

LHC Upgrade: Detectors

8th IDPASC SCHOOL IFIC Valencia

24.-25.5.2018

Susanne Kühn, CERN

Overview

- Introduction to LHC detectors
- Upgrades of the LHC
- Detector upgrades of the experiments: ATLAS and CMS
 - Tracking detectors: silicon
 - Calorimeters
 - Muon detectors
- Detector upgrades of the LHCb and ALICE experiments
 - Silicon and Time Projection Chamber

Large Hadron Collider

- p-p, p-HI, HI-HI collider
- up to 14 TeV p-p collisions

Configuration of HEP detectors

24./25.5.2018

Particle flow reconstruction

Results with LHC data

- Experiments at LHC have produced many interesting results
- LHC measurements have lead to the exclusion of some popular models
- Probing of Standard Model Higgs Sector and TeV-scale BSM requires more data

High-Luminosity LHC

Towards the High-Luminosity LHC

LHC / HL-LHC Plan

From LHC to HL-LHC

Instantaneous luminosity x5 (for ATLAS, CMS, LHCb) \rightarrow Particle densities x5-10

Integrated luminosity x10 (for ATLAS, CMS, LHCb) \rightarrow Radiation damage x10

Increase of overlap of pp events (pile up x3-5)

Collisions from LHC to HL-LHC

24./25.5.2018

Ldt=33.5 fb

2015: <µ> = 13.7

2016: <µ> = 24.2

Total: <µ> = 22.9

45

50

ATLAS Online, √s=13 TeV

10 15 20

 L_{peak} = 1.4x10 ³⁴ cm⁻²s⁻¹

5

2016:

√s = 13 TeV

<µ> = 24

25

30 35 40

Mean Number of Interactions per Crossing

HL-LHC for Run 4+

- Shutdown of 30 months
- Aim for maximal luminosity of 4000 fb⁻¹

- Cryogenic system upgrade
- New large aperture triplet magnets (Nb₃Sn)
- New 11 T insertion magnets (NbTi)
- Crab Cavities
- Collimation upgrade
- Machine protection

• ...

Major intervention on more than 1.2 km of the LHC

HighLumi LHC landmarks

24./25.5.2018

How to get to HL-LHC

Lower beta* (~15 cm)

New inner triplet magnets - wide aperture Nb₃Sn Large aperture NbTi separator magnets Novel optics solutions

Dealing with the regime

Collision debris, high radiation

Beam from injectors

High bunch population, low emittance, 25 ns beam

Crossing angle compensation

Crab cavities

24./25.5.2018

Towards the High-Luminosity LHC: Detectors

LHC / HL-LHC Plan

24./25.5.2018

Physics goals at the HL-LHC

- Higgs Precision Measurements
- Vector-Boson-Scattering Precision Measurements
- Searches for BSM Physics

Higgs Couplings

- Higgs couplings highly sensitive to BSM physics
- With HL-LHC dataset significant improvement in precision
- Study based on following channels
 - $H \rightarrow gg$
 - $H \rightarrow ZZ^* \rightarrow 4I$
 - $H \rightarrow WW^* \rightarrow |\nu|\nu$
 - $H \rightarrow tt$
 - ttH, H \rightarrow gg and H \rightarrow µµ
 - WH/ZH, H \rightarrow gg
 - $H \rightarrow \mu\mu$

Higgs Self Coupling

- Double Higgs Production → direct handle on Higgs self coupling
- H (→ bb) H (→ gg) final state considered → clean final state und sufficiently large branching fraction

ATL-PHYS-PUB-2017-001

9000

 g_{QQQ}

Vector Boson Scattering

- Expected new physics at the TeV-Scale → VBS cross section
- Higgs discovery solves this problem → experimental confirmation? Contributions from BSM physics?

