

Precise Phenomenology at LHC

Francisco Campanario IFIC, UV-CSIC

8th IDPASC SCHOOL, 21-31 May 2018

Instituto de Física Corpuscular

IFIC, University of Valencia-CSIC

www.ific.uv.es

Contents

Introduction

- The LHC
- Results
- Goal
- Theoretical Ingredients
- PDF's
- The Hard Process
- Phenomenology
- VBFNLO
- Summary

The Large Hadron Collider

The Large Hadron Collider

The Large Hadron Collider

Proton Collider: Initial Proton- Proton Collision

Proton: Not only valence quarks (uud) Gluon relevant: carry half of the energy

Final State: Complicated Topologies: pp ➡ H + X ➡ 4 e + X

ATLAS: 18-May-2012, 20:28:11 CEST, run number 203602, event number 82614360

Transverse Plane

ATLAS: 18-May-2012, 20:28:11 CEST, run number 203602, event number 82614360

m(4l) = 124.5 GeV

m(2l) = 70.6 , 44.7 GeV

IFIC INSTITUT DE FISICA R

IFIC INSTITUT DE FISICA CORPUSCULAR

21.05.2018

IFIC INSTITUT DE FISICA CORPUSCULAR

IFIC INSTITUT DE FISICA CORPUSCULAR

Dr. Marc Bret Cano [Higgs Couplings 2017, Nov 6]

Dr. Marc Bret Cano [Higgs Couplings 2017, Nov 6]

Precise Knowledge of Backgrounds

[ATLAS-CONF-2018-004]

$$\frac{\sigma_{signal}}{\sigma_{background}} \propto \frac{250}{850} = 0.3$$

 Theoretical error of 30% in background as large as signal

→ No measurement

Needed Precise Theoretical Predictions

Beyond NLO: Precision frontier

Status Theory

LO:

- Automatize (Madgraph, Sherpa...)
- Public libraries (optimized code):(MCFM, VBFNLO)
- NLO QCD:
 - Automatize (MG5_aMC@NLO, Gosam/OpenLoops+ Herwig/Sherpa)
 - (processes with >4 legs in the final state, still might be challenging
 - Public libraries (MCFM, VBFNLO)
- NLO EW:
 - $2 \rightarrow 1$ (solved), many $2 \rightarrow 2$, some $2 \rightarrow 3/4$ processes
- NNLO QCD:
 - $2 \rightarrow 1$ (solved), many $2 \rightarrow 2$ processes
 - Public libraries (MATRIX, MCFM) and private codes
- NNNLO QCD:
 - $pp \rightarrow H$: via GF (effective theory) and VBF (VBF approximation)

Re-discovering the SM

Re-discovering the SM

Goal at LHC

Monte Carlo tools at the precision frontier:

NLO: MG5_aMC@NLO, Gosam/OpenLoops+ Herwig/Sherpa, VBFNLO+Herwig ... NNLO: MATRIX,MCFM, DY/HNNLO,..

Anomalous Couplings via Effective Field Theory

Search for New Physics through Anomalous couplings

- New Physics at high mass scale: Λ
- Higher-dimension terms to Lagrangian: 1/ Λ

Parametrize deviations from SM, e.g. in triple/quartic gauge couplings

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{f_W}{\Lambda^2} \mathcal{O}_W + \frac{f_k}{\Lambda^4} \dots$$

$$\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\Phi)$$

Anomalous Couplings

Anomalous Couplings \implies Limits to f_W

[FC,Roth,Zeppenfeld,20014]

dσ/dp_{T h} / fb/GeV

Anomalous Couplings \implies Limits to f_W

[FC,Roth,Zeppenfeld,20014]

Anomalous Couplings \implies Limits to f_W

[FC,Roth,Zeppenfeld,20014]

do/dp_{T h} / fb/GeV

Relevant Beyond (N)LO effects

$$H_T = \sum p_{T,jets} + \sum p_{T,l} + E_{T,miss}$$

Huge NLO/LO corrections

Large NNLO/NLO corrections

Precision is needed

Theoretical Ingredients

Initial and Final States at LHC

Proton

Factorization

Factorization

Factorization

Libraries

Partonic Cross Section

$$\sigma(H_1 H_2 \to X) = \sum_{a,b,\tilde{X}} \int_0^1 dx_a \, dx_b \, f_{a/H_1}(x_a, \mu_F^2) \, f_{b/H_2}(x_b, \mu_F^2)$$

$$\times \sigma_{ab}(ab \to \tilde{X}; \mu_F^2) \Theta(C(X)) F(\tilde{X} \to X)$$

Coupling Constants Run

Coupling Constants Run

QCD Coupling Constant

Scale Uncertainty

Theory scale uncertainty at NLO

Central Scale Choice Dependence

21.05.2018

Central Scale Dependence

Parton Distribution **Functions**

DIS: Deep Inelastic Scattering

Kinematic Relations:

$$y = \frac{p \cdot q}{p \cdot k} \qquad x = \frac{Q^2}{2 p \cdot q} \qquad M = \sqrt{xs}$$
$$Q^2 = xys$$

- Q: photon virtuality
 - transverse resolution at which it probes proton structure
- x: longitudinal momentum fraction of parton
- y: momentum fraction lost by electron (in proton rest frame)

DIS

Structure Function

$$\frac{d^2 \sigma^{\text{em}}}{dx dQ^2} \approx \frac{4\pi \alpha^2}{xQ^4} \left(\frac{1 + (1 - y)^2}{2} F_2^{\text{em}} + O(\alpha) \right)$$
$$F_2^{\text{em}} = x \left(\Sigma_i Q_i^2 q_i(x) \right) = x \left(\frac{4}{9} u(x) + \frac{1}{9} d(x) + \dots \right)$$

d(x), u(x): Parton Distribution Functions

Assuming SU(2) isospin symmetry:
neutron = proton with d
$$\iff$$
 u
 $F_2^p = x\left(\frac{4}{9}u(x) + \frac{1}{9}d(x)\right)$
 $F_2^{p,n} \longrightarrow d(x), u(x)$

DIS

DIS and DGLAP

Parton distributions run:

 Dokshitzer-Gribov-Lipatov-Alterelli-Parisi (DGLAP)

$$\frac{\mathrm{d}\,\mathbf{q}(\mathbf{X},\mu^2)}{\mathrm{d}\ln\mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 dz \, K_{qq}(z) \, \frac{\mathbf{q}(\mathbf{X}/\mathbf{Z},\mu^2)}{z}$$

• $K_{qq}(z)$: Splitting kernel • $K_{qq}(z) = C_F \frac{1+z^2}{1-z}$ **DIS and DGLAP**

