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Room Temperature & Interferometers

Weber devised and constructed
the first bar detector

Cryogenic Bar Detectors Concept, Contruction & Operational

Narrow Band Frequency detectors Broad Band Frequency detectors
(100 Hz @ 1KHz) & (h~102%) (20 — 6000 Hz) & (h~10%3)

i

Virgo : Scientific Collaboration

AURIGA — INFN/Padova

Italy, France, Netherlands, Poland, Hungary and Spain



Interferometer Detectors

Michelson-Morley interferometers. Test masses separated by
large distances and suspended as pendulums to isolate them
from seismic noise and reduce thermal noise.

Pendulum
-~ Su spension __Test Masses

N

Mirror —

Beamsplitter

Laser Photodiode
Analyzing the laser interference fringes allows to control the
movement of the masses during their interaction with
gravitational radiation.



ASTRONOMY: ROEN KELLY

: K% No gravity wave
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Gravity wave comes through

\ light waves add together

The (infinitesimal) change in the length of the arms
originates a change in the intensity of the light
(interference fringes) at the detector’s output.



The Advanced Virgo interferometer

A Arm cavities:
Input mode cleaner: ~ Fabry-Perrot cavities
Stabilizes frequency a’ store light to
and cleans the > effectively increase
input laser mode length (N, ;yngerip=443x)
L=3 km
<€

P=125W —A=1064nm
Power recycling mirror:

reflects back light coming from
the beam splitter, increasing
power in the arm cavities

Photodiode
Signal recycling mirror:
resonantly
enhances the signal Output mode cleaner:
filters output laser
((M2JJVIRGD mode



The Advanced Virgo interferometer
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Our current network

LIGO Hanford Observatory LIGO Livingston Observatory

L

Virgo Observatory
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Expanded Network
of Interferometers 2020+

owards a global GW research infrastructure



Noise-dominated observations

The small amplitude of gravitational waves calls for
an extreme reduction of the sources of noise
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If sufficient mergers were detected we could average
orbital parameters and use mergers as standard sirens.

Numerical relativity simulations needed to extract
accurate gravitational waveforms.



A “chirp” gravitational waveform
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A “chirp” gravitational waveform
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A “chirp” gravitational waveform
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Advanced technology

W ultra-vacuum arms (p~10-° mbar). Movements
(vibration) of test mases (40 kg) and suspensions
induced by thermal effects.

W high power lasers (Nd:YAG 1064 nm wavelength
laser). Shot noise: fluctuations in the number of
photons in the laser produce fluctuations in the
signal.

W highly reflective mirrors (SiO2).

W monolythic suspension systems to isolate the
detectors from vibrations. Reduce seismic noise.
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Directional sensitivity of detectors

Each interferometer senses only one of the two GW polarizations:
* measures the linear combination
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6 (deqg)

The LIGO network of two detectors

= Detection confidence: discriminate GW candidates from noise fluctuations

v At least two detectors in coincidence observation are required

unless for searches of persistent and well parametrized signals, e.g.

periodic GWs

v" multimessenger searches with other detectors can help

|F4

LIGOs arms are almost aligned

= Sky coverage of LIGOs is very similar to that of a single detector
—> almost blind to one GW polarization per each direction:
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Benefit of adding Virgo detector

= Detection confidence: lower background and higher Signal-to-Noise Ratio

* |ncreased time coverage of the survey by detector pairs

= coverage of sky and both GW polarizations: better waveform reconstruction

LIGO Hanford + LIGO Livingston
and Virgo

assuming
same
spectral
sensitivity




Advanced LIGO commissioned in 2014
Advanced Virgo in 2017

s L!|GO
The 1st Observing Run of Advanced
LIGO began this morning, Friday,
September 18, at 8 AM PDT. Welcome to
the Advanced @LIGO eral #O1ishere

Ver traduccion
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“"We are there, we are in the ballpark now. It’s clear
that this is going to be pulled off.”