Searches for BSM Physics

- Mass range for SUSY searches largely enhanced
- Direct production of EW gauginos
- Direct production of staus
- Direct production of stops

HL-LHC Physics Summary

- Rich physics programme at the HL-LHC
 - Higgs precision measurements: Precision tests of SM
 - Vector Boson Scattering: Probing BSM in the electroweak sector
 - Direct BSM searches: mass ranges extended and direct sensitivity to new processes

But: Measurements of final states extremely challenging

Requirements at the HL-LHC

- CERN
- VBS/VBF: forward jets → forward tracking to reject pile-up by jet-vertex association
- SUSY cascades: triggering & reconstruction of low $p_{\rm T}$ leptons and identifying heavy flavour
- Resonances in top pairs, W, Z, H: reconstruction of leptons & b-quarks in boosted topologies
- High-mass gauge bosons: good lepton momentum resolution at high p_T
- Efficient tracking with small fake rates: radiation tolerance and high granularity tracking detector

Challenging for detectors

Multipurpose detector in HEP

Layers of the ATLAS experiment at the LHC

• Different types of detectors to identify particles and measure their energy and momentum

2 10

24./25.5.2018

Phase-2 Detector Upgrade: ATLAS + CMS

Trigger/DAQ:

Upgrades, add tracking at L1, partially new electronics

Tracking detector:

New all silicon tracking detectors for ATLAS and CMS with extended coverage to $|\eta| < 4$

Calorimetry:

ATLAS: New FE electronics for Tile and LAr calorimeter CMS: Replace endcaps and replace electronics in electromagnetic calorimeter

Muon system:

ATLAS: New FE electronics and possible upgrade of muon spectrometer CMS: Extend forward chambers and replace electronics

ATLAS: LHCC-I-023, CERN-LHCC-2012-022

CMS: Technical preparation in preparation, LHCC-2011-006, LHCC-P-004

Triggering at the HL-LHC

- High luminosity \rightarrow many interesting events
- High pile up (overlapping multiple interactions) and occupancy lead to decrease in resolution at trigger level
- Aim to keep low-p_T lepton triggers (~20-25 GeV)
 - \rightarrow Matching tracking information to muon and calorimeter information
 - → Exploiting isolation for electron and tau identification and veto for photons

Upgrade Trigger Scheme in CMS

Key point: include tracking information with fast readout

Track trigger: silicon strip modules provide time and p_{τ} discrimination \rightarrow Rate reduction due to sharp thresholds (leptons) and isolation (multijet backround reduction)

Level 1 Rate ~ 1 MHz, muon + calo + tracks HLT Rate 10 kHz

 p_{T} discrimination with stacked modules: exploit bending in magnetic field two closely spaced sensors read out by a single readout chip

pass high transverse fail momentum 4.0 mr stub low transverse momentum Sensor spacing optimized \rightarrow Correlation on module level to form stubs is sent Same geometrical out if within p_{τ} cut (down to 2 GeV) cut corresponds to different p⊤

Tracking detector challenges at the HL-LHC

CERN

- Luminosity of up to 7.5x10 ³⁴ cm⁻²s⁻¹
 - Triggering with high rate and large event sizes
- On average 200 interactions per bunch crossing
 - High occupancy → keep at 1% level by high granularity detector
- High particle fluences
 - Radiation hardness of up to 2x10¹⁵ n_{eq}/cm² for outer tracking layers, up to 2x10¹⁶ n_{eq}/cm² for inner tracking layers
- Low material budget advantageous

For ATLAS and CMS: new silicon tracking detector for Phase-2 Aim to keep performance of current detector under harsher conditions

Recap: Principle of a silicon detector: reverse biased depleted pn-diode

- Take a pn-diode
 Segment it
 Apply a bias voltage
 Wait for an ionising particle to deposit charge

 Ionisation → Electron-hole (e⁻, h⁺) pairs
 In-type Si-bulk
- Charges separate and drift in the electric field

Recap: Principle of a silicon detector: Signal

→ Segmented and depleted piece of silicon and an ionising particle generates electronhole pairs

- e⁻h⁺-pairs separate in E-field, and drift to electrodes
- Moving charges → electric current pulse
- Small current signal is amplified, shaped and processed in integrated circuits ("chips") on read-out electronics