21.05.2018

Sensitivity of LHC to PDF's

PDF's overview

Large gluon pdf's at small x: Phenomenological consequences LHC ______ gluon machine

HARD PROCESS

LO Cross Section

LO Cross Section

NLO Cross Section

NLO Cross Section

Details of NLO Calculation

NLO effects

NLO effects

NLO effects

Details of NLO calculation

New gluon initiated processes + new kinematic topologies

Details of NLO calculation

Cancellation of Divergences

Details of NLO calculation

Collinear counterterms: renormalize PDF's in \overline{MS}

$$d\sigma_{ab}^{C}(p_{a}, p_{b}; \mu_{F}^{2}) = -\frac{\alpha_{s}}{2\pi} \frac{1}{\Gamma(1-\varepsilon)} \sum_{cd} \iint_{0}^{1} dz_{a} dz_{b} d\sigma_{cd}^{B}(z_{a}p_{a}, z_{b}p_{b})$$

$$\times \left\{ \delta_{bd} \,\delta(1-z_{b}) \left[-\frac{1}{\varepsilon} \left(\frac{4\pi\mu^{2}}{\mu_{F}^{2}} \right)^{\varepsilon} P^{ac}(z_{a}) \right] \right\}$$

$$D = 4 - 2\varepsilon + \delta_{ac} \,\delta(1-z_{a}) \left[-\frac{1}{\varepsilon} \left(\frac{4\pi\mu^{2}}{\mu_{F}^{2}} \right)^{\varepsilon} P^{bd}(z_{b}) \right] \right\}$$

Dipole Substraction Method: [Catani, Seymour, 1997]

$$\sigma_{ab}^{NLO} = \int_{n+1} \left(\left. \mathrm{d}\sigma^R \right|_{\varepsilon=0} - \left. \mathrm{d}\sigma^A \right|_{\varepsilon=0} \right) + \int_n \left(\left. \mathrm{d}\sigma^V + \left. \mathrm{d}\sigma^C + \int_1 \mathrm{d}\sigma^A \right)_{\varepsilon=0} \right|_{\varepsilon=0} \right)$$

• Add counterterm: $d\sigma^A$

Dipole Substraction Method: [Catani, Seymour, 1997]

Dipole Substraction Method: [Catani, Seymour, 1997]

$$\sigma_{ab}^{NLO} = \int_{n+1} \left(\left. \mathrm{d}\sigma^{R} \right|_{\varepsilon=0} - \left. \mathrm{d}\sigma^{A} \right|_{\varepsilon=0} \right) + \int_{n} \left(\left. \mathrm{d}\sigma^{V} + \mathrm{d}\sigma^{C} + \int_{1} \mathrm{d}\sigma^{A} \right)_{\varepsilon=0} \right)$$

• $\int_{1} d\sigma^{A}$: Analytically integrable

$$\int_{m+1} \mathrm{d}\sigma^{\mathrm{A}} + \int_{m} \sigma_{m}^{\mathrm{C}} = \int_{m} \left[\mathrm{d}\sigma^{\mathrm{B}} \otimes \boldsymbol{I} \right] + \int_{0}^{1} \mathrm{d}x \int_{m} \left[\mathrm{d}\sigma^{\mathrm{B}} \otimes \left(\boldsymbol{P}(x, \mu_{F}^{2}) + \boldsymbol{K}(x) \right) \right]$$

• e.g: for V,VV,VVV production:

$$\langle \mathbf{I}(\epsilon) \rangle = |\mathcal{M}_B|^2 \frac{\alpha_s}{2\pi} C_F \left(\frac{4\pi\mu_{\rm R}^2}{-s}\right)^{\varepsilon} \Gamma(1+\varepsilon) \left[\frac{2}{\varepsilon^2} + \frac{3}{\varepsilon} + 9 - \frac{4}{3}\pi^2\right]$$

Cancel divergences of $d\sigma^V$

Dipole Substraction Method: [Catani,Seymour,1997]

$$\sigma_{ab}^{NLO} = \int_{n+1} \left(d\sigma^R \Big|_{\varepsilon=0} - d\sigma^A \Big|_{\varepsilon=0} \right) + \int_n \left(d\sigma^V + d\sigma^C + \int_1 d\sigma^A \right)_{\varepsilon=0}$$

$$\int_1 d\sigma^A : \text{Analytically Integrable}$$

$$\int_{m+1} d\sigma^A + \int_m \sigma_m^C = \int_m \left[d\sigma^B \otimes \mathbf{I} \right] + \int_0^1 dx \int_m \left[d\sigma^B \otimes \left(\mathbf{P}(x, \mu_F^2) + \mathbf{K}(x) \right) \right]$$

$$\langle \mathbf{I}(\epsilon) \rangle = |\mathcal{M}_B|^2 \frac{\alpha_s}{2\pi} C_F \left(\frac{4\pi\mu^2}{r_F} \right) \Gamma(1+\varepsilon) \left[\frac{2}{\varepsilon^2} + \frac{3}{\varepsilon} + 9 - \frac{4}{3}\pi^2 \right]$$
• Numerically Integrable D=4
At NNLO:

• Overall effect at small x and large momenta:

$$\frac{f_g(x_a, \mu_{\rm F}^2)}{f_{\bar{q}}(x_b, \mu_{\rm F}^2)} \frac{f_g(x_a, \mu_{\rm F}^2)}{f_q(x_b, \mu_{\rm F}^2)} \alpha_s^2 \ln^4 \frac{p_T}{M_W} > 20$$

Beyond (N)LO QCD effects: for $X_1 \dots X_n$ colorless Particles in Final State

NLO QCD corrections large New LO sub-processes 10New topologies .0000000000 NLO At NNLO New LO sub-processes $p_{\underline{T, jet}}^2$ $\frac{d\sigma}{d\Omega} \propto \ln$ New topologies **NNLO** 0000000000 Potentially large corrections

Relevant Beyond (N)LO effects

NLO QCD effects: for $X_1 \dots X_n$ *J* in Final State

- NLO QCD corrections large
 - New LO sub-processes
 - New topologies
- Potentially large corrections

$W\gamma\gamma + J$

[FC,Englert,Rauch,Zeppenfeld,1106.4009]

NLO QCD effects: for $X_1 \dots X_n$ *J J* in Final State

- NLO QCD corrections large
 - No New LO sub-processes (W+W+jj)
 - No New topologies
 - Moderate corrections

10

ZZjj Production [FC,Kerner,Ninhn,Zeppenfeld,1405.3972]

Contents

Introduction

- The LHC
- Results
- Goal
- Theoretical Ingredients
- PDF's
- The Hard Process
- Phenomenology
- VBFNLO
- Summary

