
What is the main purpose of Cosmology? 
To study the evolution and structure of the large scales in our universe 

SUN 
2 1033 g 
7 1010 cm

Galaxies 
2 1044 g 
10 kpc=3 1022 cm

Galaxy Clusters 
2 1047 g 
~ Mpc=1025 cm

The universe: our “Hubble volume” 
8 1055 g 
3000 Mpc=1028 cm

What is a parsec (parallax of one arcsecond)?



A parsec (parallax of one arcsecond) is a length measure commonly used  
in astrophysics and cosmology. A parsec was defined as the distance  
at which one astronomical unit subtends an angle of one arc-second. 

1 AU= 150 109 m 
1 pc= 3.08 1016 m (3.26 light years) 

A parsec amounts to go and come back from the Sun…….

100 000 times! 
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reminder of some scales 

•  keep in mind some rough scales when considering 

galaxies: 

–  Sun’s distance from centre of Galaxy: ~ 8 kpc 

–  diameter of Galaxy: ~ 30 kpc 

–  nearest (non-satellite) galaxies: ~750 kpc 

–  sizes of groups and clusters: 1-3 Mpc 

–  nearest rich clusters: 20-100 Mpc 

–  sizes of ‘walls’ and large-scale structure: 100’s Mpc 

Galaxies – AS 3011 6 

methods for our Galaxy 

•  these depend on things we can measure over quite 

small scales 

–  parallax (motion of nearby stars against fixed 

background of more distant objects) 

–  plotting Hertzsprung-Russell diagram for clusters      

of stars 

–  velocities of stars (Oort’s constants) 

•  all of these require observations of individual stars, so 

they won’t work for galaxies where the bulk of the stars 

can’t be distinguished 

–  e.g. two stars 1 pc apart would be separated by 0.01 

arcsec in the Virgo cluster  



TEMA 1: 

INTRODUCTION:  

FUNDAMENTAL INGREDIENTS 
OF STANDARD COSMOLOGY 



Standard Cosmology refers to FLRW Cosmology 
(FRIEDMANN LEMAITRE ROBERTSON WALKER) 
and it is based on two basic elements:

•FLRW Geometry (i.e. the metric, which determines 
the geodesics) 

•FLRW Dynamics (Friedmann Equations, which  
determine the curvature of the space-time)



1.1 FLRW GEOMETRY 

  
The FLRW geometry asumes that at large scales the universe is 
homogeneous and isotropic.



The most robust confirmation of the isotropy of the universe at large scales is  
provided by the CMB, the Cosmic Microwave Background radiation (Penzias & Wilson’64). 
When one measures the sky temperature in any direction, one notices that the photons 
have a thermal black body spectrum with a temperature of 2.725 K. This has been  
measured with high accuracy by the spectrophotometer FIRAS on the NASA COBE  
satellite. There are small fluctuations in the temperature across the sky at the  
level of about 1 part in 100,000 ~(10-5) 

  
The existence of a CMB, that is, a relic photon bath, was predicted by  Alpher & 
Herman in 1948 while working on BBN. Penzias & Wilson, in 1965, discovered  
accidentally the CMB while working with a very sensitive radio telescope at Bell  
Labs in New Jersey. In 1978, Penzias and Wilson were awarded the Nobel Prize for 
Physics for their joint discovery of the CMB.



At distances larger than 100 Mpc, galaxy survey observations indicate that  
the universe is homogeneous, that is, galaxies and clusters of galaxies are equally  
distributed in the sky in all possible directions. 

 

http://www.sdss3.org/press/dr9.php


The spatial geometry depends on the curvature, K: 

 

The FLRW metric tells us how to measure distances in each of these possible  
geometries.

K=1: three-sphere 
 

K=-1:  
three-hyperboloid

K=0: flat



The metric g𝝁𝛎  connects the values of the coordinates to the more physical  
measure of the interval (proper time):

ds2 =
3X

µ,⌫=0

gµ⌫dx
µdx⌫

• dx0 refers to the time-like component, the last three are spatial coordinates. 

• g𝝁𝛎 is the metric, necessarily symmetric. 

