Neutrino Experiments Lecture 1

Michel Sorel (IFIC - CSIC & U. de Valencia)

8th IDPASC School, Valencia (Spain), May 2018

Neutrinos: what we know

(see M. Tortola's lectures)

- Interact only weakly
 - No color, no electric charge
- Three light (<m_z/2) neutrino states
 - v_e , v_μ , v_τ flavors

- Neutrino number density in Universe only
- outnumbered by photons
 - $n(v+\overline{v}) \approx 100 \text{ cm}^{-3} \text{ per flavor}$

• From neutrino oscillations:

- Lightest known fermions, but massive
- Large flavor mixing

Neutrino flavor oscillations

(see M. Tortola's lectures)

- Neutrinos *change flavor* as they propagate through space!
- Flavor change follows oscillatory pattern depending on neutrino baseline L and energy E
- Neutrino oscillation implies massive neutrinos ($\Delta m^2 \neq 0$) and neutrino mixing ($9 \neq 0$)
- 2-neutrino mixing example, for v_{μ} beam with energy E:

nass

Knowledge on 3-neutrino oscillation parameters

(see M. Tortola's lectures)

Mass splittings and mixing angles measured with 10% precision or better*

Outstanding Questions in Neutrino Physics

(see M. Tortola's lectures)

Neutrino question 1: Identity

Dirac:	
 4 states ∨ ≠ √ 	

	Helicity	Conserved Lepton Number	Lepton production rate	Anti-lepton production rate
\vee	-1/2	+1	1	0
	+1/2	+1	(m/E) ² <<1	0
$\overline{\mathbf{v}}$	-1/2	-1	0	(m/E) ² <<1
	+1/2	-1	0	1

	Helicity	Conserved Lepton Number	Lepton production rate	Anti-lepton production rate
$\vee = \overline{\mathbf{v}}$	-1/2	none	1	0
$\vee = \overline{\nabla}$	+1/2	none	0	1

Neutrino question 2:

We know it is non-zero, but... When the work we wanted the work of the work of

What is the neutrino mass value?

Neutrino mass could be anywhere between 0 and ~1 eV

⇒ how different from quarks and charged leptons?

Neutrino question 3: Mass ordering

- If v_1 taken as most electron-rich state, $m_1 < m_2$ from solar neutrinos
- Normal mass ordering: $m_{light} = m_1 \Rightarrow$ similar to quarks and charged leptons
- Inverted mass ordering: m_{light} = m₃ ⇒ "opposite" to quarks and charged leptons

Neutrino question 4: Mixing

Is CP symmetry violated in the neutrino sector?

Possible source of CP violation in neutrino sector that can be measured with oscillations: Dirac CP-odd phase δ

 $\delta \neq 0, \pi \Leftrightarrow$ oscillation probabilities violate CP invariance: different probabilities for neutrinos and antineutrinos!

Neutrino question 5: Species

 LEP: three neutrino flavors participating in the weak interactions and with mass <m_z/2. But...

...are there light "sterile" neutrino states, in addition to the three "active" ones?

• Hinted by anomalous results at short baselines:

Anomaly	Baseline (m)	Energy (MeV)	Oscillation interpretation	Significance (ơ)
LSND	30	50	vµ→ve	3.8
MiniBooNE v	500	600	vµ→ve	3.4
MiniBooNE ⊽	500	600	⊽µ→⊽e	2.8
Gallium	2	1	Ve→Vs	2.8
Reactor	10-20	5	⊽e→⊽s	~3

How to experimentally address neutrino questions

(topic of these lectures, see also J. Zornoza, M. Spurio, S. Pastor)

Different ways to probe neutrino properties (1/3) *Neutrino oscillations*

- Neutrino source: several
- Neutrino properties: from direct neutrino detection (flavor, energy)

Different ways to probe neutrino properties (2/3) Neutrinoless double beta decay

- **Neutrino source**: natural radioactivity (double β)
- Neutrino properties: from virtual neutrino exchange contributions

Different ways to probe neutrino properties (3/3)

Direct neutrino mass measurements

- **Neutrino source**: natural radioactivity (single β)
- Neutrino properties: from kinematics of final state electron

Message:

neutrino properties can be probed either through direct neutrino detection, or indirectly

Direct neutrino detection probes:

- My lectures (Neutrino Experiments)
- J. Zornoza's lectures (Neutrino Telescopes)
- M. Spurio (Multi-messenger astronomy)

Indirect probes:

- My lectures (Neutrino Experiments)
- S. Pastor's lectures (Neutrino Cosmology)

A wealth of neutrino experiments!