THANK YOU FOR YOUR ATTENTION

Precise Phenomenology at LHC

Francisco Campanario IFIC, UV-CSIC

8th IDPASC SCHOOL, 21-31 May 2018

Instituto de Física Corpuscular

IFIC, University of Valencia-CSIC

www.ific.uv.es

Contents

Introduction

- The LHC
- Results
- Goal
- Theoretical Ingredients
- PDF's
- The Hard Process
- Phenomenology
- VBFNLO
- Summary

Phenomenology VV Production

Goal		
Test Standard Model	&	Hints of New Physics
Method		
Improve SM prediction		Reduce Theory Uncertainty
Framework to parametrize Beyond Standard Model physics		Effective Field Theory Anomalous Couplings
Improve Sensitivity		Cuts and Observables

Tools

VBFNLO: Diboson (+ up to 2 jet) production at NLO with AC LoopSim: Merge NLO samples to provide approximate higher order

Di-boson production

Background to many SM and BSM searches (including Higgs)

Status:

- NLO QCD known for a long time: 40-300%
- NLO EW known for almost all processes(on-shell): in tails up to 30%
- LO QCD GF induced contribution (NNLO) known: up to 20%
- NNLO QCD known: MATRIX

IFIC INSTITUT DE FÍSICA CORPUSCULA

The Higgs Signal Evolution

Precise Knowledge of Backgrounds

[ATLAS-CONF-2018-004]

$$\frac{\sigma_{signal}}{\sigma_{background}} \propto \frac{250}{850} = 0.3$$

 Theoretical error of 30% in background as large as signal

→ No measurement

Di-boson production

- Background to many SM and BSM searches (including Higgs)
- Search for New Physics through Anomalous couplings

Status:

- NLO QCD known for a long time: 40-300%
- NLO EW known for almost all processes(on-shell): in tails up to 30%
- LO QCD GF induced contribution (NNLO) known: up to 20%
- NNLO QCD known: MATRIX

AC via Effective Theory

- New Physics at high mass scale: Λ
- Higher-dimension terms to Lagrangian: 1/ Λ

Parametrize deviations from SM, e.g. in triple/quartic gauge couplings

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{f_W}{\Lambda^2} \mathcal{O}_W + \frac{f_k}{\Lambda^4} \dots$$
$$\mathcal{O}_W = (D_\mu \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_\nu \Phi)$$

Effective Theory

- New Physics at a high mass scale: Λ
- Higher-dimension terms to Lagrangian 1/ Λ^n
 - Parametrize deviations from SM, e.g. in triple/quartic gauge couplings

WWH Vertex:

$$\underbrace{igm_W g^{\mu\nu}}_{\text{SM}} \underbrace{-\frac{1}{2}i\frac{f_W}{\Lambda^2}gm_W\left(-g^{\mu\nu}\left(p_h\cdot p_-+p_h\cdot p_+\right)+p_h^{\nu}p_-^{\mu}+p_h^{\mu}p_+^{\nu}\right)}_{\mathcal{O}_W}$$

Effective Theory

- New Physics at a high mass scale: Λ
- Higher-dimension terms to Lagrangian 1/ Λ^n
 - Parametrize deviations from SM, e.g. in triple/quartic gauge couplings

- IR divergences upon parton integration
- How to exploit the known NLO results for VV + n jets?
 - Merging: Sherpa, Herwig++, MG5_aMC@NLO

Neutral Processes

LO Kinematics, but gluon PDF's

Goal

- Merge processes with different multiplicity: VV, VVj, VVjj
 - Include dominant contributions of extra emissions, possibly log enhance
 - New Sub processes

Method

X @NLO Xj@NLO Loop Xj@NLO (Catani-Seymour like generated of loop kinematics)

 $V_1 \dots V_n @LO + V_1 \dots V_n j @LO \rightarrow V_1 \dots V_n @\bar{n}LO$ $V_1 \dots V_n @NLO + V_1 \dots V_n j @NLO \rightarrow V_1 \dots V_n @\bar{n}NLO$

Inspired by CKKW matching

Goal

- Merge processes with different multiplicity: VV, VVj, VVj
 - Include dominant contributions of extra emissions, possibly log enhance
 - New Subprocesses

Method

X @NLO Xj@NLO Loop Xj@NLO (Catani-Seymour like generated of loop kinematics)

$V_1 \dots V_n @\text{NLO} + V_1 \dots V_n j @\text{NLO} \\ + V_1 \dots V_n j j @\text{NLO} \rightarrow V_1 \dots V_n @\bar{n}\bar{n} \text{NLO}$

Inspired by CKKW matching

ZZ@nNLO (FC,M.Rauch,S.Sapeta:ArXiv:1504.05588)

VBFNLO: ZZ@NLO, ZZj@NLO, GFZZ@LO and GFZZj@LO [FC,Q.Li,M.Rauch,M.Spira,1211.5429] (NNNLO)

 $\begin{array}{c|c} \sigma_{\rm LO} \ [\rm pb] & 5.0673(4) \ {}^{+1.6\%}_{-2.7\%} & (Ref. \ [32]: \ 5.060 \ {}^{+1.6\%}_{-2.7\%}) \\ \\ \sigma_{\rm NLO} \ [\rm pb] & 7.3788(10) \ {}^{+2.8\%}_{-2.3\%} & (Ref. \ [32]: \ 7.369 \ {}^{+2.8\%}_{-2.3\%}) \\ \\ \sigma_{\rm NLO+LO-GF} \ [\rm pb] & 7.946(3) \ {}^{+4.2\%}_{-3.2\%} & (Ref. \ [32]: \ 8.284 \ {}^{+3.0\%}_{-2.3\%}) \\ \\ \sigma_{\rm NNLO} \ [\rm pb] & (Ref. \ [32]: \ 8.284 \ {}^{+3.0\%}_{-2.3\%}) \\ \\ \sigma_{\bar{n}\rm NLO} \ [\rm pb] & 8.103(5) \ {}^{+4.7\%}_{-2.6\%} \ (\mu) & {}^{+0.8\%}_{-0.6\%} \ (R_{LS}) \\ \\ \sigma_{\bar{n}\rm NLO+\bar{n}\rm LO-GF} \ [\rm pb] & 8.118(5) \ {}^{+4.7\%}_{-2.6\%} \ (\mu) & {}^{+0.8\%}_{-0.6\%} \ (R_{LS}) \end{array}$