• In special relativity, g𝝁𝛎=η𝝁𝛎  (Minkowski metric) 

• In an expanding, homogeneous and isotropic universe the metric is the FLRW one:
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• A geodesic refers to the path followed by a particle in the absence of any forces,  
(in the Minkowski metric it will be a straight line): 

which should be generalised in the context of an expanding universe to:

•The Christoffer symbols will be extensively used in the following 
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•We can apply the geodesic equation to compute the particle’s energy changes as the 
universe expands: 

•The 0-th component of the geodesic equation reads as: 
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We’ll cover two type of distances:
FRW Geometry

• Closed geometry of a sphere of radius R

• Suppress 1 dimension ↵ represents total angular separation (✓, �)

dD

D

dα

DAdα

D A
=

Rs
in(
D/
R)

dΣ

•Radial distance D (photon path length) 

•Angular distance DA (associated to the angle 
subtended by an object of known physical size)

The volume element is defined as:

dV = D2
AdDd⌦

We will see some examples of each possible distance/volume element: 

• Distance to a Supernova 

• Angular size of the universe at photon decoupling 

• Galaxy number density



Horizon
•The distance that light has traveled without interactions from t=0 until the 
present is known as the comoving horizon. 

•The horizon ALWAYS increases with time. 

•The comoving horizon corresponds to the conformal time (c=1): 

•The comoving horizon equals to the causal distance. Regions that lie apart from 
each other by a distance larger than the comoving horizon were never in causal 
contact. 
•This problem is known as “The horizon problem”: 

•Why at large scales the universe is so homogeneous and isotropic? 
•If these regions were never in causal contact, how is it possible that the CMB 
temperature is so uniform in the sky? 
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Hubble parameter

• It provides the expansion rate of the universe as a function of time:  

•The cosmic time reads as: 

•The conformal time is given by: 
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Cosmological redshift

•Doppler Effect:  

•Cosmic time: The photon wavelength is stretched with the scale factor as the 
universe expands. 

•If we interpret the redshift z as the Doppler effect, galaxies recede (i.e. 
they move further away) in an expanding universe.

� =
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a
= (1 + z)�0

a =
1

1 + z

https://www.youtube.com/watch?v=NnfSGh0vpOY


https://www.youtube.com/watch?v=Y5KaeCZ_AaY


Hubble law
•The comoving distance to an object located at  redshift z reads as: 

•At small redshifts, z⋍ v/c. 
The Hubble law can be written as: 

with the Hubble constant, H0: 

• Cosmological observations have determined that h⋍0.7
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Z 1

a

da
0

a02H(a0)
D(z) =

Z z

0

dz
0
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z
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z
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1929: Edwin Hubble measures the spectra of hundred of galaxies and notices  
that they are redshifted, meaning that they are moving away from our galaxy. 
Furthermore, the further the galaxy is located,the faster it moves away from  
our galaxy.

H0 = 100h km/s/Mpc



Distances in cosmology
•“Standard ruler”: If we have an object of known size that subtends an angle: 

   

DA(z)=comoving angular distance, dA(z) is the physical angular distance dA= a DA 

•“Standard candle”: If we have an object of well-known luminosity,  the                       photon 
flux (energy/unit of time) observed is: 

where a factor (1+z) comes from the redshift in the photon energy:  

and the additional (1+z) factor comes from the photon propagation 
“Luminosity distance”: 

•At very small redshifts, the three distances are the same:  
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April 28, 2010

Dear JCAP Editor:
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Sincerely,

The authors
z ! 0, dL = dA = DA

Measuring D(z)
• Standard Ruler: object of known physical size

� = a(t)⇤

subtending an observed angle ↵ on the sky ↵

↵ =
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DA(z)
⌘ �

dA(z)

dA(z) = aDA(a) =
DA(z)

1 + z

where, by analogy to DA, dA is the physical angular diameter
distance

• Since DA ! Dhorizon whereas (1 + z) unbounded, angular size of
a fixed physical scale at high redshift actually increases with radial
distance

•Warning! you will have to work 
with these expressions in the 
“Hands in Cosmology” session

http://icosmos.co.uk
http://www.atlasoftheuniverse.com/redshift.html


•“Standard Candles”: Are celestial objects with well-known luminosities. 
Their apparent magnitude is given by 

•Therefore, if we can determine the object’s redshift (spectrography) we 
can learn about the luminosity distance of that object as a function of 
the redshift. 

•At small redshifts: 

•Therefore, the Hubble constant extraction is possible via low-redshift 
measurements of the apparent magnitude of objects whose absolute 
magnitude M is known. 

