The Extreme Universe: high energy cosmic rays

Mário Pimenta, Valencia, May 2018

1

Ankle (1 particle/km²/year)

 $10^9 \ 10^{10} \ 10^{11} \ 10^{12} \ 10^{13} \ 10^{14} \ 10^{15} \ 10^{16} \ 10^{17} \ 10^{18} \ 10^{19} \ 10^{20}$

http://www.physics.utah.edu/~whanlon/spectrum.html

(1 particle/km²/century

LHC

1111111

Energy (eV)

100 TeV

1 11100

10⁻¹⁶

10-19

10-22

10-25

10⁻²⁸

$$\frac{\mathrm{dN}}{\mathrm{dE}} \propto \mathrm{E}^{-\alpha}$$

$$\alpha = \begin{cases} 2.7 & E < 10^{16} \\ 3.0 & 10^{16} < E < 10^{18} \\ 2.7? & E > 10^{18} \end{cases}$$

IN I

Viktor Hess, 1912

Energy spectrum (E >10¹⁴ eV)

From Beatty, Matthews, and Wakely, "Cosmic Rays", in Review of Particle Physics, 2018

Anthropomorphic representation

Origin ?

Surpass human-made accelerators !

 $\begin{array}{l} R \ \sim 10 \ \text{km}, \ B \sim 10 \ \text{T} \\ \text{E} \ \propto BR \sim 10 \ \text{TeV} \end{array}$

High Luminosity Sophisticated detectors Central region Energy limited

Where can be these accelerators in the Universe?

Hillas plot

How to generate bottom-up energies much higher than thermal?

Enrico Fermi, Werner Heisenberg and Wolfgang Pauli

There are a second	Dec 4	1948	EURTHER RE THE UNIVER	EPRODUCTIC SITY OF CHI	N PROHIBITE CAGO LIBRAS	D	37
a) herry of (a) herry (magnetic	arquired fields	us in col	lisions	agian	nst co	zin	
	Non	. relati	vistic 2	Case			
■ (M = mass	of particle	M V V = ve	tority .	f ni	oving	fie	U
M (v	$(1 \text{ gn colli})^2$ + 2 V) ²	sion qui MU-2_	M (4	ryg g vV+	an. 4 V ²):	=	
2 Rummer all	=	2 M(20	$\frac{2}{1+2}$	²)	Prof	, 1 . = -	5+V 20
lain	M (-201	+ 2 V	20-) gr		ory	9
Put Time t	MV2						
	w B ²						

Acceleration mechanism

Fermi 2nd order (1949)

particles accelerated in stochastic collisions with massive interstellar clouds (collisions to a moving diffusive wall!)

In the cloud reference frame

 $E_1^* = \gamma E_1(1 - \beta \cos \theta_1)$ $E_2^* = E_1^*$

Back to the Lab reference frame

 $E_2 = \gamma E_2^* (1 + \beta \cos \theta_2^*)$

Then:

$$\frac{\Delta E}{E} = \frac{1 - \beta \cos \theta_1 + \beta \cos \theta_2^* - \beta^2 \cos \theta_1 \cos \theta_2^*}{1 - \beta^2} - 1$$

But:
$$\langle \cos \theta_2^* \rangle = 0$$

$$\langle \cos \theta_1 \rangle = \frac{\int_{-1}^{1} \cos \theta_1 (1 - \beta \cos \theta_1) d\cos \theta_1}{\int_{-1}^{1} (1 - \beta \cos \theta_1) d\cos \theta_1} = -\frac{\beta}{3}$$

 $\left< \frac{\Delta E}{E} \right> \simeq \frac{4}{2} \beta^2$

 $\beta \sim 10^{-1}$

Acceleration mechanism

Fermi 1st order

Shock formation :

- Sudden release of Energy (CMEs, SNRs, GRBs,...)
- Supersonic flow hits an obstacle (AGNs jets, pulsar winds, ...)