Typical drift velocity 50 $\mu m/ns$ (drift time ~ 6 ns, in 300 μm) With fast read-out electronics: signal collected in few ns

Recap: Radiation damage in silicon sensors

CERN

Radiation damage: non-ionising energy loss of charged and neutral particles \rightarrow damage in silicon bulk (defects: recombination/generation centers)

- Increase of leakage current
- Generation of charged centers, which change effective doping concentration
 - \rightarrow Type inversion (n-doped material becomes p-doped, eventual loss of resolution)
- Increase of depletion voltage
- Centers act as trapping centers affecting the charge collection efficiency

 Radiation damage degrades detector performance and limits life time

Upgrade of ATLAS and CMS trackers

CERN

- Inner region: Pixel detector modules
- Outer region: Strip detector modules

CMS

ATLAS

- Extended coverage to forward region
- Fast data transmission with low power giga-bit data transmission
- CO₂ cooling (thinner pipes)

CMS Phase-2 tracking detector

- CERN
- Outer Tracker design driven by ability to provide tracks at 40 MHz to L1-trigger
- Tilted modules in OT 3 inner layers
- * Inner Tracker (pixel) design to extend coverage to $\eta \simeq 3.8$

- OT Si-sensors $\simeq 200 \mu m$ thick 90/100 μm pitch 2.5/5 cm strips 1.5 mm macro-pixels in inner layers
- IT Si-silicon sensors ≤ 150µm thickness 50x50 to 25x100µm² large pixels in outer layers?

CMS Phase 2 Inner Tracker

24./25.5.2018

Performance

 $\sigma(\delta \phi)$

Tracking resolution

Material distribution

24./25.5.2018

CMS Outer Tracker

• 2 types of 200 μ m thick n-in-p silicon modules, p_T-discriminating

2S modules

- 2 strip sensor mounted back-to-back
- Sensors wire-bonded to hybrid from top and bottom
- Strip dimensions: 5 cm x 90 μm

PS modules

- Measures z
- 1 strip sensor (2.5 cm x 100 μm)
 pixel sensor (1.5 mm x 100 μm)
 mounted back-to-back with a
 separating bridge

on-module DC-DC converter LpGBT for data transmission & control

- Hybrid with binary readout electronics connecting data from two sides
- Module single entity, uses DC-DC powering
- Modules mounted on support structure

24./25.5.2018

CMS Phase-2 tracking detector

- 2S modules screwed to "ladders"
 - Each module has individual optical connection for communication and readout
- PS modules on "planks" and "rings"
- End-cap modules loaded on "double disk" structure

Pixel detector upgrades: Hybrid pixel modules

- Sensor and front-end electronics connected to module with high density bump bonding \rightarrow bare module
- Flex glued on top of bare module (on sensor side)
- Flex and bare module connected via wire-bonds (data, LV, HV)

~600k channels/module with 4 chips

Quad (4-chip) modules and single, double modules for inner most layers

Wire-bond

Stave surface

Bump-bond

Alternative under investigation for ATLAS most outer pixel layer: CMOS modules (more in Lecture 2)

FEIx

Flex

Sensor

LHC Upgrade: Detectors

front-end

chip

Readout chip

Sensor

Pixel sensors

Sensor options

- Planar or 3D sensors
- Small pixel sizes of 50 μm x 50 μm.
 (25 μm x 100 μm) 400 x 384 pixels

- Features of 3D sensors:
 - lower bias voltage than planar sensors
 - Less power consumption
 - Smaller clusters at high track incident angle
 - But difficult processing

A. Zoboli et al., IEEE TNS 55(5) (2008) 2775 G. Giacomini, et al., IEEE TNS 60(3) (2013) 2357 *G. Pellegrini et al. NIMA 592(2008) 38 G. Pellegrini et al. NIMA 699(2013), 27*

→ Many performance studies in laboratory and test beam before and after irradiation

