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Distances in the Universe
Open this tool:

http://www.astro.ucla.edu/~wright/ACC.html

Consider flat universe, H0 = 70 km s−1 Mpc−1,
Ωm = 0.31, T0 = 2.725 K, massless neutrinos

How old is an object which was created at z = 1?1

How old was the universe when the oldest known galaxy
(“GN-z11”, z = 11.1) emitted the light we observe now?2

What’s the angular size distance DA at photon decoupling?3

What’s the angle subtended by an object of 5 kpc if it
is located at z = 0.1? (remember the definition of DA)4
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Distances in the Universe
Open this tool:

http://www.astro.ucla.edu/~wright/ACC.html

Consider flat universe, H0 = 70 km s−1 Mpc−1,
Ωm = 0.31, T0 = 2.725 K, massless neutrinos

How old is an object which was created at z = 1?1 7.635 Gyr

How old was the universe when the oldest known galaxy
(“GN-z11”, z = 11.1) emitted the light we observe now?2 389 Myr

What’s the angular size distance DA at photon decoupling?3 12.051 Mpc

What’s the angle subtended by an object of 5 kpc if it
is located at z = 0.1? (remember the definition of DA)4 θ = d/DA

1.3× 10−5 rad
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Probability
What is probability?
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Probability
What is probability?

a frequency

“the number of times
the event occurs over

the total number of trials, in
the limit of an infinite series
of equiprobable repetitions”
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Probability
What is probability?

a frequency

“the number of times
the event occurs over

the total number of trials, in
the limit of an infinite series
of equiprobable repetitions”

another subtle point:
“randomness” of the trial series

what is really “random”?

do we properly know the initial
state (and do not cheat)?
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Probability
What is probability?

a frequency

“the number of times
the event occurs over

the total number of trials, in
the limit of an infinite series
of equiprobable repetitions”

another subtle point:
“randomness” of the trial series

what is really “random”?

do we properly know the initial
state (and do not cheat)?

a degree of belief

“probability is
a measure of the degree

of belief about a preposition”
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Probability
What is probability?

a frequency

“the number of times
the event occurs over

the total number of trials, in
the limit of an infinite series
of equiprobable repetitions”

another subtle point:
“randomness” of the trial series

what is really “random”?

do we properly know the initial
state (and do not cheat)?

a degree of belief

“probability is
a measure of the degree

of belief about a preposition”

Advantages:

recovers frequentist on the long run;
can be applied when frequentist cannot;
no need to assume a distribution of
possible data;
deals effortlessly with nuisance
parameters (marginalization);
relies on prior information.
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Bayes’ theorem

Bayes theorem:
p(H|d , I) = p(d |H, I) p(H|I)

p(d |I)

given hypothesis H, data d , some information I (true):

how to deal with Bayesian probability?
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Bayes’ theorem

Bayes theorem:
p(H|d , I) = p(d |H, I) p(H|I)

p(d |I)

given hypothesis H, data d , some information I (true):

how to deal with Bayesian probability?

Prior probability:
π(θ)

what we knew before
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Bayes’ theorem

Bayes theorem:
p(H|d , I) = p(d |H, I) p(H|I)

p(d |I)

given hypothesis H, data d , some information I (true):

how to deal with Bayesian probability?

Prior probability:
π(θ)

what we knew before
Posterior
probability:

p(θ)

what we
know after
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Bayes’ theorem

Bayes theorem:
p(H|d , I) = p(d |H, I) p(H|I)

p(d |I)

given hypothesis H, data d , some information I (true):

how to deal with Bayesian probability?

Prior probability:
π(θ)

what we knew before
Posterior
probability:

p(θ)

what we
know after Likelihood: L(θ)

sampling distribution of
data, given that H is true
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Bayes’ theorem

Bayes theorem:
p(H|d , I) = p(d |H, I) p(H|I)

p(d |I)

given hypothesis H, data d , some information I (true):

how to deal with Bayesian probability?