Ref.[32]: F. Cascioli, T. Gehrmann, M. Grazzini, S. Kallweit,

P. Maierhfer, A. von Manteuffel, S. Pozzorini et al.,arXiv:1405.2219

- GF 60% of total NNLO corrections
- nNLO vs NNLO 2%: within scale uncertainties

Anomalous Coupling Searches

PDF set: MSTW2008 at NNLO

Scale:

$$\mu_{F,R} = \mu_0 = \frac{1}{2} \left(\sum p_{T,\text{partons}} + \sqrt{p_{T,V_1}^2 + m_{V_1}^2} + \sqrt{p_{T,V_2}^2 + m_{V_2}^2} \right)$$

$$\begin{split} p_{t,\ell} &> 20\,{\rm GeV}\,, & & |\eta_\ell| < 2.5\,, \\ p_{t,\,\rm jet} &> 25\,{\rm GeV}\,, & & |\eta_{\,\rm jet}| < 4.5\,, \\ \Delta R_{\ell,\,\rm jet} &> 0.3\,, & & \Delta R_{\ell,\ell} > 0.2\,. \end{split}$$

$$\begin{split} ZZ \text{ selection:} & m_{Z_1}, m_{Z_2} \in (66, 116) \,\text{GeV} \,, \\ ZZ^* \text{ selection:} & m_{Z_1} \in (66, 116) \,\text{GeV} \,, \ m_{Z_2} \in (20, 66) \cup (166, m_{Z, \text{max}}) \,\text{GeV} \,, \end{split}$$

WW@nNLO (FC,M.Rauch,S.Sapeta:ArXiv:1309.7293)

- VBFNLO: WW@NLO, WWj@NLO, GF WW@LO
 - W^+W^- decaying to: $I_1^- \bar{\nu}_{l_1} I_2^+ \nu_{l_2}$ and $I^- \bar{\nu}_l I^+ \nu_l$
 - PDFs: MSTW NNLO 2008
 - $\mu_{F,R} = \frac{1}{2} \left\{ \sum p_{T,partons} + \sqrt{p_{T,W}^2 + m_W^2} + \sqrt{p_{T,W}^2 + m_W^2} \right\}$ • Cuts:

$$\begin{split} |y_{l}| < 2.5, & p_{T_{l}} > 20 \text{GeV} \\ \text{anti} - k_{t}, R = 0.45 \\ |\eta_{\text{jet}}| < 4.5 & p_{T_{\text{jet}}} > 15 \text{ GeV} \\ \hline E_{T \text{projectedmiss}} > 20(45) \text{GeV} \\ m_{ll} > 12 \text{GeV}, & |m_{ll} - M_{Z}| > 15 \text{GeV} \\ |\Delta(\phi_{ll} - \phi_{\text{hardestjet}, \text{pt} > 15})| < 165 \end{split}$$

- VBFNLO: WZ@NLO, WZj@NLO, (FC,S.Kallweit,C.Englert,Spannowsky, Zeppenfeld,ArXiv:1006.0390)
 - W^+Z and W^-Z channels decaying to: $ee\mu\nu_\mu$ and $\mu\mu e\nu_e$
 - PDFs: MSTW NNLO 2008
 - $\mu_{F,R} = \frac{1}{2} \left\{ \sum p_{T,partons} + \sqrt{p_{T,W}^2 + m_W^2} + \sqrt{p_{T,Z}^2 + m_Z^2} \right\}$ • Cuts:
 - $egin{aligned} |y_l| &< 2.5, & p_{\mathcal{T}_l} > 15(20) {
 m GeV} \ 60 &< m_{ll} < 120 {
 m GeV} \ E_{\mathcal{T}miss} > 30 {
 m GeV} \ anti &- k_t, R = 0.45 \ |\eta_{
 m jet}| &< 4.5 & p_{\mathcal{T}_{
 m jet}} > 30 {
 m GeV} \ R_{ll(i)} &> 0.3 \end{aligned}$

NNLO QCD fakes AC effects [FC,Roth,Sapeta,Zeppenfeld,2016]

NNLO QCD fakes AC effects

[FC,Roth,Sapeta,Zeppenfeld,2016]

Jet Observable

(FC,R.Roth,Zeppenfeld:ArXiv:1410.4840)

WZ@nNLO + AC

WZ@nNLO + AC

Summary

Total Cross section:

• Good agreement for ZZ at NNLO (not compared for other)

Differential Distributions

- Corrections can be large 30-100%
- Observable favoring LO kinematics: 5%
- (GF)ZZ@nLO: 50% corrections

Anamolous Couplings

- NNLO can fake AC effects
- More sophisticated analyses are needed to increase sensitivity

Outlook:

VV@nNLO+AC, VV@nnNLO, VVV@nNLO

VBFNLO: https://www.itp.kit.edu/~vbfnloweb/wiki/doku.php?id=overview LoopSim: https://loopsim.hepforge.org/

VBFLO

(←) → C' @

🗉 🚥 🔽 🏠 📿 Buscar

III\ 🥝 💷 🗉 🕴

VBFNLO - A parton level Monte Carlo for processes with electroweak bosons

You are here: Overview

Overview

Project Members

Download VBFNLO

- Software Download
- Beta Version
- Formfactor Calculation Tool for aGC
- Changelog
- Known Issues
- Optimised Grids
- Parallel Runs

Newsletter

Documentation

- Manual
- Process List
- Installation
- Running VBFNLO

REPOLO

Implementation Details

- EWSCHEME
- Electroweak
 Renormalisation
- Anomalous Higgs Couplings

Project Description

VBFNLO is a fully flexible parton level Monte Carlo program for the simulation of vector boson fusion, double and triple vector boson production in hadronic collisions at next to leading order in the strong coupling constant. VBFNLO includes Higgs and vector boson decays with full spin correlations and all off-shell effects. In addition, VBFNLO implements CP-even and CP-odd Higgs boson via gluon fusion, associated with two jets, at the leading order one loop level with the full top-quark and bottom-quark mass dependence in a generic two Higgs doublet model.

A variety of effects arising from beyond the Standard Model physics are implemented for selected processes. This includes anomalous couplings of Higgs and vector bosons and a Warped Higgsless extra dimension model. The program offers the possibility to generate Les Houches Accord event files for all processes available at leading order.

All implemented processes can be found here.

The list of people involved in VBFNLO is here.

VBFNLO MC					Q		
Todo	Maps	Imágenes	Vídeos	Noticias	Más	Configuración	Herramientas

Aproximadamente 4.930 resultados (0,55 segundos)

Quizás quisiste decir: VENLO MC

overview[VBFNLO - A parton level Monte Carlo for processes with ... https://www.itp.kit.edu/vbfnlo/wiki/doku.php?id=overview Traducir esta página

6 feb. 2018 - VBFNLO is a fully flexible parton level Monte Carlo program for the simulation of vector boson fusion, double and triple vector boson production ...