Pixel readout electronics

- Fast readout chips required
 - RD53 Collaboration is developing front-end chip in 65 nm technology
 - Output bandwidth 1.2 Gbit/s

ATLAS Inner Tracker Upgrade for Phase-2

Layout of new ATLAS Inner Tracker

Expected Material and Performance of new ITk

reconstruction efficiency > 90% in central region > 80% in forward region

fake rate < 0.001

- > 13 clusters per track
- < 0.1 holes per track

Expected Performance new ITk: Tracking

Conservative estimate for performance of ITk: algorithms not fully optimized

significant improvement wrt. current tracker:

- \rightarrow reduced material
- → strip detector performs better than TRT

Impact Parameter Resolution

- \rightarrow for low pT dominated by multiple scattering
- \rightarrow for high pT dominated by intrinsic detector resolution

24./25.5.2018

Layout of the ATLAS pixel detector

R [mm]

Active area: 12.7 m² Pixel size: 50x50 (or 25x100) μ m² # of modules: 10276 # of FE chips: 33184 # of channels: $\sim 5 \ 10^9$

ATLAS Pixel Design

- Structure from carbon-fibre composites
 - Example for outer central region: longerons

Electrical prototype with FE-i4 based modules

7 quad modules on carbon local support structure

Powering of Pixel Detector

- Powering serially with chains of up to 14 modules
- Constant current to all modules in one chain

Concept of the upgrade strip tracker in ATLAS

• Modularity for easier final assembly, multiple site production, early system tests

Layout of structures for the central region

24./25.5.2018

Sensor design and readout electronics

- Silicon sensors:
 - n-in-p float zone 320 µm thick
 - Strip length 8 58 mm
 - Covering in central region 97 x 97 mm

- Readout electronics
 - Binary chip in 130nm CMOS production
 - Plus controller chip and HV multiplexing on module
 - DC-DC powering for increased power efficiency

End-of-stave card for readout

Prototyping of larger strip structures

- Development of industrial production of petal cores for endcap region ongoing
- Stave with 13 modules tested for central region
 - 1.3 m long with titanium cooling pipes

hybrid

Test of global mechanics: services routing

• Successful test of construction, shielding, grounding, powering, readout, ..

tandem DC-DC converter

LHC Upgrade: Detectors

Service tray mockup@Valencia

CMS Phase-2 Upgrade

L1-Trigger/HLT/DAQ

- Tracks in L1-Trigger at 40 MHz for 750 kHz
 PFlow-like selection rate
- HLT output 7.5 kHz

DETECTOR

NEW

Calorimeter Endcap

- · Si, Scint+SiPM in Pb-W-SS
- 3D shower topology with precise timing

Tracker

- Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to $\eta\simeq 3.8$

Barrel Calorimeters

NEW READOUT

 ECAL crystal granularity readout at 40 MHz with precise timing for e/γ at 30 GeV
 ECAL and HCAL new Back-End boards

Muon systems

- DT & CSC new FE/BE readout
- New GEM/RPC 1.6 < η < 2.4
- Extended coverage to $\eta\simeq 3$

Beam Radiation Instr. and Luminosity, and Common Systems and Infrastructure

MIP Timing Detector

- \simeq 30 ps resolution
- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

Recap: Electromagnetic Calorimeters

- Dominant processes at high energies (E > few MeV) :
- Photons: Pair production

$$\sigma_{pair} \approx \frac{7}{9} \left(4\alpha r_e^2 Z^2 \ln \frac{183}{Z^{1/3}} \right) = \frac{7}{9} \frac{A}{N_A X_0}$$

$$I(x) = I_0 e^{-\mu x}$$
 $\mu = \frac{7}{9} \frac{\rho}{X_0}$

μ= attenuation coefficient X₀ = radiation length in [cm] or [g/cm²]

$$X_0 = \frac{A}{4\pi N_A Z^2 r_e^2 \ln \frac{183}{Z^{1/3}}}$$

Electrons: Bremsstrahlung

$$\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} r_e^2 E \ln \frac{183}{Z^{1/3}} = \frac{E}{X_0}$$

$$E = E_0 e^{-x/X_0}$$

After traversing x=X₀ the electron has only 1/e=37% of its initial energy

24./25.5.2018

Recap: EM Calorimeters – Shower development

Recap: Hadronic Calorimeters

Courtesy of Daniela Bortoletto

50

New Endcap calorimeter for CMS for Phase-2

- Complement tracker upgrade with extended coverage of calorimeter to $|\eta| < 4$ and high granularity (high energy resolution): HighGranularityCalorimeter
- Sampling calorimeter with silicon sensors and scintillators, share depending on radiation damage