  

m(z) = M + 5 log10(dL(z)/Mpc) + 25

dL ' z

H0

Distances in cosmology

http://icosmos.co.uk


Hubble constant measurements

•Traditionally, the ideal objects are the Cepheids Variables, whose luminosity 
follows a very precise and regular period. Knowing such a relation, one can 
extract the luminosity distance to the galaxy where the Cepheid is located. 

  

Friedmann et al (2001)

http://hubblesite.org


Hubble constant measurements

Friedmann et al (2001)



Freedman et al (2001)

Key Project Cepheids

• Composite I-
band PL relation 

• 24 galaxies
• ~800 Cepheids
• PL dispersion 

~0.1 mag (LMC)

Ferrarese et al. (2000)

Hubble constant measurements

•Traditionally, the ideal objects are the Cepheids Variables, whose luminosity 
follows a very precise and regular period. Knowing such a relation, one can 
extract the luminosity distance to the galaxy where the Cepheid is located. 

  



HST Cepheids measurements have lead to a 2.4% determination of the Hubble 
constant:

Hubble constant measurements

H0 = 73.24± 1.74 km/s/Mpc



Hubble constant measurements

H0 = 73.24± 1.74 km/s/Mpc

HST Cepheids measurements have lead to a 2.4% determination of the Hubble 
constant:



GW170817

Localization of the gravitational-wave, gamma-ray, and 

optical signals. 

The left panel shows an orthographic projection of the 

90% credible regions from LIGO (light green), 

the initial LIGO-Virgo localization (dark green), 

IPN triangulation from the time delay between Fermi and I

INTEGRAL (light blue), and Fermi-GBM (dark blue). 

The inset shows the location of the apparent host 

galaxy NGC 4993 in the Swope optical discovery 

image at 10.9 hr after the merger (top right) 

and the DLT40 pre-discovery image from 20.5 

days prior to merger (bottom right). 

The reticle marks the position of the transient in both 

images.

The detection of GW170817 in both gravitational waves and electromagnetic waves 
represents the first ‘multi-messenger’ astronomical observation



GW170817





The method combines the distance to the source inferred purely from the 
gravitational-wave signal with the recession velocity inferred from measurements of 
the redshift using electromagnetic data. 

vH= H0d
Using the optical identification of the host galaxy NGC 4993, they derive the Hubble 
flow velocity. PROBLEM: the random relative motion of galaxies (peculiar velocity) 
needs to be taken into account! In practice, the motions of galaxies are influenced 
by more than just the Hubble flow: the local flow, and the motion of the galaxy 
within its cluster and/or group environment. These deviations from the pure Hubble 
flow are referred to as peculiar motions. The peculiar velocity is about 10% of the 
measured recessional velocity. 

  

 

d = 43.8+2.9
�6.9Mpc

The Hubble flow causes all galaxies to receed from each other. The local flow and the motion of the galaxy within its cluster environment  
also contribute.

http://astronomy.swin.edu.au/cosmos/cosmos/C/cluster+environment
http://astronomy.swin.edu.au/cosmos/cosmos/G/group+environment
http://astronomy.swin.edu.au/cosmos/H/Hubble+Flow
http://astronomy.swin.edu.au/cosmos/G/Galaxy
http://astronomy.swin.edu.au/cosmos/L/Local+Flow
http://astronomy.swin.edu.au/cosmos/C/Cluster+Environment


NGC 4993 is part of a collection of galaxies, ESO 508, which has a  
center-of-mass recession velocity relative to the frame of the cosmic  
CMB of 3 327 ± 72 km/s.  The authors correct the group velocity by 310 km/s,  
due to the local gravitational fields.  

The standard error on their estimate of the peculiar velocity is 69 km/s, but 
recognizing that this value may be sensitive to details of the bulk flow motion,  
in their analysis adopt a more conservative estimate of 150 km/s  
for the uncertainty on the peculiar velocity at the location of NGC 4993 and  
fold this in their estimate of the uncertainty on vH.  
From this, they obtain a Hubble velocity  vH= 3 017 ± 166 km/s. 

Using this recessional velocity, one can find H0= 68.9 km/s, which is very close  
to the value obtained through the more refined statistical method you will work  
on tomorrow afternoon in the “Hands in cosmology” session.  



SNIa: Standard Candles

Supernova: star that dies 

causing a very violent nuclear 
explosion. It emits the energy 
equivalent to a full galaxy!