(Kip Thorne, The Documentary, BBC World Service, 18/9/2015)



Strain (107%%)

Frequency (Hz)

GW150914: the first GW observation

Hanford, Washington (H1) Livingston, Louisiana (L1)
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Distance: 1300 million light years
Abbott et al., PRL, 116, 061102 (2016)

Duration detected signal: 200 ms



Testing GR in the strong-gravity regime

e Black holes have no hair. In GR, the outcome of a BBH
merger is a Kerr black hole, completely described by its mass
(M) and its spin (a). For quasi-circular orbits, GR allows to
compute M and a from the masses and spins of the individual
black holes.

For GW150914: M = 62+ 4Mq, a = 0.6770°0>

Agreement between the Numerical Relativity results (fitting
formulae) and GR predictions.

e GW150914 demonstrates the existence of stellar-origin black
holes more massive than ~ 25M, and establishes that binary
black hole systems exist in Nature and can merge within a Hubble
time.



e Upper bound for the graviton mass (mediating particle of the
gravitational interaction).

In GR the graviton has zero mass and moves at the speed of light:

mgy =0, vy =c
If my 7£ 0= E?= p2(32 -+ mzc4 (dispersion relation)

c2p? 1 1202 | N h
2 E2 _EZ)\E with g MgC

>
N|Q o

If )\g is finite, low frequencies propagate slower than high
frequencies. Such dispersion can be incorporated in the analysis of
the phase of the signal of the binary. For the GW150914 data there
is no evidence of a finite value of )\g :

Lower bound: Ag > 10'° km = mg < 1.2 X 10722 eV /c?



Solar Masses

Black holes of known mass
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Advanced Virgo ((12J)JVIRGD

Advanced Virgo joined Advanced LIGO for O2 run on Aug 1st. 2017



Advanced Virgo: Performance during O2

Status of channel V1:DQ_META_ITF_Mode -- time range: 2017/08/01 10:00:00 UTC -> 2017/08/25 22:00:00 UTC

N N A

2017/08/02 2017/08/04 2017/08/06 2017/08/08 2017/08/10 2017.‘08{12 2017/08/14 2017/08/16 2017/08/18 2017/08/20 2017/08/22 2017/08/24

Bl Science: 85.08 %
[ Locking: 8.71 %
mmm Calibration: 1.86 %
B Maintenance: 1.28 %
[ Not locked: 1.26 %
B Locked: 1.15 %

B Adjusting: 0.41 %
B Unknown: 0.25 %

M2JINVIRGO

The duty cycle of the detector in science mode was
85% during the 4 weeks of data taking in O2.

Two detections! GW170814 and GW170817



GW170814: first three-detector observation

~ Hanford ~ Livingston ~ Virgo
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Sky localization of the GW events

GW170104 Virgo significantly improved
S N ||/ T1510] sky localization!

—>
GW170814

Credit:
LIGO/Virgo/NASA/Leo Singer

Milky Way image: Axel Mellinger Rapid localization HL: 1160 deg?

. \zall | j
Abbott et al., PRL, 119, 141101 (2017) Rapid localization HLV: 100 deg

Final localization HLV: 60 deg?



LIGO/Virgo black holes: how diverse are they?

Heavy

At the limit of sensitivity

Light

GW170104 Far away

VW»"'.'A‘f'l','l.',‘ | r

GW170814  First Triple-Coincidence with VIRGO

1 s-ec. | 2 s-ec.
time observable by LIGO-Virgo from 30 Hz

GW170608 GW151226 GW170814
340715, 4402350 5402310 1000 Mpc

Distances (Mpc) GW150914 GW170104
90% probability 4401189 8801430




LIGO/Virgo black holes: how diverse are they?

distribution of primary
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and secondary BH masses
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Nobel Prize in Physics 2017

“for decisive contributions to the LIGO detector and the
observation of gravitational waves”

Photo: Bryce Photo: Caltech Photo: Caltech
Vickmark Barry C. Alumni Association
Rainer Weiss Barish Kip S. Thorne

Prize share: 1/2 Prize share: 1/4 Prize share: 1/4
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Multi-Messenger Astronomy
Gravitational Waves + Light + Neutrinos

gravitational
waves

\
| 7'
\\'é‘ ﬁ‘n\hség
= :»n;:!* Lot
cosmic rays gamma rays ultraviolet radio
neutrinos X rays visible / infrared

LIGO/Virgo have signed MoU with about 92 partners from 19 countries.
200 instruments across the entire electromagnetic spectrum.