Experiments to be presented at Neutrino 2018 Conference next week

Super-Kamiokande ICAL CONUS PROSPECT ANITATRISTAN STEREO SNO XENON1T AXEL CANDLES-III_{IsoDAR NuLat} PTC GRAND ARA Borexino MICE ICARUSIceCube MiniBooNE_{AMore} PICO Daya-Bay EMPHATIC KATRIN KM3NeTT2K Solid WAGASCI CUORE COBRA MAJORANA Project LEGEND MicroBooNE GERDA NINJATroitsk SuperNEMO Baikal-GVD HALO-1kT DARWIN ANNIE TRIMS Theia ANTARES XMASS NEOS MES RENO NuDot EXO NOVA HOL CENNS COHERENT Neutrino ARIANNA DS KamLAND-Zen OS EC Double-Chooz nEXC

Plan for these lectures

Today: neutrino experiments basics

- Neutrino open questions \checkmark
- How to measure neutrino oscillation parameters
- Neutrino sources
- Neutrino interactions with matter
- Neutrino detector technologies

Wednesday: neutrino experiments specifics

- Selected current and future v oscillation experiments
- Neutrinoless double beta decay experiments
- Experiments for direct neutrino mass measurements

How to measure neutrino oscillation parameters

Often neutrino oscillation results given in (Δm², sin²29) space, where Δm² and sin²29 are parameters from simple 2-neutrino oscillations:

 $P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\vartheta \cdot \sin^2(1.27\Delta m^2 \frac{L}{E})$

Often neutrino oscillation results given in (Δm², sin²29) space, where Δm² and sin²29 are parameters from simple 2-neutrino oscillations:

 $P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\vartheta \cdot \sin^2(1.27\Delta m^2 \frac{L}{E})$

• Sensitivity curve (drawn <u>before</u> carrying out experiment): can potentially measure oscillation parameters to the right and above it.

Often neutrino oscillation results given in (Δm², sin²29) space, where Δm² and sin²29 are parameters from simple 2-neutrino oscillations:

 $P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\vartheta \cdot \sin^2(1.27\Delta m^2 \frac{L}{E})$

- Sensitivity curve (drawn <u>before</u> carrying out experiment): can potentially measure oscillation parameters to the right and above it.
- If an experiment sees no oscillations, data are compatible with sin²29=0 for all Δm²
 - upper limit on sin²29 for each Δm², resembling sensitivity curve

Often neutrino oscillation results given in (Δm², sin²29) space, where Δm² and sin²29 are parameters from simple 2-neutrino oscillations:

 $P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\vartheta \cdot \sin^2(1.27\Delta m^2 \frac{L}{E})$

- Sensitivity curve (drawn <u>before</u> carrying out experiment): can potentially measure oscillation parameters to the right and above it.
- If an experiment sees no oscillations, data are compatible with sin²29=0 for all Δm²
 - upper limit on sin²29 for each Δm², resembling sensitivity curve
- If an experiment sees oscillations, "potato-like" allowed region in parameter space obtained in sensitive area

Short- and long-baseline experiments

Often neutrino oscillation results given in (Δm², sin²29) space, where Δm² and sin²29 are parameters from simple 2-neutrino oscillations:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\vartheta \cdot \sin^2(1.27\Delta m^2 \frac{L}{E})$$

• Experiment runs out of sensitivity when $\Delta m^2(L/E) < 1$

Short- and long-baseline experiments

Often neutrino oscillation results given in (Δm², sin²29) space, where Δm² and sin²29 are parameters from simple 2-neutrino oscillations:

 $P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\vartheta \cdot \sin^2(1.27\Delta m^2 \frac{L}{E})$

- Experiment runs out of sensitivity when $\Delta m^2(L/E) < 1$
- To probe lower Δm^2 values, need to increase L/E \rightarrow long-baseline experiment

Short- and long-baseline experiments

Often neutrino oscillation results given in (Δm², sin²29) space, where Δm² and sin²29 are parameters from simple 2-neutrino oscillations:

 $P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\vartheta \cdot \sin^2(1.27\Delta m^2 \frac{L}{E})$

- Experiment runs out of sensitivity when $\Delta m^2(L/E) < 1$
- To probe lower Δm² values, need to increase L/E → long-baseline experiment
- Drawback: number of events scale with 1/L²
 →less statistics → worse sin²29 sensitivity than short-baseline experiment at high Δm²

Short- and long-baseline experiments

Often neutrino oscillation results given in (Δm², sin²29) space, where Δm² and sin²29 are parameters from simple 2-neutrino oscillations:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\vartheta \cdot \sin^2(1.27\Delta m^2 \frac{L}{E})$$

- Experiment runs out of sensitivity when $\Delta m^2(L/E) < 1$
- To probe lower Δm^2 values, need to increase L/E \rightarrow long-baseline experiment
- Drawback: number of events scale with 1/L²
 →less statistics → worse sin²29 sensitivity than short-baseline experiment at high Δm²
- Bottom line: optimize (L, E) for each oscillation search, and maximize number of events!