SN Ia: objects of very well-

known luminosity. If we know their 

apparent luminosity, we can 

determine their distance: 

Standard candles




580 Supernovae Type Ia!
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SCP06X26

z=1.440

SCP06K0

z=1.415

SCP06K18

z=1.411

SCP06G4

z=1.350
SCP05D6

z=1.315

SCP06H5

z=1.231

SCP06R12

z=1.212

SCP06A4

z=1.192
SCP06N33

z=1.188

SCP06F12

z=1.110

SCP06C0

z=1.092

SCP06U4

z=1.050
SCP06E12

zcluster=1.026

SCP05D0

z=1.014

SCP06G3

z=0.962

SCP06C1

z=0.98
SCP05P1

z=0.926

SCP06H3

z=0.850

SCP05P9

z=0.821

SCP06Z5

z=0.623
Figure 1. Composite color (i775 and z850) images of 20 SNe Ia from the HST Cluster Supernova Survey. Each SN Ia is shown in a box of 3.2′′ × 3.3′′ (North
up and East left). Note the redshift of SCP06E12 is uncertain, and we use the cluster redshift as a guide.

2011 HST:  14 Supernovae Ia extra and with z>1!





µ = m�M = 5 log10(dL(z)/Mpc) + 25

Distance modulus 
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By knowing 𝝁,  we can obtain the luminosity distance and 
compare to the theoretical predictions.  
To which curve match data better?



Imagine an object with well-known luminosity L: standard candle


If we measure the flux S and we know L, we can determine dL and compare to what 
we expect from theory:

April 30, 2010

Dear JCAP Editor:

S � L

4�d2
L

(1)

d2
L ⇥

�
1

H(z)
(2)

Sincerely,

The authors

What we observe from the SNIa data is that the measured dL is larger than what one 
estimates in a universe with only matter. It seems that light has been travelled since 
longer ago, or for a larger distance, or, maybe, that the universe is not only 
expanding, but it is doing so in an accelerated way!



2011 Phsyics Nobel Prize 

•High-Z Supernova Search•Supernova Cosmology Project
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FIG. 4.ÈMLCS SNe Ia Hubble diagram. The upper panel shows the
Hubble diagram for the low-redshift and high-redshift SNe Ia samples with
distances measured from the MLCS method (Riess et al. 1995, 1996a ;
Appendix of this paper). Overplotted are three cosmologies : ““ low ÏÏ and
““ high ÏÏ with and the best Ðt for a Ñat cosmology,)

M
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The present data set has only a modest range of redshifts, so
we can only constrain speciÐc cosmological models or
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where is our set of distance moduli Sincel0 (Lupton 1993).
we have no prior constraints on the cosmological param-
eters (besides the excluded regions) or on the data, we take
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SN Ia Hubble diagram. The upper panel shows theFIG. 5.È*m15(B)
Hubble diagram for the low-redshift and high-redshift SNe Ia samples with
distances measured from the template-Ðtting method parameterized by

(Hamuy et al. Overplotted are three cosmologies :*m15(B) 1995, 1996d).
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We assume each distance modulus is independent (aside
from systematic errors discussed in and normally dis-° 5)
tributed, so the PDF for the set of distance moduli given the
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Rewriting the product as a summation of the exponents and
combining with we haveequation (4),
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The product in front is a constant, so combining with
the PDF for the cosmological parametersequation (6)

yields the standard expression (Lupton 1993)
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Saul Perlmutter Adam RiessBrian P. Schmidt
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FIG. 1.ÈHubble diagram for 42 high-redshift type Ia supernovae from the Supernova Cosmology Project and 18 low-redshift type Ia supernovae from the
Supernova Survey after correcting both sets for the SN Ia light-curve width-luminosity relation. The inner error bars show the uncertainty dueCala! n/Tololo

to measurement errors, while the outer error bars show the total uncertainty when the intrinsic luminosity dispersion, 0.17 mag, of light-curveÈwidth-
corrected type Ia supernovae is added in quadrature. The unÐlled circles indicate supernovae not included in Ðt C. The horizontal error bars represent the
assigned peculiar velocity uncertainty of 300 km s~1. The solid curves are the theoretical for a range of cosmological models with zero cosmologicalm