GW170817: first GW observation of a BNS merger

Frequency (Hz)
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August 17, 2017, at 12:41:04 UTC
GW170817 swept through the
detectors’ sensitive band for ~100s
(fstart=24 HZ)

SNR is 18.8 (H), 26.4 (L) and 2.0
(V). Combined SNR is 32.4

Loudest signal yet observed!

The FAR is less than one event per
80.000 years

Abbott et al., PRL, 119, 161101 (2017)
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BNS detection: component masses

low-spin high-spin
Bl x| <0.05 (x| < 0.05) Ix| < 0.89
B .| <0.89
my 1.36- 1.60 Mg  1.36 - 2.26 Mg
msa 1.17- 1.36 Mg 0.86 - 1.36 Mg
+0.004 +0.004
MR 10188 > Mo 1.1881 3rcosMIE
0.04 0.4
Mroe  2.747001 Mo 2.8210-07 Mg

Abbott et al., PRL, 119, 161101 (2017)

S  N— T I
1.25 150 1.75 2.00 225 250 2.75
my [Me)]

Estimated masses (m+ and myz) within the range of known neutron star
masses and below those of known black holes.



GW170817: constraining the NS equation of state

Gravitational waves contain information about NS tidal deformations
» allows to constraint NS equation of state (EOS)
» becomes significant above fow ~ 600 Hz

Probability density for the tidal deformability parameters
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Where did the BNS merger occur?

VAl EJ

15h 12h
18h o
-30° | 30°
(') 2l5 5l0 7'5
Mpc
Rapid localization HL: 190 deg?, HLV: 31 deg? Luminosity distance
Final localization HLV: 28 deg? 4018, Mpc

Closest and most precisely localized gravitational-wave signal.



The key role of Advanced Virgo

GW170104
LVT151012

GW170814 o . LIGO/Virgo/NASA/Leo Singer

(Milky Way image: Axel Mellinger)



Expected EM counterparts

Jet-ISM shock (afterglow)
Optical (hours—days)
Radio (weeks—years)

Ejecta—ISM shock

( - )’ Radio (years)
" % K rj
4 \ /

o
|
(t~0.1-15s) P
- /Iv -
f — Kilonova
Optical (r ~ 1 day)
,,V

/
+  Merger ejecta
7 Tidal tail and disk wind
v~0.1-0.3c¢

Metzger & Berger, ApdJ, 746, 48 (2012)

Short GRBs:

e prompt Y-ray emission (< 2 s)
e multiwavelength afterglow
emission: X-ray, optical, radio
(minutes, hours, days, months)

Kilonova:

optical and near IR (days,
weeks)

Late blast-wave emission:

radio (months, years)



Expected EM counterparts

: gamma-ray burst.
Blue: peak optical and X-ray emission.
Red: peak infrared emission.

Before merger After merger

y-ray burst

neutron stars

Neutron star

M. Coleman Miller, Nature (News and Views) 551, 36 (2017)




Gamma rays: short GRB

GRB 170817A independently detected by Fermi-GBM and INTEGRAL

Gamma rays. 50 to 300 keV GRB 170817A The start of the gamma-
ray emission relative to
: the merger time is 1.7 s

EY ~10* erg

1SO

g!avxlatlonai wave strain GWI170817
W between 2 and 6 orders
s s of magnitude less
e : _‘ : | energetic than other
e i observed bursts with
Gamma rays, 100 keV and higher GRB 170817A measured redshift.

””””””” off-axis GRB?

.......