Falta: mc

Overview

Project Members

Download VBFNLO

- Software Download
- Beta Version
- Formfactor Calculation Tool for aGC
- Changelog
- Known Issues
- Optimised Grids
- Parallel Runs

Newsletter

Documentation

- Manual
- Process List
- Installation
- Running VBFNLO

REPOLO

Implementation Details

- EWSCHEME
- Electroweak
 Renormalisation
- Anomalous Higgs Couplings
- Conversion to JHU notation
- aQGC conventions

Project Members

- Julien Baglio
- Johannes Bellm
- Giuseppe Bozzi
- Martin Brieg
- Francisco Campanario
- Christoph Englert
- Bastian Feigl
- Jessica Frank
- Terrance Figy
- Florian Geyer
- Christoph Hackstein
- Vera Hankele
- Barbara Jäger
- Matthias Kerner
- Michael Kubocz
- Maximilian Löschner
- Le Duc Ninh
- Carlo Oleari
- Sophy Palmer
- Simon Plätzer
- Michael Rauch 4
- Robin Roth
- Heidi Rzehak
- Franziska Schissler
- Oliver Schlimpert
- Michael Spannowsky
- Malgorzata Worek
- Dieter Zeppenfeld

Iván Rosario Bonastre Task: EW γγjj at LHC Interface with Herwig: VV(V)(j)

Main Developers

Overview

```
Project Members
```

Download VBFNLO

- Software Download
- Beta Version
- Formfactor Calculation Tool for aGC
- Changelog
- Known Issues
- Optimised Grids
- Parallel Runs

Newsletter

Documentation

- Manual
- Process List
- Installation
- Running VBFNLO

REPOLO

Implementation Details

- EWSCHEME
- Electroweak
 Renormalisation
- Anomalous Higgs Couplings
- Conversion to JHU notation

Process List

The complete list of implemented production processes and decay modes in VBFNLO is summarized in the following. Except for gluon fusion, all processes are implemented in NLO QCD. For Higgs boson production plus two jets without Higgs decay the NLO electroweak corrections are also implemented. All processes can be run in the Standard Model. Several processes also allow for Beyond the Standard Model Physics effects. These options are shown in the third column.

Jump to:

Higgs boson production plus two jets via Vector Boson Fusion Higgs boson production plus three jets via Vector Boson Fusion Higgs boson production with a photon and two jets via Vector Boson Fusion Single vector boson production plus two jets via Vector Boson Fusion VBF production of two Higgs bosons and two jets VBF production of a spin-2 particle Vector boson pair production plus two jets via Vector Boson Fusion Diboson production Triple vector boson production Double vector boson production in association with a hadronic jet Triple vector boson production in association with a hadronic jet WH production W production WH production in association with a hadronic jet W production in association with a hadronic jet QCD induced production of a vector boson in association with two jets QCD induced diboson production in association with two jets Higgs boson production plus two jets via Gluon Fusion Gluon-induced diboson production Gluon-induced diboson production in association with a hadronic jet

Higgs boson production plus two jets via Vector Boson Fusion

Processes with fully leptonic decays:

Process ID	Process	BSM Options
100	$p \stackrel{(ightarrow)}{p} ightarrow H j j$	
101	$p \stackrel{(ightarrow)}{p} ightarrow H jj ightarrow \gamma\gamma jj$	
102	$p \stackrel{(ightarrow)}{p} ightarrow H jj ightarrow \mu^+ \mu^- jj$	
103	$p \stackrel{(ightarrow)}{p} ightarrow H jj ightarrow au^+ au^- jj$	
104	$p \stackrel{(ightarrow)}{p} ightarrow H jj ightarrow bar{b} jj$	anomaious HVV couplings, MSSM
105	$p \stackrel{(ightarrow)}{p} ightarrow Hjj ightarrow W^+W^-jj ightarrow \ell_1^+ u_{\ell_1} \ell_2^- ar u_{\ell_2}jj$	
106	$p \stackrel{(ightarrow)}{p} ightarrow H jj ightarrow ZZ jj ightarrow \ell_1^+ \ell_1^- \ell_2^+ \ell_2^- jj$	
107	$p \stackrel{(ightarrow)}{p} ightarrow H jj ightarrow ZZ jj ightarrow \ell_1^+ \ell_1^- u_{\ell_2} ar u_{\ell_2} jj$	

Processes with semi-leptonic decays:

Process ID	Process	BSM Options
108	$p \stackrel{(ightarrow)}{p} ightarrow H jj ightarrow W^+ W^- jj ightarrow q ar q \ell^- ar u_\ell jj$	
109	$p \stackrel{(ightarrow)}{p} ightarrow H jj ightarrow W^+W^- jj ightarrow \ell^+ u_\ell qar q jj$	anomalous HVV couplings, MSSM
1010	$p \stackrel{(ightarrow)}{p} ightarrow H jj ightarrow ZZ jj ightarrow q ar q \ell^+ \ell^- jj$	

Higgs boson production plus three jets via Vector Boson Fusion

Process ID	Process	BSM Options
110	$p \stackrel{(ightarrow)}{p} ightarrow H jjj$	
111	$p^{(ightarrow)}_{m{p}} o H jjj o \gamma\gamma jjj$	
112	$p \stackrel{(ightarrow)}{p} ightarrow H jjj ightarrow \mu^+ \mu^- jjj$	
113	$p^{(-)}_{\ p} o H jjj o au^+ au^- jjj$	
114	$p \stackrel{(ightarrow)}{p} ightarrow H j j j ightarrow b ar{b} j j j$	-
115	$p^{(-)}_{\ p} ightarrow H jjj ightarrow W^+W^- jj ightarrow \ell_1^+ u_{\ell_1}\ell_2^- ar u_{\ell_2} jjj$	
116	$p^{(-)}_{\ p} ightarrow H jjj ightarrow ZZ jj ightarrow \ell_1^+ \ell_1^- \ell_2^+ \ell_2^- jjj$	
117	$p \stackrel{(-)}{p} ightarrow H jjj ightarrow ZZ jj ightarrow \ell_1^+ \ell_1^- u_{\ell_2} u_{\ell_2} jjj$	