Facts of life for the neutrino experimenter:...

$$N_{\rm obs} = \left[\int \mathcal{F}(E_{\nu})\sigma(E_{\nu},...)\epsilon(E_{\nu},...)dE_{\nu}d... \right] \frac{M}{A m_{N}}T \right]$$

$$N_{\rm obs} : \text{ number of neutrino events recorded}$$

$$\mathcal{F} : \text{ Flux of neutrino (#/cm²/s)}$$

$$\sigma : \text{ neutrino cross section per nucleon } \simeq 0.7 \frac{E_{\nu}}{[\text{GeV}]} \times 10^{-38} \text{cm}^{2}$$

$$\mathcal{F} = 1/(\text{cm}^{2}\text{-s}) \quad \epsilon : \text{ detection efficiency}}$$

$$\frac{1}{1000 \text{ km}} \text{ M} : \text{ total detector mass}} \qquad \text{ typical accelerator} \text{ up time in one} \text{ peak of the trans}$$

$$\mathcal{T} : \text{ exposure time}$$

$$N_{\rm obs} = \left[\frac{\mathcal{F}}{\text{cm}^{2}\text{s}}\right] \left[0.7 \times 10^{-38} \frac{E_{\nu}}{\text{GeV}} \text{cm}^{2}\right] [\epsilon] [1 \text{ GeV}] \left[\frac{M}{20 \cdot 1.67 \times 10^{-27} \text{ kg}}\right] [2 \times 10^{7} \text{ s}]$$

$$N_{\rm obs} = 4 \times 10^{-6} \cdot \mathcal{F}[(\text{cm}^{2} \cdot \text{s})^{-1}] \cdot \mathbb{E}_{\nu}[\text{GeV}] \cdot \epsilon \cdot \text{M}[\text{kg}]$$

$$push beam power work at high energies maximize efficiency efficiency masses to get in the game 21$$

Dual- or multi-baseline experiments

Example for accelerator-based experiment, similar for reactor experiments

Neutrino sources

Neutrino sources

Neutrinos are everywhere!

We have directly detected neutrinos from all these sources, except Big Bang neutrinos

Reactor neutrinos

Flavors: \bar{v}_e

 $E_v \sim 1-10 \text{ MeV}$

- Source used for neutrino discovery!
- Electron antineutrinos emitted from β⁻ decays of neutron-rich fission fragments
- Four main sources: ²³⁵U, ²³⁹Pu, ²⁴¹Pu and ²³⁸U
- About 6 antineutrinos per fission cycle
- Since each fission cycle produces 200 MeV thermal energy, one can convert power to neutrino flux:

1 GW (thermal) ~ 1.8×10²⁰ $\overline{\nu}_{e}$ / second

Solar neutrinos

Flavors: v_e E_v ~ 0.1-10 MeV

- Source providing first hint for neutrino oscillations!
- Nuclear fusion processes in the Sun produce neutrinos:

 $4p + 2e^{-} \rightarrow He + 2v_e + 26.7 \text{ MeV}$

• More detailed (pp chain, also sub-dominant CNO cycle):

Radioactive source neutrinos

- Three types of (1st order) nuclear transitions producing neutrinos or antineutrinos:
 - β decay: (Z,A) \rightarrow (Z+1,A) + e⁻ + $\overline{\nu}_{e}$
 - β^+ decay: (Z,A) \rightarrow (Z-1,A) + e^+ + v_e
 - Electron Capture (EC): (Z,A) + $e^- \rightarrow$ (Z-1,A) + v_e
- Used to calibrate solar neutrino detectors
- Have also been proposed for oscillometry experiments to study short-baseline neutrino anomalies
- Possible sources: electron capture of ⁵¹Cr, β decay of ¹⁴⁴Ce
- GALLEX: 1.7 MCi ⁵¹Cr source! Emitted ~300 W of heat!
- Wed: β/ββ sources also for direct neutrino mass measurements, neutrinoless double beta decay searches