New Endcap calorimeter design

- 3D shower topology and time resolution of \sim 30 ps (p_T > few GeV)
- Electromagnetic: 28 layers of silicon sensors and W/Cu absorber (26 radiation lenghts, 1.5 interaction lengths)
- Hadronic: 24 layers of 8 silicon and 16 silicon PM/scintillator tiles in stainless steel absorber (8.5 interaction lengths)

P-in-n sensors with 200 µm thickness

Good energy resolution for EM showersMolière Radius: 90% contained in ~2cm

24./25.5.2018

Thin and highly segmented parts

24./25.5.2018

Imaging Calorimeter: Simulation

Imaging Calorimeter: Test beam measurement

Allows measurement of the 4D (space+time) topology of energy deposits in particle shower, to enhance particle ID, energy resolution and pile-up rejection

A 32 GeV electron event at Fermilab Test Beam Facility

Shower development clearly seen

Silicon in use for Calorimetry

Recap: Scintillators

Organic crystals

 Aromatic hydrocarbon compounds with benzene rings such as Anthracene (C14H10), etc

Plastic scintillators

- Organic scintillators suspended in the aromatic polymer (easy to mold and machine)
- Liquid scintillators

Noble gasses (Liquid Argon, Liquid Xenon...)

 Molecule structure generates energy levels with transition λ=360-500 nm

Recap: Scintillators

Further Calorimeter Upgrades

- Motivation for calorimeter electronics upgrade:
 - Higher trigger rate of 0.75 1 MHz and larger event buffers (> 10 µs)
 → improved trigger system for high pile-up
 - Improved radiation tolerance (2-10 kGy) and system longevity where necessary
 - Improved timing measurement where possible
- General concept: move buffers and pipelines off detector and read out at 40 MHz

New readout electronics

Further Calorimeter upgrades

 Radiation tolerant ASICs and Commercial-Off-The-Shelf (COTS) components:

Front-End

- signal amplification and shaping
- ADCs, TDCs

Calorimeter

- optical links with 5-10 Gbps
- Trigger, Timing and Control (TTC) distribution
- Power distribution for HV and LV

- High-bandwidth, low-latency signal processing with FPGAs
- Data buffering in FPGAs or onboard memory
- High-bandwidth interfaces to hardware trigger and to network based trigger/DAQ systems

New electronics for CMS Barrel Calorimeters

- Electronics will be replaced to accommodate L1 trigger requirement
 - Allows single-crystal readout (instead of 5x5 towers) at 40 MHz, providing maximum flexibility at trigger

CMS Preliminary ECAL Barrel 12 Noise (ADC counts) T=18°C τ=43ns η=1.45 10 - T=8°C τ=43ns T=8°C τ=20ns 8 2 0 0 1000 2000 3000 Integrated Luminosity (fb⁻¹)

Lower operating temperature and optimisation of electronics shaping time to mitigate APD noise

Upgrade of Hadronic Tile Calorimeter in ATLAS

Major upgrade of on-detector mechanics and electronics •

- **On-detector electronics** hosted inside girders at rear of TileCal.
- Today, includes LV/HV PS. Consider local vs remote HV.
- All data will be digitized ondetector at 40 MHz. Shielded location allows use of qualified COTS components.
- Shaper followed by dual 12bit ADCs.
- Careful analysis of failures over last 10 years, improved redundancy and serviceability.