Particles gain energy by consecutive crossings of the shock front!

$$\frac{\Delta E}{E} = \frac{1 - \beta \cos \theta_1 + \beta \cos \theta_2^* - \beta^2 \cos \theta_1 \cos \theta_2^*}{1 - \beta^2} - 1$$

Now (plane shock front):

$$\langle \cos \theta_1 \rangle = \frac{\int_{-1}^0 \cos^2 \theta_1 \, d\cos \theta_1}{\int_{-1}^0 \cos \theta_1 \, d\cos \theta_1} = -\frac{2}{3}$$

$$\langle \cos \theta_2^* \rangle = \frac{\int_0^1 \cos^2 \theta_2^* \, d\cos \theta_2^*}{\int_0^1 \cos \theta_2^* \, d\cos \theta_2^*} = \frac{2}{3}$$

Solar coronal mass ejection 9 Mar 2000

Crossing probability $\alpha \cos(\theta)$

$$\langle \frac{\Delta E}{E} \rangle \simeq \frac{4}{3} \beta$$

The power law

In each cycle the particle gains a small fraction of energy ϵ . After n cycles:

 $\mathsf{E}_{\mathsf{n}} = \mathsf{E}_{\mathsf{0}} \, (\mathbf{1} + \varepsilon)^{\mathsf{n}}$

Or the number of cycles to attain an energy E is:

 $n = ln(E/E_0)/ln(1+\varepsilon)$

The particle may escape from the shock region with some probability P_i . Then the probability to escape with $E>E_n$ is:

$$P_{E_n} = P_i \sum_{j=n}^{\infty} (1 - P_i)^n = (1 - P_i)^n$$

and

$$\frac{N}{N_0} = P_{E_n} = \left(\frac{E}{E_0}\right)^{-\alpha}$$

$$\alpha = -\frac{\ln(1 - P_i)}{\ln(1 + \epsilon)} \cong \frac{P_i}{\epsilon}$$

$$\frac{dN}{dE} \propto \left(\frac{E}{E_0}\right)^{-\gamma} \qquad \gamma = \alpha + 1$$

$$\left(\frac{dN}{dE}\right)_{Source} \approx E^{-2}$$
Supersonic shock
$$\left(\frac{dN}{dE}\right)_{Source} \propto \left(\frac{dN}{dE}\right)_{Source} \cdot \tau_{esc}(E) \propto E$$

The Greisen-Zatsepin-Kuzmin (GZK) cutoff

$$E_{p} \approx 10^{20} \, \text{eV}$$
$$\lambda = \frac{1}{\sigma_{\rho\gamma} \rho_{CMB}}$$

≈ 6 Mpc

 $\pi^0 \longrightarrow \gamma \gamma$ $\pi^+ \longrightarrow \mu^+ \nu_\mu \longrightarrow e^+ \nu_e \nu_\mu \bar{\nu}_\mu$

The Greisen-Zatsepin-Kuzmin (GZK) cutoff

$$egin{aligned} \pi^0 &\longrightarrow \gamma \, \gamma \ \pi^+ &\longrightarrow \mu^+ \,
u_\mu &\longrightarrow e^+ \,
u_e \,
u_\mu \, ar
u_\mu \, ar
u_\mu \,
u_\mu \,$$

Propagation distance (Mpc)

Predicted (and observed) Spectrum

No cosmogenic neutrinos observed so far

Milky Way Galactic Magnetic Field

as seen by Planck satellite

 $\begin{array}{ll} \mbox{Galactic} & \mbox{B} \simeq 10^{-6} \mbox{ G} \\ \mbox{Extra-Galactic} & \mbox{B} \le 10^{-9} \mbox{ G} \end{array}$

Deflection in the Galactic Magnetic Field (p)

T.Stanev

Above 10¹⁹ : Astronomy !

time =
$$-900 \, \mu s$$

time =
$$\frac{18}{-800}$$
 µs

time =
$$-700 \,\mu s$$

time =
$$^{21}_{-500 \, \mu s}$$

time =
$$-400 \,\mu s$$

The first interaction!

time =
$$\frac{23}{300} \, \mu s$$

Shower development

time =
$$\frac{24}{-200} \mu s$$

Shower development

time =
$$-100 \, \mu s$$

Shower hits Earth surface

time = $0 \mu s$

Shower hits Earth surface

P(Fe) Air \rightarrow Baryons (leading, net-baryon \neq 0) $\rightarrow \pi^{0}$ ($\pi^{0} \rightarrow \gamma\gamma \rightarrow e^{+}e^{-}e^{+}e^{-} \rightarrow ...$) $\rightarrow \pi^{\pm}$ ($\pi^{\pm} \rightarrow \mu^{\pm}$ if $L_{decay} < L_{int}$) $\rightarrow K^{\pm}$, D. ...