Prior probability:
π(θ)

what we knew before
Posterior
probability:

p(θ)

what we
know after Likelihood: L(θ)

sampling distribution of
data, given that H is true

Marginal likelihood:
or “Bayesian evidence”,

p(d |I) ≡
∑
H

p(d |H, I) p(H|I)
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Bayes’ theorem

Bayes theorem:
p(H|d , I) = p(d |H, I) p(H|I)

p(d |I)

given hypothesis H, data d , some information I (true):

how to deal with Bayesian probability?

Prior probability:
π(θ)

what we knew before
Posterior
probability:

p(θ)

what we
know after Likelihood: L(θ)

sampling distribution of
data, given that H is true

Marginal likelihood:
or “Bayesian evidence”,

p(d |I) ≡
∑
H

p(d |H, I) p(H|I)

Bayes theorem:

posterior = likelihood× prior
evidence
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Bayes’ theorem

Bayes theorem:
p(H|d , I) = p(d |H, I) p(H|I)

p(d |I)

given hypothesis H, data d , some information I (true):

how to deal with Bayesian probability?

Prior probability:
π(θ)

what we knew before
Posterior
probability:

p(θ)

what we
know after Likelihood: L(θ)

sampling distribution of
data, given that H is true

Marginal likelihood:
or “Bayesian evidence”,

p(d |I) ≡
∑
H

p(d |H, I) p(H|I)

Bayes theorem:

posterior = likelihood× prior
evidence
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Bayes’ theorem

Bayes theorem:
p(H|d , I) = p(d |H, I) p(H|I)

p(d |I)

given hypothesis H, data d , some information I (true):

how to deal with Bayesian probability?

Prior probability:
π(θ)

what we knew before
Posterior
probability:

p(θ)

what we
know after Likelihood: L(θ)

sampling distribution of
data, given that H is true

Marginal likelihood:
or “Bayesian evidence”,

p(d |I) ≡
∑
H

p(d |H, I) p(H|I)

Bayes theorem:

posterior = likelihood× prior
evidence

parameter
inference

model comparison
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Bayes theorem in action

4 2 0 2 4

Prior

What each researcher knew
before the experiment

Researcher 1

Researcher 2

4 2 0 2 4

Likelihood

The result of the experiment

posterior = likelihood× prior
evidence
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Bayes theorem in action

4 2 0 2 4

Researcher 1

Researcher 2

4 2 0 2 4

Likelihood

The result of the experiment

posterior = likelihood× prior
evidence

4 2 0 2 4

What each researcher
knows after the experiment

Posterior

Posterior depends on prior!
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Bayes theorem in action

4 2 0 2 4

Researcher 1

Researcher 2

4 2 0 2 4

Likelihood

The result of the experiment

posterior = likelihood× prior
evidence

4 2 0 2 4

What each researcher
knows after the experiment

this posterior
will be the
new prior
for next

experiments

Posterior

Posterior depends on prior!
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Bayes theorem in action

4 2 0 2 4

Researcher 1

Researcher 2

4 2 0 2 4

Likelihood

The result of the experiment

posterior = likelihood× prior
evidence

4 2 0 2 4

What each researcher knows
after the second experiment

Remember:
σ2N = σ2/N

Posterior

Posterior depends on prior!
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Bayes theorem in action

4 2 0 2 4

Researcher 1

Researcher 2

4 2 0 2 4

Likelihood

The result of the experiment

posterior = likelihood× prior
evidence

Remember:
σ2N = σ2/N

4 2 0 2 4

What each researcher
knows after 10 experiments

Posterior
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Bayes theorem in action

4 2 0 2 4

Researcher 1

Researcher 2

4 2 0 2 4

Likelihood

The result of the experiment

posterior = likelihood× prior
evidence

Remember:
σ2N = σ2/N

4 2 0 2 44 2 0 2 4

What each researcher
knows after 30 experiments

Posterior
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Bayes theorem in action

4 2 0 2 4

Researcher 1

Researcher 2

4 2 0 2 4

Likelihood

posterior = likelihood× prior
evidence

4 2 0 2 44 2 0 2 4

Posterior

Knowledge converges using information from experiments
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Bayes theorem in action