New front-end and back-end boards for Liquid Argon Calorimeter (see spare slides)

Stee

Upgrade of Muon Detectors

- Additional stations will be included in ATLAS and CMS
 → increased coverage and timing
- Replacement of electronics with improved radiation hardness, higher bandwidth and better trigger capability

ATLAS Muon Chambers

Recap: GEMs and RPCs

GEM – gas electron multiplier

- Thin kapton foil coated with metal film
- Chemically produced holes (diameter ~100 μm)
- Electrons guided by high drift field of GEM which generates avalanche
- Electric field strength of some 10 kV/cm
- Avalanche gain of 100 1000

RPC– resistive plate chambers

- Two parallel plates, a positively-charged anode and a negatively-charged cathode
- Plates of very high resistivity plastic material and separated by a gas volume
- Electrons created by ionization and multiplied picked up by external metallic strips
- Good spatial resolution
- Time resolution of one ns

New Muon Detectors in CMS

- Complete muon stations to $1.6 < |\eta| < 2.4$
 - GEMs in 2 first stations (improved p_T resolution)
 - RPCs in 2 last (timing resolution to reduce background)
- Replacement of readout electronics in Drift tube minicrates and Cathod Strip Chambers: improved timing precision

(Short) Summary of Lecture 1

- HL-LHC will provide exciting physics from 2027 onwards
 - Enormous detector challenges, especially for inner layers
 - New domain of particle rates and radiation levels
- ATLAS and CMS will replace **inner detectors** with all-silicon tracking detector
- CMS will get new endcap **calorimeter**: silicon + W/Cu and scintillators + steel
- Upgrade of calorimeter readout electronics for ATLAS and CMS
- Upgrade of **Muon** detectors to increase coverage and timing

Acknowledgment

Matthias Hamer, Alexander Kluge, Ken Wyllie, Marielle Chartier, Plamen Hopchev Daniela Bortolletto, Jike Wang, Arabella Martelli, Arnulf Strassner, Riccardo Vari Ingrid Maria Gregor, Karl Jakobs, Ulrich Parzefall, Didier Contardo

SPARE

More Calorimeter Upgrades in ATLAS

LAR CALORIMETER:

- NEW FRONT-END (TRIGGER DIGITISER BOARD LTDB) AND BACK-END (DIGITAL PROCESSING SYSTEM LDPB) BOARDS
- + increased trigger tower granularity ($\Delta\eta x\Delta\phi = 0.025x0.1$)
- GOOD TRIGGER PERFORMANCES WITH THE INCREASING LUMINOSITY AND PILE-UP:
 - + LOW TRIGGER RATE THANKS TO THE BACKGROUND REJECTION
 - LOW THRESHOLDS AND BETTER TURN-ON CURVES THANKS TO THE HIGHER GEOMETRICAL RESOLUTION

L1CALO:

- NEW FEATURE EXTRACTOR BOARDS: EFEX, GFEX, JFEX
- MORE REFINED PROCESSING OF ELECTROMAGNETIC CALORIMETER INFORMATION AT HIGHER GRANULARITY
- BETTER DISCRIMINATION BETWEEN PHOTONS, ELECTRONS, TAUS AND JETS
- EFFICIENT SINGLE OBJECT TRIGGERS FOR ELECTROWEAK-SCALE PHYSICS

Trigger Towers

 $\Delta n x \Delta \Phi = 0.1 x 0$

Experiments

24./25.5.2018

Pile up at the HL-LHC

Capabilities to mitigate pile-up assessed in ATLAS and CMS

At L~ $5*10^{34}$ cm⁻²s⁻¹ average pile-up of 140, in-time and out-of-time pile-up occuring

- Drives several detector developments (high eta tracking, muon tagging, timing) and algorithm optimization
- Impact of different beam configurations evaluated in ATLAS

Vertex finding in CMS Phase 2 tracker: new alg. $90\% \rightarrow 96\%$ eff.