Particle interactions

P(Fe) Air \rightarrow Baryons (leading, net-baryon \neq 0) $\rightarrow \pi^{0}$ ($\pi^{0} \rightarrow \gamma \gamma \rightarrow e^{+}e^{-}e^{+}e^{-} \rightarrow ...$) $\rightarrow \pi^{\pm}$ ($\pi^{\pm} \rightarrow \mu^{\pm}$ if $L_{decay} < L_{int}$) $\rightarrow K^{\pm}$, D. ...

e.m. and weak interations

- well known !

hadronic interations

- large uncertainties !
- forward region, small p_t , very high \sqrt{s}
- main parameters: σ_{in} , k_{in} , <n>, (fraction π^0 , Nb of Baryons, ...)

Nuclear fragmentation

- Nuclei are not just a superposition of nucleons !

Missing Energy

- 5% to 10% ...

Shower cascades

Extensive Air Showers (EAS)

Fluorescence from space

JEM-EUSO

Measurements by an Hybrid detector at Earth

Earth Observatories

Telescope Array (TA) Delta, UT, USA 507 detector stations, 680 km² 36 fluorescence telescopes

Pierre Auger Observatory

Province Mendoza, Argentina 1660 detector stations, 3000 km² 27 fluorescence telescopes

Auger:

6.7 x 10⁴ km² sr yr (spectrum) 9 x 10⁴ km² sr yr (anisotropy)

TA:

8.1 x 10³ km² sr yr (spectrum) 8.6 x 10³ km² sr yr (anisotropy)

34

Telescope Array (TA)

Area ~ 680 km²

- 3 fluorescence telescopes
- 507 double-Layer scintillators

Talk by Abu-Zayyad

TALE (TA low energy extension) Communication Tower WLAN Antenna LIDAR Laser facility Test setup for -30 km radar reflection Solar Panel Infill array and high elevation telescopes Battery & Electronics GPS Antenna Electron light source (ELS): ~40 MeV Scintillator Box

Northern hemisphere: Utah, USA

Pierre Auger Observatory

Area ~ 3000 km²

24+3 fluorescence telescopes 1600 water Cerenkov detectors

Tanks aligned seen from Los Leones

telescope building "Los Leones"

LIDAR station

communication tower

telescope building "Los Leones"

LIDAR station

12

communication tower

E.M. and µ signal in the WCDs

41

A 4 eyes hybrid event !

Depth of the maximum X_{max} = (752 ± 7) g/cm²

SD Energy calibration in Auger

Auger is running smoothly

The Swiss clock!

Fraction of Water Cherenkov Tanks in operation

Many and important results !

10

 10^{18}

iron

 10^{20}

 10^{19}

E [eV]

Energy spectrum

Energy spectrum

GZK or the exhaustion of sources ???

Old Data

Composition is the key to disentangle the two scenarios!

X_{max} and the "beam composition"

Nuclei Iron, ...)

Shower development

Fe/p longitudinal profiles

Iron ~ 56 nucl(E/56) Smaller fluctuactions Smaller X_{max}

X_{max} distributions

As the energy increases the distributions become narrower !!!

<X_{max}> and RMS(X_{max})

A clear change above 3 10¹⁸ eV Beam composition ??? Hadronic interactions???

Mass composition

fluorescence telescope data (15% duty cycle)

Auger, preliminary

Composition could be explained by disintegration of ~ C or Si nuclei, very hard energy spectrum at injection favored (~ E^{-1}) ...

The "Particle Physics" interpretation ...

If just proton ...

A dramatic increase in the protonproton cross section

But no violation of the Froissart bound !

R.Ulrich (2008)

<X_{max} >distribution

Proton cross-section

If % p > 20%, % He < 25%

Slightly lower than it was expected at the time by most of the models, but in good agreement with recent LHC data.

The "number of μ_s

The "number of μ_s

$$S_{\text{resc}}(R_E, R_{\text{had}})_{i,j} \equiv R_E \; S_{EM,i,j} + R_{\text{had}} \; R_E^{\alpha} \; S_{\text{had},i,j}$$

Hadronic signal in data is significantly larger

Tension between data and all hadronic interaction models dell

Muon Production Depth (MPD)

L. Cazon, R.A. Vazquez, A.A. Watson, E. Zas, Astropart.Phys.**21**:71-86 (2004) L.Cazon, PhD Thesis (USC 2005)

Muon Production Depth (MPD)

<In A> from X_{max} and X^{μ}_{max}

 $(X_{max}\,,\,X^{\mu}_{max}\,)$ is sensitive to hadronic development of the shower (rapidity distributions, ...)