4 2 0 2 4

Researcher 1

Researcher 2

4 2 0 2 4

Likelihood

posterior = likelihood× prior
evidence

4 2 0 2 44 2 0 2 4

Posterior

Knowledge converges using information from experiments

Prior dependence (subjectivity) only if not enough information in data!
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(Bayesian) Parameter inference
Parameter inference = what we learn on the parameters, given:

data d

build L(θ) from d &M0

modelM0

parameters θ
+(physical φ nuisance ψ)

(& priors)

Full posterior:

p(θ|d ,M0) ∝ L(θ)× p(θ|M0)
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(Bayesian) Parameter inference
Parameter inference = what we learn on the parameters, given:

data d

build L(θ) from d &M0

modelM0

parameters θ
+(physical φ nuisance ψ)

(& priors)

Full posterior:

p(θ|d ,M0) ∝ L(θ)× p(θ|M0)

Marginalize over nuisance to obtain posterior for physical:

p(φ|d ,M0) ∝
∫
L(φ, ψ)p(φ, ψ|M0)dψ

marginalize over all the parameters except one (two)

1D (2D) posterior
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Credible intervals from the posterior
Credible interval α?

range of values within which an unobserved parameter value falls
with a particular subjective probability α
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Credible intervals from the posterior
Credible interval α?

range of values within which an unobserved parameter value falls
with a particular subjective probability α

Analogous to frequentist confidence intervals α

Bayesian credible interval:

bounds as fixed;
estimated parameter as a
random variable.

Frequentist confidence interval:

bounds as random variables;
estimated parameter as
fixed value.
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Credible intervals from the posterior
Credible interval α?

range of values within which an unobserved parameter value falls
with a particular subjective probability α

Analogous to frequentist confidence intervals α

Bayesian credible interval:

bounds as fixed;
estimated parameter as a
random variable.

Frequentist confidence interval:

bounds as random variables;
estimated parameter as
fixed value.

Credible intervals are not uniquely defined!

highest posterior density
interval: narrowest

interval, includes values of
highest probability density

equal-tailed interval:
same probability
of being below or
above the interval

interval for which
the mean is the
central point
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range of values within which an unobserved parameter value falls
with a particular subjective probability α

Analogous to frequentist confidence intervals α

Bayesian credible interval:

bounds as fixed;
estimated parameter as a
random variable.

Frequentist confidence interval:

bounds as random variables;
estimated parameter as
fixed value.

Credible intervals are not uniquely defined!
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interval: narrowest

interval, includes values of
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equal-tailed interval:
same probability
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Computing credible intervals
Highest posterior density interval

4 2 0 2 4

Po
st
er
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ro
ba
bi
lit
y
(a
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y
sc
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e)
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Computing credible intervals
Highest posterior density interval

4 2 0 2 4

fix probability level y

integrate over x
where p(x) > y

68% credible interval:
blue area =

0.68×(total area)

(Move the green
line until you find

the desired fraction)

Po
st
er
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bi
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y
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y
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Computing credible intervals
Highest posterior density interval

4 2 0 2 4

fix probability level y

integrate over x
where p(x) > y

68% credible interval:
blue area =

0.68×(total area)

(Move the green
line until you find

the desired fraction)

Different definitions of
credible interval are the
same here: equal tails!

Po
st
er
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lit
y
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y
sc
al
e)

S. Gariazzo “Hands in cosmology” 8th IDPASC School - Valencia - 23/05/18 7/14



A simplified application to determine H0

Idea from [Nature 551 (2017) 85-88 [arxiv:1710.05835]]

remember: H0 = vH/d

Data:
d = 43.8+2.9

−6.9 Mpc,
approximate to

d = 41.8 ± 4.9 Mpc

(obtained from GW signal)

vH = 3017 ± 166 km/s

(from GW signal+EM counterpart)

Questions:

1 best estimate for H0?
2 posterior for H0?
3 1/2/3σ intervals on H0?