Flavors: v_e , \bar{v}_e E_v ~ 0.1-5 MeV

Accelerator neutrinos

Flavors: v_{μ} , \bar{v}_{μ} , v_{e} , \bar{v}_{e} E_v ~ 0.1-100 GeV

• First source providing high-energy neutrinos, and of muon flavor type!

protons thick target and horn(s) T^{+} V_{μ} V_{μ} V_{e} V_{e} V

- Neutrinos from decay-in-flight of magnetically focused mesons. Can choose polarity!
- Mesons produced through hadronic interactions of primary protons with thick target
- Energy of on-axis neutrinos ~ 0.1 proton energy, less for off-axis neutrinos
- Dedicated hadron production experiments to understand neutrino flux

Accelerator neutrinos

Parameters from modern-day beamlines

Flavors: v_{μ} , \bar{v}_{μ} , v_{e} , \bar{v}_{e} E_v ~ 0.1-100 GeV

	Booster (Fermilab)	Main Injector (Fermilab)	SPS (CERN)	Main Ring (JPARC)	Main Injector (Fermilab)
Date	2002	2005	2006	2017	2017
Proton kinetic energy (GeV)	8	120	400	30 (50)	120
Beam power (kW)	29	350	510	500 (750)	720
Target material	beryllium	graphite	graphite	graphite	graphite
Target length (cm)	71	95	1000	91	120
Secondary focusing	1 horn WBB	2 horn WBB	2 horn WBB	3 horn off-axis	2 horn off-axis
Decay region length (m)	50	675	130	96	675
Typical neutrino energy (GeV)	1	3-20	17	0.6	2
Experiments	MiniBooNE, SciBooNE, MicroBooNE	MINOS, MINERvA	OPERA, ICARUS	T2K	NOvA, MINERvA, MINOS+

Atmospheric neutrinos

Flavors: v_{μ} , \bar{v}_{μ} , v_{e} , \bar{v}_{e} E_v ~ 0.1-100 GeV

High-energy astrophysical neutrinos See J. Zornoza's, M. Spurio's lectures

High-energy astrophysical neutrinos See J. Zornoza's, M. Spurio's lectures

Flavors: all? $E_v \sim 10-1000 \text{ TeV}$

- Recently observed by IceCube!
- Clear excess above atmospheric neutrino background
- Origin: yet to be determined
- Neutrinos produced from decay of unstable mesons, as in atmosphere
- Expect $v_e:v_\mu:v_\tau = 1:1:1$ flavor composition on Earth from oscillations

Neutrino interactions with matter

Why study neutrino interactions?

• Measure final state lepton and/or hadron(s)

Why study neutrino interactions?

• Infer electroweak, nuclear, neutrino properties

Neutrino interactions and oscillations

- Neutrinos interact only via the weak interaction
 - Either neutral- or charged-current

- We identify the neutrino flavor via the CC interaction
 - CC interactions used for oscillation measurements
 - NC interactions are not affected by oscillations, but can be background to CC signals!
- In CC interactions, nearly all the neutrino energy is deposited in the detector
 - Not so for NC interactions

Neutrino interaction signatures

- Experiments can typically distinguish the
- following neutrino interaction products:
 - Electrons and electron showers
 - Muon tracks
 - Hadrons and hadronic showers
 - Tau decay products

Some important neutrino interactions

Examples for few-GeV muon neutrino interactions

Current knowledge of neutrino interactions

- 1-100 MeV energy: $\overline{v}_e + p \rightarrow e^+ + n$ known with ±0.5% accuracy!
 - If scattering not off free protons, more uncertain because of nuclear effects
- 0.1-20 GeV energy: many processes, insufficient knowledge (10-20% level)
- 20-300 GeV energy: DIS interactions off quarks, known with few % accuracy

- Muon neutrino cross sections
- Note: divided by neutrino energy!

