensing: total mass

x-rays: baryoníc mass

BUT WHAT ABOUT THE PARTICLE PROPERTIES?

Simply requiring DM to form halos and using Spin statistics

 $\Delta x \ \Delta p \ge 1 \qquad \qquad M_{halo} = m_{fermion} V \int f(p) \ d^3 p <$ $R_{halo} \left(m_{boson} v \right) \ge 1 \qquad \qquad m_{fermion} V \int d^3 p \sim m_{fermion} R_{halo}^3 \left(m_{fermion} v \right)^3$

 $m_{boson} \ge 10^{-22} \text{ eV}$

$$m_{fermion} \ge 100 \text{ eV}$$

TREMAINE-GUNN BOUND

S. Tremaine and J. E. Gunn, Phys. Rev. Lett. 42:407, 1979

Folding in assumptions about the evolution in the Early Universe, sets more restrictive scales
dark matter production

Thermal production

Non-thermal production

In thermal equilibrium with the SM particles

very weak couplings, phase transition, particle decays...

Candídates must:

Be stable on cosmological scales Interact weakly or very weakly Be neutral Have the right relic density Be warm or cold

EQUILIBRIUM DENSITIES

At high temperatures, DM interactions with SM particles keep DM in thermal equilibrium

$$n_{eq} = \frac{g}{\left(2\pi\hbar\right)^3} \int \frac{4\pi p^2 dp}{e^{E/kT} \pm 1} = \begin{cases} \text{Fermions} \begin{pmatrix} \frac{3\zeta(3)}{4\pi^2} gT^3 & \text{if } m \ll T \\ g\left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T} & \text{if } m \gg T \\ \\ \text{Bosons} & \begin{pmatrix} \frac{\zeta(3)}{\pi^2} gT^3 & \text{if } m \ll T \\ g\left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T} & \text{if } m \gg T \end{cases} \end{cases}$$

Thermal Freeze-Out

Boltzmann equation:

$$\int L[f] \frac{d^{3}p}{(2\pi)^{3}} = \int C[f] \frac{d^{3}p}{(2\pi)^{3}}$$

$$\frac{dn}{dt} + 3Hn = -\langle \sigma v \rangle \left(n^2 - n_{eq}^2\right) \qquad Y \equiv n/s \qquad x \equiv m/T$$

$$\frac{x}{Y_{eq}} \frac{dY}{dx} = -\frac{n_{eq} \langle \sigma v \rangle}{H} \left(\left(\frac{Y}{Y_{eq}}\right)^2 - 1 \right) \qquad Y(x) \approx \begin{cases} Y_{eq}(x) & x \leq x_f \\ Y_{eq}(x_f) & x \geq x_f \end{cases}$$

$$\int_{10^{-10}}^{0} \frac{10^{-10}}{10^{-10}} \int_{10^{-10}}^{0} \frac{10^{-10}}{10^{-10}} \int_{10^{1$$

THERMAL RELICSHot relics $n_0 = s_0 Y_{\infty}$ Cold relics $Y \gg Y_{eq}$ $\Omega_{\text{HDM}} h^2 = \frac{m n_0 h^2}{\rho_c^0} = 0.076 \frac{g_n}{g_{*s}(T_F)} \left(\frac{m}{\text{eV}}\right) \le 1$ $Y_{\infty} \approx \frac{H(T=m)}{\langle \sigma v \rangle g_{*s}(T_F) m^3} x_F$

For a fermion with g=2 and decoupled at T~MeV

 $m \le 94.1 \text{ eV}$

COWSIK-MCCLELLAND BOUND

G. Gerstein and Ya. B. Zeldovich, Zh. Eksp. Teor. Fíz. Pís'ma Red. 4:174, 1966 R. Cowsik and J. McClelland, Phys. Rev. Lett. 29:669, 1972 $\Omega_{\rm CDM}h^2 \approx 0.1 \left(\frac{\langle \sigma v \rangle}{3 \times 10^{-26} \,\mathrm{cm}^3 \,/\,\mathrm{s}}\right)^{-1} \left(\frac{x_F}{20}\right) \left(\frac{7}{g_{*S}(T_F) \,/\,g_*(T=m)^{1/2}}\right)$