BNS - short GRB association

Abbott et al., ApJ, 848, 13 (2017)

90 % Fermi-GBM sky
localization (1100 deg?)

90 % sKky localization from
Fermi and INTEGRAL timing

LIGO-Virgo 90 % credible
region (28 deg?)

The probability that GRB 170817A and GW170817A occurred this

close in time and with this level of location agreement by chance
is 5.0 x 108:

5.3 O Gaussian-equivalent significance

First direct evidence that BNS mergers are progenitors of short GRBs



The EM follow-up campaign

A wide-range EM follow-up campaign started in the hours immediately after
the observation of GW170817 and GRB 170817A

GW

y-ray

Xray

-4 >~

Optical - _ - i e &

B o e e e s S i e s s s @

ats L

100 -50 0 50 102 10 100 10

t-t. (s) t-t. (days)

Abbott et al., Apd, 848, L12 (2017)
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The identification of the host galaxy

An associated optical transient (SSS17a/AT 2017gfo) was discovered
on August 18, 2017; the transient is located at ~10" from the center of
the galaxy NGC 4993, at a distance of 40 Mpc.

LIGO ' =

30° 60/ | \ | | Swop.e +10.9h
Virgo > F Discovery reported by 6
‘ ; teams:
L, . N
y Femiy e S SWOPE (10.86 h)
e . " DLT40 (11.08 h)
BN Formi / | DLT40 205 d VISTA (11.24 h)
INTEGRAL— o MASTER (11.31 h)
x VT DECam (11.40 h)
- Las Cumbres (11.57 h)
-80°N_ T 3 '30° .
28 deg?

Abbott et al., Apd, 848, L12 (2017)



Optical transient (SSS17a/AT 2017gfo)
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Zooming in on the source of GW170817

Credit: LIGO/Virgo



The spectroscopic identification of the kilonova

Spectra (black line) at the first epoch and kilonova models Pian et al, Nature (2017)

3/.5 observational data
>
g
£ 37 wind region, lanthanide-free and
- lanthanide-rich, proton fraction Y¢=0.25
>
; wind region, lanthanide-free, Y¢=0.3
o
— 36.5 sum of the three model components
(Models from Tanaka et al. 2017)
36 :1:;1221 Lkl LLL |
10° 2 x 103

Wavelength (Amstrong)

Evolution of observed spectrum in good match with expectations for
kilonovae. First spectroscopic identification of a kilonova!



The spectroscopic identification of the kilonova

T | T 1 1 T | 1 T 1 L

T 1 Ll T T T |

1.5 days

Brightness

TN M Credit: ESO/E. Pian et al./
0.5 1.0 1.5 2.0 S. Smartt & ePESSTO

Wavelength (um)

Spectra taken over 2 weeks period across all electromagnetic
bands consistent with kilonova models

“Blue” early emission dominated by Fe-group and light r-process formation; later
“red” emission dominated by heavy element (lanthanide) formation




Zooming in on the kilonova in NGC 4993
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X-ray observations (Chandra, 9 days after GW trigger)
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Evolution of the X-ray and radio counterparts of GW170817 compared to
model predictions (thin lines) for a short GRB afterglow viewed off-axis.

Thick grey line shows X-ray light curve of same afterglow seen on-axis,
falling in typical range of short GRBs (vertical line).

Troja et al, Nature, 51, 71-74 (2017)



Radio observations

Radio counterpart detection consistent with the HST position of
SSS17a/AT 2017gfo observed 16 days after GW170817.

T
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Observed radio emission explained by either a collimated ultra-
relativistic jet viewed off-axis, or a cocoon of mildly relativistic
ejecta. Within 100 days of the merger, the radio light curves will

distinguish between these models.