Process ID	Process	BSM Options
2100	$p \stackrel{(ightarrow)}{p} ightarrow H \gamma j j$	
2101	$p \stackrel{(ightarrow)}{p} ightarrow H \gamma j j ightarrow \gamma \gamma \gamma j j$	
2102	$p \stackrel{(ightarrow)}{p} ightarrow H \gamma j j ightarrow \mu^+ \mu^- \gamma j j$	
2103	$p \stackrel{(ightarrow)}{p} ightarrow H \gamma j j ightarrow au^+ au^- \gamma j j$	
2104	$p \stackrel{(ightarrow)}{p} ightarrow H \gamma j j ightarrow b ar{b} \gamma j j$	-
2105	$p \stackrel{(ightarrow)}{p} ightarrow H \gamma jj ightarrow W^+ W^- \gamma jj ightarrow \ell_1^+ u_{\ell_1} \ell_2^- ar u_{\ell_2} \gamma jj$	
2106	$p \stackrel{(ightarrow)}{p} ightarrow H \gamma jj ightarrow ZZ \gamma jj ightarrow \ell_1^+ \ell_1^- \ell_2^+ \ell_2^- \gamma jj$	
2107	$p \stackrel{(ightarrow)}{p} ightarrow H \gamma jj ightarrow ZZ \gamma jj ightarrow \ell_1^+ \ell_1^- u_{\ell_2} ar{ u}_{\ell_2} \gamma jj$	

Diboson production

Processes with fully leptonic decays:

Process ID	Process	BSM Options	
300	$p^{(ightarrow)}_{} p W^+ W^- ightarrow \ell_1^+ u_{\ell_1} \ell_2^- ar u_{\ell_2}$	anomalous HVV and gauge couplings	
310	$p \stackrel{(ightarrow)}{p} ightarrow W^+ Z ightarrow \ell_1^+ u_{\ell_1} \ell_2^+ \ell_2^-$	anomalous gauge couplings	
320	$p \stackrel{(ightarrow)}{p} ightarrow W^- Z ightarrow \ell_1^- ar{ u}_{\ell_1} \ell_2^+ \ell_2^-$		
330	$p \stackrel{(ightarrow)}{p} ightarrow ZZ ightarrow \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-$	anomalous HVV couplings	
340	$p \stackrel{(ightarrow)}{p} ightarrow W^+ \gamma ightarrow \ell_1^+ u_{\ell_1} \gamma$	anomalous gauge couplings	
350	$p \stackrel{(ightarrow)}{p} ightarrow W^- \gamma ightarrow \ell_1^- p_{\ell_1} \gamma$		
360	$p \stackrel{(ightarrow)}{p} ightarrow Z \gamma ightarrow \ell_1^+ \ell_1^- \gamma$	anomalous HVV couplings	
370	$p \stackrel{(ightarrow}{p} ightarrow \gamma \gamma$		

Processes with semi-leptonic decays:

Process ID	Process	BSM Options	
301	$p \stackrel{(ightarrow)}{p} ightarrow W^+ W^- ightarrow q ar{q} \ell^- ar{ u}_\ell$	anomalous HVV and gauge	
302	$p^{(ightarrow)}_{\ p} ightarrow W^+ W^- ightarrow \ell^+ u_\ell q ar q$	couplings	
312	$p \stackrel{(ightarrow)}{p} ightarrow W^+ Z ightarrow q ar{q} \ \ell^+ \ell^-$		
313	$p \stackrel{(ightarrow)}{p} ightarrow W^+ Z ightarrow \ell^+ u_\ell q ar q$		
322	$p \stackrel{(ightarrow)}{p} ightarrow W^- Z ightarrow q ar{q} \ell^+ \ell^-$	anomalous gauge couplings	
323	$p^{(ightarrow)}_{\ p} ightarrow W^- Z ightarrow \ell^- ar{ u}_\ell qar{q}$		
331	$p \stackrel{(ightarrow)}{p} ightarrow ZZ ightarrow q ar{q} \ \ell^- \ell^+$	anomalous HVV couplings	

Triple vector boson production

Processes with fully leptonic decays:

Process ID	Process	BSM Options	
400	$p \stackrel{(ightarrow)}{p} ightarrow W^+ W^- Z ightarrow \ell_1^+ u_{\ell_1} \ell_2^- ar{ u}_{\ell_2} \ell_3^+ \ell_3^-$		
410	$p \stackrel{(ightarrow)}{p} ightarrow ZZW^+ ightarrow \ell_1^+ \ell_1^- \ell_2^+ \ell_2^- \ell_3^+ u_{\ell_3}$	anomalous gauge couplings, Kaluza-Klein models	
420	$p \stackrel{(ightarrow)}{p} ightarrow ZZW^- ightarrow \ell_1^+ \ell_1^- \ell_2^+ \ell_2^- \ell_3^- ar u_{\ell_3}$		
430	$p \stackrel{(-)}{p} ightarrow W^+ W^- W^+ ightarrow \ell_1^+ u_{\ell_1} \ell_2^- u_{\ell_2} \ell_3^+ u_{\ell_3}$		
440	$p \stackrel{(ightarrow)}{p} \to W^- W^+ W^- o \ell_1^- ar{ u}_{\ell_1} \ell_2^+ u_{\ell_2} \ell_3^- ar{ u}_{\ell_3}$		
450	$p \stackrel{(\rightarrow)}{p} \rightarrow ZZZ \rightarrow \ell_1^- \ell_1^+ \ell_2^- \ell_2^+ \ell_3^- \ell_3^+$		
460	$p \stackrel{(ightarrow)}{p} ightarrow W^- W^+ \gamma ightarrow \ell_1^- ar u_{\ell_1} \ell_2^+ u_{\ell_2} \gamma$		
470	$p \stackrel{(ightarrow)}{p} ightarrow ZZ \gamma ightarrow \ell_1^- \ell_1^+ \ell_2^- \ell_2^+ \gamma$		
480	$p \stackrel{(ightarrow)}{p} ightarrow W^+ Z \gamma ightarrow \ell_1^+ u_{\ell_1} \ell_2^- \ell_2^+ \gamma$		
490	$p \stackrel{(ightarrow)}{p} ightarrow W^- Z \gamma ightarrow \ell_1^- ar{ u}_{\ell_1} \ell_2^- \ell_2^+ \gamma$	anomalous gauge couplings	
500	$p \stackrel{(ightarrow)}{p} ightarrow W^+ \gamma \gamma ightarrow \ell^+ u_\ell \gamma \gamma$		
510	$p \stackrel{(ightarrow)}{p} ightarrow W^- \gamma \gamma ightarrow \ell^- ar{ u}_\ell \gamma \gamma$		
520	$p \stackrel{(ightarrow)}{p} ightarrow Z \gamma \gamma ightarrow \ell^- \ell^+ \gamma \gamma$		
521	$p \stackrel{(ightarrow)}{p} ightarrow Z \gamma \gamma ightarrow u_\ell u_\ell u_\ell \gamma \gamma$		
530	$p \stackrel{(ightarrow)}{p} ightarrow \gamma \gamma \gamma \gamma$		