with weak interactions: $\langle \sigma v \rangle \simeq G_F^2 m^2$

 $m \ge 2 \text{ GeV}$

Lee-weinberg bound

B. W. Lee and S. Weinberg, Phys. Rev. Lett 39:165, 1977

P. Hut, Phys. Lett. B69:87, 1977

K. Sato and M. Kobayashí, Prog. Theor. Phys. 58:1775, 1977

M. I. Vysotskii, A. D. Dolgov and Ya. B. Zeldovich, JETP Lett. 26:188, 1977

D. A. Dícus, E. W. Kolb and V. L. Teplítz, Phys. Rev. Lett. 39:168, 1977

K. Gríest and D. Seckel, Phys. Rev. D43: 3191, 1991

Resonances

Existence of a particle with twice the DM mass

Thresholds

Contribution at freeze-out from "forbidden" channels

Co-annihilations

Existence of particles with similar mass as DM

General requirement for theoretical models

Lightest (neutral) particle in the new sector needs to be stable: how?

by adding a discrete D-symmetry, such that

D=+1 SM sector D=-1 new sector

Particles in one sector can only be annihilated or produced in pairs When particles in one sector decay, they have to produce one of the same sector:

the lightest particle with D = -1 is stable

KINETIC DECOUPLING

Sets mínímum síze of structures

 $n_{SM}\sigma_{DM-SM}v_{DM} \sim H(T_{kd})$

free-streaming (after decoupling) and collisional damping (before decoupling) A. M. Green, S. Hofmann, D. Schwarz, JCAP 08:003, 2005 A. Loeb and M. Zaldarríaga, Phys. Rev. D71:103520, 2005

> Large range of possible values depending on the properties of the particle physics model

KINETIC DECOUPLING

CDM (v<0.1c) WIMPs, axion, SuperWIMPs...

WDM (0.1c < v < 0.95 c) sterile neutrinos, gravitinos

HDM (v>0.95c) Light neutrinos

ITP, Zurích

SUSY WIMPS

(sneutríno, gravítíno, neutralíno) double the partícle content and add R-paríty (to avoíd proton decay)

Extra-D WIMPS

every field corresponds to a tower of 4-D particles: the lightest one is a DM candidate (KK parity)

Inert Higgs

extra Higgs doublet with Z_2 symmetry

AXION (non-thermal)

to solve the strong CP problem (no CP violation in strong interactions): add U(1) symmetry

Sterile neutrinos (non-thermal)

neutrínos have mass: heavy partners? If m~kev WDM (e.g., produced vía oscíllatíons)

L. Roszkowskí, Pramana 62:389, 2004

THEORETICAL APPROACHES

EFFECTIVE FIELD THEORY

SIMPLIFIED MODELS

Complete Models

SUSY, 2HDM, UED ...

THEORETICAL APPROACHES EFFECTIVE FIELD THEORY SIMPLIFIED MODELS

ít ís the most símplífied descríptíon to study models ín general and línks dífferent searches with a síngle operator

> íts range of valídíty ís límíted (mainly at collíders)

complete models

SUSY, 2HDM, UED ...

THEORETICAL APPROACHES EFECTIVE FIELD

SIMPLIFIED MODELS

símple, but renormalízable, closer to realístíc (UV-completed) models medíator searches

yet, quite academic

EFFECTIVE FIELD THEORY

ít ís the most símplífied descríptíon to study models ín general and línks dífferent searches wíth a síngle operator

> íts range of valídíty ís límíted (mainly at collíders)

complete models

SUSY, 2HDM, UED ...

THEORETICAL APPROACHES

SIMPLIFIED MODELS

símple, but renormalízable, closer to realístíc (UV-completed) models medíator searches

yet, quite academic

EFFECTIVE FIELD THEORY

ít ís the most símplífied descríptíon to study models ín general and línks dífferent searches with a síngle operator

> íts range of valídíty ís límíted (mainly at collíders)

complete models

full-fledged models (solving other problems)

many parameters -> degeneracíes