Neutrinos

75° 3
X 8
60° o3
o — ,\\C )
10ty S o -
4 A 10 /& £ 4
) .
30° /\/\f]/ o 5 \Q{& p \
///‘\l}; x -2 . 3 /
> 3 § )
RO YA 1 3
155 X o0 f N\
o IceCube up-going (’4\/3", _
O A _-_T('(-‘(‘m);-n}'nﬂr—ﬂxﬁ .%‘_\g’m_. ......... ’ﬁ ...............
0 \ 6.1 o —— GW (90% CL)
—15 \ ¢ . .
. v/} + NGC 4993

¥ neutrino candidate (IceCube)

—30° > 4 1o canch .
¢ neutrino candidate (ANTARES)
—45° \—/ e 1 o | ======IceCube horizon
= == ANTARES horizon

—60° [ 1 Auger FoV (Earth-skimming)
—75° D g [ 1Auger FoV (down-going)
Within =500 s of GW170817: Non-detection of neutrinos consistent

with model predictions of short GRBs

ANTARES neutrino candidates: 5 observed off-axis.

lceCube neutrino candidates: 6
Pierre Auger neutrino candidates: 0

No one directionally coincident with GW170817
Albert et al. ApJ, 2017



GW170817: implications for cosmology

GW170817 can be used as a “standard siren”. combining the distance
(inferred from the inspiral GW signal) with the recession velocity of the
source (redshift; inferred from EM signal) the Hubble constant can be
measured.
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Abbot et al, Nature,
551, 85-88 (2017)
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Plans for LIGO-Virgo-KAGRA surveys
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arXiv:1304.0670v4
At design sensitivity:

1000x gain in surveyed volume of Universe w.r.t. first generation detectors
BBH detection rate: 50-500 / year

BNS detection rate: 10-300 / year



Plans for LIGO-Virgo-KAGRA surveys

Binary Neutron Stars Events

~ .~3 ||~ — running at O2 sensitivity 825X
6 10°F |1—— running at O3 sensitivity , TR
ol [.|— — running at aLIGO 04 sensitivity no A+ upgrade
o = A+ Upgrade
2
E
c 10%f
Q .
£
—
x 1
o 3 4
g10'y .
3 [
g [
Nevents = <R>VT
100 1 1 1 1
2016 2018 2020 2022 2024 2026
Calendar year

<R> average astrophysical rate
V  volume of the universe probed = (Range)3
T coincident observing time



Einstein Telescope (2025+)

COMPUTING CENTRE

EINSTEIN TELESCOPE CENTRAL FACILITY

gravitational wave observatory

TUNNEL © ~5m

Length ~10 km

Third-generation GW detector (post aLIGO, aVirgo and
KAGRA). Conceptual design study financed by EU.
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LISA: Space Interferometer (2034)

AEI/MM/exozet

- eIisasc_iencé.drg :
L3 Mission ESA 2034

Three spacecraft constellation, arranged in an equilateral triangle with
sides 1 million km long, flying along an Earth-like heliocentric orbit.

Focused on the 104-10! Hz frequency range.



Where are we now?

e Advanced LIGO O1: Sept 12 2015 - Jan 19 2016.

® Advanced LIGO O2: Nov 30 2016 - Aug 25 2017.
e Advanced Virgo joined O2: Aug 1 - Aug 25 2017.

1 year break until O3. Major upgrades

Spain is currently represented in:

e LIGO Scientific Collaboration, UIB group
e Virgo Collaboration, Valencia University group.



COnCI USIOnS (Einstein was again right)

Vurgo-

e LIGO/Virgo have accomplished a
several-decade long effort with the
historical first detections of L1IGO CHECKLIST
gravitational waves. e A

| Z BINARY SYSTEM
e Merging BBH and BNS observed o BLACK HOLES

for the first time. @ NEUTRON STARS
@ wW1TH EM COUNTERS
CIBH-NS
[~ 1 SUPERNOVAE

L] PULSARS
7] STOCRASTILC

e Two brand new fields of research:
Gravitational-wave astronomy and
Multi-messenger astronomy.

NUTSINEE K1TBUNCHOO (

e Plans underway to improve
detectors sensitivity for O3 and |
beyond. | ANTIMATTERWE BCOMLCS . COM

Stay tuned for exciting new discoveries!