(to 1st order: σ proportional to E_v)

CC inclusive scattering cross sections

Neutrino scattering measurements

- Accurate knowledge of neutrino interactions (both signal and background processes) is essential for sensitive neutrino oscillation searches!
- Need of dedicated neutrino scattering experiments. Example: MINERvA experiment
- Neutrino interaction studies also with "near detectors" at oscillation experiments

Accelerator-based experiments studying neutrino scattering

Experiment	beam	$\langle E_{\nu} \rangle, \langle E_{\overline{\nu}} \rangle$ GeV	$\begin{array}{c} neutrino\\ target(s) \end{array}$	run period
ArgoNeuT	$ u,\overline{ u}$	4.3, 3.6	Ar	2009 - 2010
ICARUS (at CNGS)	u	20.0	Ar	2010 - 2012
K2K	u	1.3	CH, H_2O	2003 - 2004
MicroBooNE	u	0.8	Ar	2015 -
MINERvA	$ u,\overline{ u}$	3.5 (LE), 5.5 (ME)	He, C, CH, H_2O , Fe, Pb	2009 -
MiniBooNE	$ u,\overline{ u}$	0.8,0.7	CH_2	2002 - 2012
MINOS	$ u,\overline{ u}$	3.5,6.1	Fe	2004 - 2016
NOMAD	$ u,\overline{ u}$	23.4,19.7	C-based	1995 - 1998
NOvA	$ u,\overline{ u}$	2.0, 2.0	CH_2	2010 -
SciBooNE	$ u,\overline{ u}$	0.8,0.7	CH	2007 - 2008
<u>T2K</u>	$ u,\overline{ u}$	0.6, 0.6	CH, H_2O , Fe	2010 -

Neutrino detector technologies

Cherenkov detectors Cherenkov effect

• If speed of charged particle exceeds speed of light in detector medium (eg, water), Cherenkov radiation produced

herenkov effect

$$\cos \theta_C = \frac{1}{\beta n}, \beta > \frac{1}{n}$$

Cherenkov detectors Cherenkov effect

• If speed of charged particle exceeds speed of light in detector medium (eg, water), Cherenkov radiation produced

$$\cos \theta_C = \frac{1}{\beta n}, \beta > \frac{1}{n}$$

- PMTs charge and time information can reconstruct;
 - vertex position $n^2 = \sum$
 - number of tracks i=1
 - direction of tracks
 - energy of tracks
 - particle types

Liquid scintillator detectors

- Large volume of liquid scintillator viewed by PMTs
- Larger light collection than water Cherenkov, lower energy threshold (~1 MeV)
- Key factor at low energies is radioactive background suppression ("onion-shell" designs)
- Scintillation light emitted isotropically \rightarrow lose directionality information
- As antineutrino detector, background suppression by requiring (e+,n) double coincidence following ve+p→e++n signal

Segmented tracking calorimeters

- Stack of scintillator planes (plastic or liquid), each made of bars providing xz or yz view
- Alternate xz and yz planes for full 3D track reconstruction
- Can be either fully active calorimeter, or sampling calorimeter (alternate active and passive planes of material)
- Can be magnetized, to measure track momentum by curvature and charge sign

Segmented tracking calorimeters

- Stack of scintillator planes (plastic or liquid), each made of bars providing xz or yz view
- Alternate xz and yz planes for full 3D track reconstruction
- Can be either fully active calorimeter, or sampling calorimeter (alternate active and passive planes of material)
- Can be magnetized, to measure track momentum by curvature and charge sign

- Ionization electrons collected by establishing drift field between cathode and readout planes
- TPC detection principle: full 3D imaging from 2D image on readout planes (wires, pads) as a function of electron drift time
- Scintillation light gives fast trigger signal and absolute event timing

Advantages:

- Excellent imaging from mm-scale resolution
- Accurate calorimetry from fully active volume and large ionization signal (1 electron / 24 eV deposited energy)
- Particle identification from dE/dx information

Disadvantages: technically challenging!

• Argon purity, cryogenics, HHV

- Charged particles deposit energy in LAr via ionization and scintillation
- Ionization electrons collected by establishing drift field between cathode and readout planes
- TPC detection principle: full 3D imaging from 2D image on readout planes (wires, pads) as a function of electron drift time
- Scintillation light gives fast trigger signal and absolute event timing

Advantages:

- Excellent imaging from mm-scale resolution
- Accurate calorimetry from fully active volume and large ionization signal (1 electron / 24 eV deposited energy)
- Particle identification from dE/dx information

Disadvantages: technically challenging!

• Argon purity, cryogenics, HHV

What is going on in this event?

What is going on in this event?

What is going on in this other event?

What is going on in this other event?

Lecture 1 End!

Today: neutrino experiments basics

- Neutrino open questions \checkmark
- \bullet How to measure neutrino oscillation parameters \checkmark
- Neutrino sources \checkmark
- \bullet Neutrino interactions with matter \checkmark
- Neutrino detector technologies \checkmark

Wednesday: neutrino experiments specifics

- Selected current and future v oscillation experiments
- Neutrinoless double beta decay experiments
- Experiments for direct neutrino mass measurements