Longer beam spot ~flat +-15cm compared gaussian sigma = 5 cm, ttbar events with 140 pile-up

CMS-PHO-GEN-2012-002 78 reconstructed vertices in event from high pile-up

Precise timing Sum ET of photons in VBF $H \rightarrow ~\gamma\gamma$

HL-LHC baseline and ultimate goals

- \star Baseline goal: 250 fb⁻¹/year to reach 3000 fb⁻¹
 - Luminosity leveled with β^* at $5 \times 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$
 - Pile-up \approx 140
 - Machine efficiency = 50%
- \star Ultimate goal: 320 fb⁻¹/year to reach 4000 fb⁻¹
 - Luminosity leveled with β^* at 7.5imes10³⁴cm⁻²s⁻¹
 - Pile-up ≈ 200
 - Machine efficiency = 50%
- **Ultimate energy**: 7.5 TeV, under study

Squeezing

	2017	HL-LHC
β*	40 cm	15 cm
Beam size at IP (sigma)	12 um	7 um
β at triplet	~4.5 km	~20 km
Beam size at triplet	~1.5 mm	~2.6 mm
Crossing angle	370 urad	590 urad

- Bigger beams in inner triplets
- Larger crossing angle
- Larger aperture in inner triplets
Development of Crab Cavities

Crab Cavities for compensation of

Reduce effect of crossing angle

geometrical reduction

Crab Cavity

Crab Cavity

Crab Cavity

> Cavity

Major R&D program Now concentrate on two designs in order for test installation in SPS

Development of Crab Cavities

Figure 4. Electric (left) and magnetic (right) field distributions inside the DQWCC.

Inner detector of the ATLAS experiment

- Current inner tracker of ATLAS performing very well
- Transition radiation detector and silicon detectors for tracking
 - Planar strip sensors
 - Hybrid pixel with planar and 3D sensors
- However, cannot cope with radiation damage and high occupancy at HL-LHC operation

Detector	Area [m²]	Channels	Maximum dose [1MeV n _{eq} /cm²]
Pixel	1.8	92 M	up to 3*10 ¹⁵
Strip	60	6 M	up to 2*10 ¹⁴

Expected Performance of new ITk

Estimated using a tt sample with $\langle \mu \rangle = 200$ \rightarrow primary, stable, charged particles with pT > 1 GeV, $|\eta| < 4$

- b-tagging
- \rightarrow evaluated using tt sample with partonjet matching
- \rightarrow Run-2 algorithms without dedicated tuning used

Upgrade Trigger Scheme in ATLAS

- New design foresees Phase1 Level 1 \rightarrow in Phase2 Level 0
- Precision calorimeter, muon and inner tracker information in L1 (with new electronics)

Planar sensor study in CMS

Charge collection studied for irradiated
200 µm thick n-in-p pad diodes

 5k electrons after1x10¹⁶ neq/cm² (900 V bias)

Thin sensors:

- Similar signal in 100 µm epi strip sensors as in 200 µm (MCz: 5 k electrons at ~800 V)
- However: Strong increase of current and noise with voltage, signs of soft breakdown/ charge multiplication
- Charge collection measurements repeated with pixel sensors: Weighting field

ITk Pixel Outer Barrel Demonstrator programme

CERN

- Programme to evaluate and validate the SLIM concept for outer barrel layers of ITk Pixel Detector: longeron with 2 cooling lines with flat and inclined modules based on FE-i4
- Several prototypes for thermo-fluidic, thermal and full electrical system test including serial powering, DCS and CO₂ cooling

Electrical prototype with FE-i4 based modules

Quad module with 4 FEs

7 quad modules on carbon local support structure

All modules functional in one serial powering chain

TRUSS longeron for layer 2 (1.6 m) with two cooling lines and 2x14 flat and 2x16 inclined modules

Thermal prototype with heater modules

Values for required thermal figure of merit achieved

24./25.5.2018

LHC Upgrade: Detectors

High Granularity Timing Detector for ATLAS Phase-2

• Disks covering 2.4 < η < 4.0 with 2(3) hits per track for R > 30 cm and R < 30 cm.