1σ = 68.3% CL, 2σ = 95.5% CL, 3σ = 99.7% CL
S. Gariazzo “Hands in cosmology” 8th IDPASC School - Valencia - 23/05/18 8/14



A simplified application to determine H0 - solutions
1 H0 ' 68.9 km/s/Mpc from central values

2 use priors:

π(d) ∝ exp
[
−1
2

(
(d − 41.8)

4.9

)2
]

π(vH) ∝ exp
[
−1
2

(
(vH − 3017)

166

)2
]

π(H0) ∝ 1

use likelihood:
L(v , d ,H0) ∝ δ(H0, vH/d)

marginalized posterior on H0:
p(H0) =

∫
L(v , d ,H0) p(d) p(vH) p(H0) dd dvH

3 find the various levels, e.g.:
68.27%: cut at p = 3.069, obtain

H0 ∈ [62.7, 81.8]→ 71.2+10.6
−8.5 km/s/Mpc
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A simplified application to determine H0 - solutions
1 H0 ' 68.9 (71.2) km/s/Mpc from central values (posterior)

2 use priors:

π(d) ∝ exp
[
−1
2

(
(d − 41.8)

4.9

)2
]

π(vH) ∝ exp
[
−1
2

(
(vH − 3017)

166

)2
]

π(H0) ∝ 1

use likelihood:
L(v , d ,H0) ∝ δ(H0, vH/d)

marginalized posterior on H0:
p(H0) =

∫
L(v , d ,H0) p(d) p(vH) p(H0) dd dvH

3 find the various levels, e.g.:
68.27%: cut at p = 3.069, obtain

H0 ∈ [62.7, 81.8]→ 71.2+10.6
−8.5 km/s/Mpc
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Some introduction
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Number densities
Consider a particle with mass m, degeneracy g = 2

and zero chemical potential.1

What is its number density in the limits of large and small m/T?

Assume the three cases:
Maxwell-Boltzmann, f (p) ∝ e−E/T

Fermi-Dirac, f (p) =
(
eE/T + 1

)−1
Bose-Einstein, f (p) =

(
eE/T − 1

)−1
n = g

∫ d3p
(2π)3 f (p)

ζ(s) = 1
Γ(s)

∫ ∞
0

dx x s−1

ex − 1 = 1
(1− 21−s)Γ(s)

∫ ∞
0

dx x s−1

ex + 1

ζ(2) = π2/6 , ζ(3) = 1.202 , ζ(4) = π4/90

Remember:
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Number densities - Solutions
MB, small T : this coincides with FD and BE when E ' m� T (non
relativistic)

e−E/T → e−m/T−p2/(2mT )

define x ≡ p/
√
2mT → n = e−m/T

π2
[2mT ]3/2

∫ ∞
0

dx x2 e−x2

√
π/2
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Number densities - Solutions
MB, small T : this coincides with FD and BE when E ' m� T (non
relativistic)

e−E/T → e−m/T−p2/(2mT )

define x ≡ p/
√
2mT → n = e−m/T

π2
[2mT ]3/2

∫ ∞
0

dx x2 e−x2

√
π/2

MB, large T : use x ≡ p/T , so n = T 3

π2

∫ ∞
0

dx x2 e−x

2
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Number densities - Solutions
MB, small T : this coincides with FD and BE when E ' m� T (non
relativistic)

e−E/T → e−m/T−p2/(2mT )

define x ≡ p/
√
2mT → n = e−m/T

π2
[2mT ]3/2

∫ ∞
0

dx x2 e−x2

√
π/2

MB, large T : use x ≡ p/T , so n = T 3

π2

∫ ∞
0

dx x2 e−x

2

FD/BE, large T : use again x ≡ p/T , so n = T 3

π2

∫ ∞
0

dx x2
ex ± 1

Now you can use the ζ(x) definitions, so the integral is:

BE→ ζ(3)Γ(3) = 2ζ(3) FD→ 3/4ζ(3)Γ(3) = 3ζ(3)/2
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Energy densities
Repeat the previous exercise, but now compute

ρ = g
∫ d3p

(2π)3 E f (p)1b
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Energy densities
Repeat the previous exercise, but now compute

ρ = g
∫ d3p

(2π)3 E f (p)1b

(non relativistic), that is MB, FD or BE, small T (E ' m� T ):
E ' m + p2/(2mT ), x ≡ p/

√
2mT as before

Same steps as before, now get ρ = m · n
(
1 + 3T

2m

)
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Energy densities
Repeat the previous exercise, but now compute

ρ = g
∫ d3p

(2π)3 E f (p)1b

(non relativistic), that is MB, FD or BE, small T (E ' m� T ):
E ' m + p2/(2mT ), x ≡ p/

√
2mT as before

Same steps as before, now get ρ = m · n
(
1 + 3T

2m

)

MB, large T , E ' p: use x ≡ p/T , so . . .