Processes with semi-leptonic decays:

Process ID	Process	BSM Options
401	$p \stackrel{(ightarrow)}{p} ightarrow W^+W^-Z ightarrow q ar{q} \ell_1^- ar{ u}_{\ell_1} \ell_2^+ \ell_2^-$	
402	$p^{(ightarrow)}_{\ p} ightarrow W^+W^-Z ightarrow \ell_1^+ u_{\ell_1} q ar q \; \ell_2^+ \ell_2^-$	

WH production in association with a hadronic jet

Process ID	Process	BSM Options
1600	$p \stackrel{(\rightarrow)}{p} \rightarrow W^+ H j \rightarrow \ell^+ \nu_\ell H j$	
1601	$p \stackrel{(ightarrow)}{p} ightarrow W^+ H j ightarrow \ell^+ u_\ell \gamma \gamma j$	
1602	$p \stackrel{(ightarrow)}{p} ightarrow W^+ H j ightarrow \ell^+ u_\ell \mu^+ \mu^- j$	
1603	$p \stackrel{(ightarrow)}{p} ightarrow W^+ H j ightarrow \ell^+ u_\ell au^+ au^- j$	
1604	$p \stackrel{(ightarrow)}{p} ightarrow W^+ H j ightarrow \ell^+ u_\ell b ar b j$	
1605	$p \stackrel{(\rightarrow)}{p} \rightarrow W^+ H j \rightarrow W^+ W^+ W^- j \rightarrow \ell_1^+ u_{\ell_1} \ell_2^+ u_{\ell_2} \ell_3^- ar{ u}_{\ell_3} j$	
1606	$p^{(-)}_{P} ightarrow W^{+}H j ightarrow W^{+}ZZ j ightarrow \ell_{1}^{+} u_{\ell_{1}} \ell_{2}^{+} \ell_{2}^{-} \ell_{3}^{+} \ell_{3}^{-} j$	
1607	$p \stackrel{(-)}{p} \to W^+ H j \to W^+ Z Z j \to \ell_1^+ \nu_{\ell_1} \ell_2^+ \ell_2^- \nu_{\ell_3} \bar{\nu}_{\ell_3} j$	
1610	$p \stackrel{(-)}{p} \rightarrow W^- H j \rightarrow \ell^- \bar{\nu}_\ell H j$	anomalous gauge couplings
1611	$p^{(ightarrow)}_{} p \! p \! ightarrow \! W^- \! H j \! ightarrow \! \ell^- ar{ u}_\ell \gamma \gamma j$	
1612	$p \stackrel{(ightarrow)}{p} ightarrow W^- H j ightarrow \ell^- ar{ u}_\ell \mu^+ \mu^- j$	
1613	$p \stackrel{(ightarrow)}{p} ightarrow W^- H j ightarrow \ell^- ar{ u}_\ell au^+ au^- j$	
1614	$p \stackrel{(ightarrow)}{p} ightarrow W^- H j ightarrow \ell^- ar{ u}_\ell b ar{b} j$	
1615	$p \stackrel{(\to)}{p} \to W^- H j \to W^- W^+ W^- j \to \ell_1^- \nu_{\ell_1} \ell_2^+ \nu_{\ell_2} \ell_3^- \nu_{\ell_3} j$	
1616	$p \stackrel{(\rightarrow)}{p} \rightarrow W^- H j \rightarrow W^- Z Z j \rightarrow \ell_1^- \bar{\nu}_{\ell_1} \ell_2^+ \ell_2^- \ell_3^+ \ell_3^- j$	
1617	$p \stackrel{(ightarrow)}{p} ightarrow W^- H j ightarrow W^- ZZ j ightarrow \ell_1^- ar{ u}_{\ell_1} \ell_2^+ \ell_2^- u_{\ell_3} ar{ u}_{\ell_3} j$	

. . .

IFIC NSTITUT DE FÍSICA O R PU S C U LA R

QCD induced production of a vector boson in association with two jets

Process ID	Process	BSM Options
3120	$p \stackrel{(ightarrow)}{p} ightarrow Z j j ightarrow \ell^+ \ell^- j j$	
3121	$p \stackrel{(ightarrow)}{p} ightarrow Z j j ightarrow u_\ell ar u_\ell j j$	
3130	$p \stackrel{(-)}{p} ightarrow W^+ j j ightarrow \ell^+ u_\ell j j$	-
3140	$p \stackrel{(ightarrow)}{p} ightarrow W^- jj ightarrow \ell^- ar{ u}_\ell jj$	

QCD induced diboson production in association with two jets

Process ID	Process	BSM Options
3210	$p \stackrel{(ightarrow)}{p} ightarrow ZZjj ightarrow \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-jj$	
3211	$p \stackrel{(ightarrow)}{p} ightarrow ZZ jj ightarrow \ell_1^+ \ell_1^- u_{\ell_2} ar{ u}_{\ell_2} jj$	
3220	$p \stackrel{(ightarrow)}{p} ightarrow W^+ Z jj ightarrow \ell_1^+ u_{\ell_1} \ell_2^+ \ell_2^- jj$	
3230	$p \stackrel{(ightarrow)}{p} ightarrow W^- Z jj ightarrow \ell_1^- ar{ u}_{\ell_1} \ell_2^+ \ell_2^- jj$	
3250	$p \stackrel{(ightarrow)}{p} ightarrow W^+ W^+ j j ightarrow \ell_1^+ u_{\ell_1} \ell_2^+ u_{\ell_2} j j$	_
3260	$p \stackrel{(ightarrow)}{p} ightarrow W^- J j ightarrow \ell_1^- ar u_{\ell_1} \ell_2^- ar u_{\ell_2} J j$	
3270	$p \stackrel{(ightarrow)}{p} ightarrow W^+ \gamma jj ightarrow \ell^+ u_\ell \gamma jj$	
3280	$p^{(-)}_{ p} ightarrow W^- \gamma jj ightarrow \ell^- ar{ u}_\ell \gamma jj$	
3290	$p \stackrel{(ightarrow)}{p} ightarrow Z \gamma j j ightarrow \ell^+ \ell^- \gamma j j$	
3291	$p \stackrel{(ightarrow)}{p} ightarrow Z \gamma j j ightarrow u_\ell ar u_\ell \gamma j j$	

Overview

Project Members

Download VBFNLO

- Software Download
- Beta Version
- Formfactor Calculation Tool for aGC
- Changelog
- Known Issues
- Optimised Grids
- Parallel Runs

Newsletter

Documentation

- Manual
- Process List
- Installation
- Running VBFNLO

REPOLO

Implementation Details

- EWSCHEME
- Electroweak
 Renormalisation

Manual

The manual is shipped together with the program in the VBFNLO-Download in the doc folder. You can also download it from below.