B
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constant : on top, (1, 0) in middle, and (2, 0) on bottom. The dashed curves are for a range of Ñat cosmological models : on()
M

, )") \ (0, 0) ()
M

, )") \ (0, 1)
top, (0.5, 0.5) second from top, (1, 0) third from top, and (1.5, [0.5) on bottom.

applying the width-luminosity correction. For these plots,
the slope of the width-brightness relation was taken to be
a \ 0.6, the best-Ðt value of Ðt C discussed below. (Since
both the low- and high-redshift supernova light-curve
widths are clustered rather closely around s \ 1, as shown
in Fig. 4, the exact choice of a does not change the Hubble
diagram signiÐcantly.) The theoretical curves for a universe
with no cosmological constant are shown as solid lines for a
range of mass density, 1, 2. The dashed lines)

M
\ 0,

represent alternative Ñat cosmologies, for which the total
mass energy density (where)

M
] )" \ 1 )" 4 "/3H02).

The range of models shown are for (0.5,()
M

, )") \ (0, 1),
0.5), (1, 0), which is covered by the matching solid line, and
(1.5, [0.5).

3. FITS TO )
M

AND )"
The combined low- and high-redshift supernova data sets

of Figure 1 are Ðtted to the Friedman-Robertson-Walker
(FRW) magnitude-redshift relation, expressed as in P97 :
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““ Hubble-constantÈfree ÏÏ B-band absolute magnitude at
maximum of a SN Ia with width s \ 1. (These quantities

are, respectively, calculated from theory or Ðtted from
apparent magnitudes and redshifts, both without any need
for The cosmological-parameter results are thus alsoH0.
completely independent of The details of the ÐttingH0.)
procedure as presented in P97 were followed, except that
both the low- and high-redshift supernovae were Ðtted
simultaneously, so that and a, the slope of the width-M

Bluminosity relation, could also be Ðtted in addition to the
cosmological parameters and For most of the)

M
)".

analyses in this paper, and a are statistical ““ nuisance ÏÏM
Bparameters ; we calculate two-dimensional conÐdence

regions and single-parameter uncertainties for the cosmo-
logical parameters by integrating over these parameters, i.e.,

da.P()
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BAs in P97, the small correlations between the photo-
metric uncertainties of the high-redshift supernovae, due to
shared calibration data, have been accounted for by Ðtting
with a correlation matrix of uncertainties.11 The low-
redshift supernova photometry is more likely to be uncor-
related in its calibration, since these supernovae were not
discovered in batches. However, we take a 0.01 mag system-
atic uncertainty in the comparison of the low-redshift
B-band photometry and the high-redshift R-band photo-
metry. The stretch-factor uncertainty is propagated with a
Ðxed width-luminosity slope (taken from the low-redshift

11 The data are available at http ://www-supernova.lbl.gov.

http://www.nobelprize.org/nobel_prizes/physics/laureates/2011/press.html


The JLA SDSS-SNLS joint SNIa sample

740 Supernovae Ia!





1.1 DYNAMICS FLRW 

  General Relativity relates the metric with the matter and energy 
content in the universe. The sale factor a(t) will evolve in time 
accordingly to the matter-energy content of the universe. 

In other words, matter and energy will tell us how the geometry 
of the space-time is curved via the Einstein equations. 
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2
gµ⌫R = 8⇡Tµ⌫

•R𝝁𝛎  is the Ricci tensor, depending on the metric g𝝁𝛎 and its derivatives: 

(It seems tedious but there are only two components different from 0, the 00 and  
the ii ones) 

•R is the Ricci scalar, R=g𝝁𝛎R𝝁𝛎. 

•T𝝁𝛎  is the energy-momentum tensor. 

•The Christoffel symbols: 
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• Lets compute the 00 component for the Einstein equations: 

•But we know that Γα00=0, therefore:
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•EXERCISE, Check that: 
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Einstein Equations
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•T𝝁𝛎  is the energy-momentum tensor, that in the case of a isotropic perfect fluid: 
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•Exercise! From: 

•Derive the Friedmann Equation (2): 
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Friedmann Equations
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•First Friedmann Equation reads as:

H
2(a) = H

2
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⇢(a)

⇢crit

⇢crit ⌘
3H2

0

8⇡G

and it determines the accelerated processes in our universe’s expansion. 
In order to have such an accelerated expansion it is required that:

⇢+ 3p < 0

i.e. a negative pressure fluid!