Origin

Extragalactic Origin

$E > 8 \times 10^{18} \,\mathrm{eV}$

Auger - 6.5% dipole at 5.2 sigma

Arrival directions follow mass distribution of near-by galaxies

Hot/Warm spots

$E > 6 \times 10^{19} \,\mathrm{eV}$

TA and Auger: over-densities ~20° size

Huchra, et al, ApJ, (2012)

Galaxies with D < 45 Mpc (2MASS catalog)

Anisotropy – Correlation with catalogs (Auger)

Starburst galaxies

(Giaccari ICRC 2017)

The Multimessager Era

GW170817

 v_{τ}

The first multimessenger discovery of a binary neutron star merger

 75°

First source of astrophysical neutrinos at high energy?

TITLE: GCN CIRCULAR NUMBER: 21916

- SUBJECT: IceCube-170922A IceCube observation of a high-energy neutrino candidate event
- DATE: 17/09/23 01:09:26 GMT
- FROM: Erik Blaufuss at U. Maryland/IceCube <blaufuss@icecube.umd.edu>

Claudio Kopper (University of Alberta) and Erik Blaufuss (University of Maryland) report on behalf of the IceCube Collaboration (http://icecube.wisc.edu/).

On 22 Sep, 2017 IceCube detected a track-like, very-high-energy event with a high probability of being of astrophysical origin. The event was identified by the Extremely High Energy (EHE) track event selection. The IceCube detector was in a normal operating state. EHE events typically have a neutrino interaction vertex that is outside the detector, produce a muon that traverses the detector volume, and have a high light level (a proxy for energy).

After the initial automated alert (https://gon.gsfc.nasa.gov/notices_amon/50579430_130033.amon), more sophisticated reconstruction algorithms have been applied offline, with the direction refined to:

Date: 22 Sep, 2017 Time: 20:54:30:43 UTC RA: 77.43 deg (-0.80 deg/+1.30 deg 90% PSF containment) J2000 Dec: 5.72 deg (-0.40 deg/+0.70 deg 90% PSF containment) J2000

We encourage follow-up by ground and space-based instruments to help identify a possible astrophysical source for the candidate neutrino.

IceCube 1709922A, publications in preparation

The Universe at the highest energies !

Energy density per decade similar in all three messenger particles

The Universe remains to be discovered !

International Doctorate Network in Particle Physics, Astrophysics and Cosmology

Mário Pimenta May 2018

Particle Physics:

"Matter" and Interactions

Astronomy/ astrophysics:

"Objects" in the sky

Cosmology: Origin and evolution of the Universe

Dark matter

Not really a super Man/Woman ...

Student profiles

Several scientific profiles have to co-exist! from the experimental physics students interested in the development of new detectors or data acquisition and readout systems to the theoretical physics student interested in the development of string theories.

to all students a minimum common scientific background should be provided.

This common background will favour the future mobility and employment of the students either in scientific research projects and institutions or in the society at large.

Activities

 Schools and Workshops ✓ A general IDPASC school every year (2 weeks: mornings lectures/afternoon exercises/exam at the end) ✓ Thematic schools Courses ✓ Specific courses via video-conference Public sessions ✓ General public (in particular last years high school students and teachers) Doctoral Scholarships (IDPASC-Portugal) ✓ 2010/2011/2012 – 20 grants ✓ 2014/2017 – 20 grants

IDPASC Posters ...

SECRETARIAT: Sandra Dias NEUTICE CONTINUES OF CONTINUES

STROPARTICLE

PHYSICS

Graduate School in Particle and Astroparticle physics of Annecy-le-Vieux

22 – 26 July 2013 Introductory course aimed at ^{4%} year, or advanced ^{3/4} year, physics students, Topics covered include LHC Physics, Neutrinos, Neavy Rovoux, Astroparticle Physics, Cravitational

www.idpasc.lip.pt

Propagation distances of different messenger particles

(diffusion time exceeds lifetime of Galaxy / Universe)

Combined fits

A. di Matteo for the Pierre Auger Coll., Proc 34th ICRC (2015)

Protons (blue) Helium (gray) Nitrogen (green) Iron (red)

A Fit (spectrum, <X_{max}>, RMS(X_{max})) is always possible but it requires a very unusual metallicity of the sources!