S. Gariazzo “Hands in cosmology” 8th IDPASC School - Valencia - 23/05/18 12/14



Energy densities
Repeat the previous exercise, but now compute

ρ = g
∫ d3p

(2π)3 E f (p)1b

(non relativistic), that is MB, FD or BE, small T (E ' m� T ):
E ' m + p2/(2mT ), x ≡ p/

√
2mT as before

Same steps as before, now get ρ = m · n
(
1 + 3T

2m

)

MB, large T , E ' p: use x ≡ p/T , so . . .

FD/BE, large T , E ' p: x ≡ p/T , so ρ = T 4

π2

∫ ∞
0

dx x3
ex ± 1

As done for computing n, use the ζ(n) definition:

BE→ ζ(4)Γ(4) = π4/15 FD→ 7/8ζ(4)Γ(4) = 7π4/120
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Baryon asymmetry
Determine ηb ≡ nb/nγ in terms of Ωbh2.2
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Baryon asymmetry
Determine ηb ≡ nb/nγ in terms of Ωbh2.2

Solution
start from nb = ρb

mp
= ρcritΩb

mp
[Ωi ≡ ρi/ρcrit ]

where ρcrit ' 1.88h2 × 10−32 kg cm−3 and mp ' 1.7× 10−27 kg

photon number density: ργ ' 410 cm−3
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Baryon asymmetry
Determine ηb ≡ nb/nγ in terms of Ωbh2.2

Solution
start from nb = ρb

mp
= ρcritΩb

mp
[Ωi ≡ ρi/ρcrit ]

where ρcrit ' 1.88h2 × 10−32 kg cm−3 and mp ' 1.7× 10−27 kg

photon number density: ργ ' 410 cm−3

put everything together...

ηb '
Ωbh2 1.88× 10−32 kg cm−3

1.7× 10−27 kg
1

410 cm−3 ' 2.7× 10−8 Ωbh2
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Baryon asymmetry
Determine ηb ≡ nb/nγ in terms of Ωbh2.2

Solution
start from nb = ρb

mp
= ρcritΩb

mp
[Ωi ≡ ρi/ρcrit ]

where ρcrit ' 1.88h2 × 10−32 kg cm−3 and mp ' 1.7× 10−27 kg

photon number density: ργ ' 410 cm−3

put everything together...

ηb '
Ωbh2 1.88× 10−32 kg cm−3

1.7× 10−27 kg
1

410 cm−3 ' 2.7× 10−8 Ωbh2

normalize: ηb ' 5.9× 10−10
(

Ωbh2
0.022

)
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Baryon-to-photon ratio
Determine the evolution of R ≡ 3ρb

4ργ
as a function of a.3

You can use Ω0
γh2 ' 2.5× 10−5 today
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Baryon-to-photon ratio
Determine the evolution of R ≡ 3ρb

4ργ
as a function of a.3

You can use Ω0
γh2 ' 2.5× 10−5 today

Solution
Start from ρb ∝ T 3 and ργ ∝ T 4

remember aT = a0T0 and a0 = 1

Then you have ργ(T )
ρ0γ

=
( T
T0

)4
= a−4 and also ρb(T ) = ρ0b a−3
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Baryon-to-photon ratio
Determine the evolution of R ≡ 3ρb

4ργ
as a function of a.3

You can use Ω0
γh2 ' 2.5× 10−5 today

Solution
Start from ρb ∝ T 3 and ργ ∝ T 4

remember aT = a0T0 and a0 = 1

Then you have ργ(T )
ρ0γ

=
( T
T0

)4
= a−4 and also ρb(T ) = ρ0b a−3

R = 3ρ0b a−3
4ρ0γa−4

= a 3Ω0
bρ

0
crit

4Ω0
γρ

0
crit

= 3× 104 a Ω0
bh2
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