•The second Friedmann Equation reads as:



Energy-momentum tensor conservation
• Time evolution of the T𝝁𝛎 components

•In the absence of external forces, the energy momentum tensor is conserved. 
•In an expanding universe, the energy momentum tensor conservation implies that 
its covariant derivative equals zero. 
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•Matter (either cold dark matter or baryonic one) has zero pressure: 
•Radiation is characterised by p=ρ/3: 
•While dark energy should behave as:  
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Friedmann Equations

•The first Friedmann equation can be written as: 
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•These expressions are valid for a FLAT universe. In case the universe is not flat:
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Friedmann Equations
•The first Friedmann equation can be written as: 



“Cosmic sum rule”
⌦m,0 + ⌦r,0 + ⌦de,0 + ⌦K,0 = 1

•In a flat universe, K=0, therefore: 

⌦m,0 + ⌦r,0 + ⌦de,0 = 1

•In an open universe, K=-1, therefore the 
curvature contribution is positive: 

⌦m,0 + ⌦r,0 + ⌦de,0 < 1

⌦m,0 + ⌦r,0 + ⌦de,0 > 1

Current cosmological observations indicate that the universe as a geometry 
very, very close to the FLAT one:  

⌦K = �0.037+0.043
�0.049

•In a close universe, K=+1, therefore the 
curvature contribution is negative: 



 CMBR~10^(-5)



Radiation: photons and neutrinos
•Photons: The cosmic microwave background radiation temperature is 2.725 K, 
measured with a precision of 50 parts in a million. The energy of such a photon 
bath is given by the integral of the Bose-Einstein distribution times E=p 
(massless): 
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•Neutrinos: Neutrinos are fermions and therefore follow the Fermi-Dirac 
statistics. As we shall soon see, neutrinos decouple from the thermal bath 
before electron positron annihilation and therefore they did not share in the 
entropy release, being their temperature lower than that of photons:
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Data tell us….



Matter: baryons and dark matter
•Baryons: The baryon density can not be inferred from temperature 
measurements. Currently we know that:

•Dark matter

from the CMB anisotropies. Other methods to extract the present baryonic mass-
energy density are light element abundances, quasar spectra or the gas population  
in galaxies.

A number of observations (galaxy rotation curves, galaxy clusters, gravitational 
lensing, large scale structure and the CMB anisotropies) indicate that the 
majority of the matter in the universe is unknown: dark matter 

⌦dmh2 = 0.1199+0.0053
�0.0052

⌦bh
2 = 0.02205+0.00056

�0.00055

Furthermore, observations of the large scale structure of our universe tell us that  
a COLD dark matter component provides an excellent fit to data.



There is way more matter in the universe than that we 
can see (stars, gas, planets…)

We know that should be there due to its gravitational 
effects:


Nothing escapes from gravity!

Dark matter 



Galaxy M33 

located at 3 million light years





Newton tells us that velocity must 

decrease with the radius!


If it would exist, furthermore, 

an amount of additional matter 


whose distribution:


then, we could explain the galaxy 

rotation curves



➲

➘



Einstein’s relativity predicts that the presence of a massive body will curve space time, 
distorting the light trajectory. The shape of the background objects will change/
multiplied by the presence of intervening galaxies.

 Gravitacional Lensing 



Einstein rings: Perfect alignment

This movie shows a spiral galaxy acting as a lense of a background quasar 

(Quasi-stellar radio source) moving behind the galaxy. When the alignment 

source-lens-observer is perfect, we see the formation of the Einstein ring!



 Gravitacional Lensing 



Anillo de Einstein doble! 3 galaxias perfectamente 

alineadas (posiblemente menos de 100 casos en 

todo el universo, y hemos visto uno!)

 Gravitacional Lensing 



HST Telescope 
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FIG. 1.ÈHubble diagram for 42 high-redshift type Ia supernovae from the Supernova Cosmology Project and 18 low-redshift type Ia supernovae from the
Supernova Survey after correcting both sets for the SN Ia light-curve width-luminosity relation. The inner error bars show the uncertainty dueCala! n/Tololo

to measurement errors, while the outer error bars show the total uncertainty when the intrinsic luminosity dispersion, 0.17 mag, of light-curveÈwidth-
corrected type Ia supernovae is added in quadrature. The unÐlled circles indicate supernovae not included in Ðt C. The horizontal error bars represent the
assigned peculiar velocity uncertainty of 300 km s~1. The solid curves are the theoretical for a range of cosmological models with zero cosmologicalm

B
eff(z)

constant : on top, (1, 0) in middle, and (2, 0) on bottom. The dashed curves are for a range of Ñat cosmological models : on()
M

, )") \ (0, 0) ()
M

, )") \ (0, 1)
top, (0.5, 0.5) second from top, (1, 0) third from top, and (1.5, [0.5) on bottom.

applying the width-luminosity correction. For these plots,
the slope of the width-brightness relation was taken to be
a \ 0.6, the best-Ðt value of Ðt C discussed below. (Since
both the low- and high-redshift supernova light-curve
widths are clustered rather closely around s \ 1, as shown
in Fig. 4, the exact choice of a does not change the Hubble
diagram signiÐcantly.) The theoretical curves for a universe
with no cosmological constant are shown as solid lines for a
range of mass density, 1, 2. The dashed lines)

M
\ 0,

represent alternative Ñat cosmologies, for which the total
mass energy density (where)

M
] )" \ 1 )" 4 "/3H02).

The range of models shown are for (0.5,()
M

, )") \ (0, 1),
0.5), (1, 0), which is covered by the matching solid line, and
(1.5, [0.5).

3. FITS TO )
M

AND )"
The combined low- and high-redshift supernova data sets

of Figure 1 are Ðtted to the Friedman-Robertson-Walker
(FRW) magnitude-redshift relation, expressed as in P97 :
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““ Hubble-constantÈfree ÏÏ B-band absolute magnitude at
maximum of a SN Ia with width s \ 1. (These quantities

are, respectively, calculated from theory or Ðtted from
apparent magnitudes and redshifts, both without any need
for The cosmological-parameter results are thus alsoH0.
completely independent of The details of the ÐttingH0.)
procedure as presented in P97 were followed, except that
both the low- and high-redshift supernovae were Ðtted
simultaneously, so that and a, the slope of the width-M

Bluminosity relation, could also be Ðtted in addition to the
cosmological parameters and For most of the)

M
)".

analyses in this paper, and a are statistical ““ nuisance ÏÏM
Bparameters ; we calculate two-dimensional conÐdence

regions and single-parameter uncertainties for the cosmo-
logical parameters by integrating over these parameters, i.e.,

da.P()
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, )") \ // P()
M

, )", M
B
, a)dM

BAs in P97, the small correlations between the photo-
metric uncertainties of the high-redshift supernovae, due to
shared calibration data, have been accounted for by Ðtting
with a correlation matrix of uncertainties.11 The low-
redshift supernova photometry is more likely to be uncor-
related in its calibration, since these supernovae were not
discovered in batches. However, we take a 0.01 mag system-
atic uncertainty in the comparison of the low-redshift
B-band photometry and the high-redshift R-band photo-
metry. The stretch-factor uncertainty is propagated with a
Ðxed width-luminosity slope (taken from the low-redshift

11 The data are available at http ://www-supernova.lbl.gov.

In 1998, two independent groups, observed that type Ia Supernovae were  
much fainter than what one would expect in a universe with only matter.  
An additional ingredient was mandatory to make the universe to expand in an  
accelerated way! 
Today the evidence for an accelerated expansion of the universe is 4.2σ-4.6σ  
with JLA SNIa data alone, and 11.2σ in a flat universe.
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Dark  energy











In 1917 Einstein added in his equations a cosmological constant Λ to have a static universe



 

Hubble, 1929: 


The universe is not static
 Λ : “My biggest blunder”



The most economical explanation for the universe’s accelerated expansion is to 
assume that there is an energy associated to the vacuum, with an equation of 
state w=-1, and that has been constant along the universe’s history.
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2
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Today, the comological constant comes back!
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Or to assume the existence of a dark energy fluid with a w≠ -1 ( and also time 
dependent):

Such that:
⌦de(a) = ⌦de,0a

�3(1+w)

w < �1/3



We know how to compute the vacuum energy:


:


But, if we compute it, we get a value which is 
100000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000


= 10120  times larger than the one we measure


!!!!!!!!!!!! ??????????????? 


This is the so-called cosmological constant 
problem



Radiation dominated period
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Future!

Exercise: compute the matter-radiation and  
matter-dark energy transitions