VBFNLO Version 2.7.1

The manual for the current release is available in pdf format for download:

Manual for version 2.7.1

VBFNLO Version 2.7.0

The manual for version 2.7.0 is available in pdf format for download:

Manual for version 2.7.0,

but it can also be found on the arXiv:

arXiv:1107.4038v3

The release note for version 2.7.0 is makere or on the arXiv:

arXiv:1404.3940

Overview

Project Members

Download VBFNLO

- Software Download
- Beta Version
- Formfactor Calculation Tool for aGC
- Changelog
- Known Issues
- Optimised Grids
- Parallel Runs

Newsletter

- Documentation
- Manual
- Process List
- Installation
- Running VBFNLO

Software Download

The current release is Version 2.7.1, released on 05 August 2015.

Version 2.7.1

Source tarball:
WBFNLO-2.7.1.tgz August 2015)

For installation instructions see Documentation > Installation

For a list of known issues and fixes see Download > Known Issues

GitHub Repository

You can also get recent versions from our public repository at <a>GitHub.

The tagged releases are identical to the tarballs. In the future, we will put small bug fixes to the code there also between releases, so you have faster access to those.

VBFNLO Monte Carlo Program https://www.itp.kit.edu/vbfnlo

vector-boson-fusion	higgs-production	monte-carlo-generator	particle-physics			
🕝 10 commi	ts	3 branches	♥ 7 releases	🎎 1 contributor		മൂ്മ GPL-2.0
Deres da mareta a la				1	Charl Cha	Characterization in
Branch: master •	New pull request			l	Find file	Clone or download *

Releases:

Download:

francam@lhcpheno22:~/Work/Projects/SCHOOL\$ ls
vbfnlo-3.0.0beta5.tgz

Untar:

/SCHOOL\$ tar xzf vbfnlo-3.0.0beta5.tgz

List of content:

<pre>francam@lhcpheno22:~/Work/Projects/SCHOOL\$ ls</pre>								
/BFNLO-3.0.0beta5 vbfnlo-3.0.0beta5.tgz								
francam@lhcpheno22:~/Work/Projects/SCHOOL\$ cd VBFNLO-3.0.0beta5/								
francam@lhcpheno22:~/Work/Projects/SCHOOL/VBFNLO-3.0.0beta5\$ ls								
aclocal.m4	config	GUIDELINES	m4	phasespace				
amplitudes	configure	helas	Makefile.am	README.md				
AUTHORS	configure.ac	include	Makefile.dependencylist	regress				
autom4te.cache	COPYING	lib	Makefile.in	src				
CHANGELOG.md	doc	loops	PDFsets	utilities				
francam@lhcpheno22:~/Work/Projects/SCHOOL/VBFNLO-3.0.0beta5\$								

Installation

Overview

Project Members

Download VBFNLO

- Software Download
- Beta Version
- Formfactor Calculation Tool for aGC
- Changelog
- Known Issues
- Optimised Grids
- Parallel Runs

Newsletter

Documentation

- Manual
- Process List
- Installation
- Running VBFNLO

REPOLO

Implementation Details

- EWSCHEME
- Electroweak
 Renormalisation
- Anomalous Higgs Couplings
- Conversion to JHU notation
- aQGC conventions
- Running quark masses
- Implementing new histograms

VBFNLO includes a GNU conforming build system for portability and an easy build and installation procedure.

Prerequisites

Installation

The basic installation requires GNU make, a FORTRAN 95 (we have tested gfortran and ifort) and a C++ compiler. VBFNLO offers the possibility of using the **\$LHAPDF** library for parton distribution functions. In order to include the electroweak corrections, the program **\$LoopTools** is required. Additionally, **\$FeynHiggs** can be linked to the code in order to calculate the Higgs boson sector of the MSSM, although a SLHA file can be used as an alternative. If the simulation of Kaluza-Klein resonances is enabled, an installation of the GNU Scientific Library **\$GSL** is required. VBFNLO can also be linked to **\$ROOT** and **\$HepMC** to produce histograms and event files in those formats.

Compilation and installation

After unpacking the source archive and entering the source directory, the configure script can be invoked with several options, a complete list being available via ./configure --help. Among these, the most important ones are:

--prefix=[path]

Install Vbfnlo in the location given by [path].

--enable-processes=[list]

By default, the code for processes that do not contain hexagons (i.e. all processes except triboson + jet processes) is compiled. Optionally, [list] gives a comma-separated list of selected processes to be compiled. Possible process names are:

- vbf Vector boson fusion processes
- gcdvjj QCD-induced vector boson plus two jet production
- gcdvvjj QCD-induced vector boson pair plus two jet production
- diboson Double gauge boson production, including W and WH production
- triboson Triple gauge boson production
- dibosonjet Double gauge boson production with a hadronic jet, including Wj and WHj production

where the second second second second

francam@lhcpheno22:~/Work/Projects/SCHOOL/VBFNLO-3.0.0beta5\$./configure --prefix
=/home/RUN/SCHOOL --disable-static --enable-MPI --enable-quad CC=mpicc FC=mpifort
CXX=mpic++

Installation path:

No static libraries: faster to compile

Compiler options:

--enable-MPI: allow mpi to use more than one core of the PC

-enable-quad: quadruple precision for difficult processes

FC and CC: chose compiler

Output:

VBENLO 3.0.0beta5	configuration							
Processes included:								
all except hexago:	ns							
NLO QCD	уез							
KK resonances	no							
Compile warnings	no							
Quad precision	уез							
MPI	уез							
LHAPDF	no							
LOOPTOOLS	no							
FEYNHIGGS	no							
ROOT	no							
GSL	not required							
HEPMC	no							
FORTRAN compiler	gfortran							

Configure, make, make install Configure help:

/VBFNLO-3.0.0beta5\$./configure --help to adapt to many kinds of systems

Which processes can be selected:

francam@lhcpheno22:~/Work/Projects/SCHOOL/VBFNLO-3.0.0beta5\$
./configure --help |grep -A10 LIST

List:

enable-processes=LIST	Comma-separated list of processes to enable. Options
	are: vbf, ggf, diboson, dibosonjet, triboson,
	tribosonjet, hjjj, qcdvvjj, qcdvjj,
	all_except_hexagons, all. Default is
	all_except_hexagons.
enable-kk	enable-kk to enable simulation of Kaluza-Klein
	resonances
enable-NLO	disable-NLO to disable next-to-leading order QCD
enable-MPI	enable-MPI to use MPI parallelization
enable-madgraph	enable-madgraph to include code for MadGraph
	comparisons

./configure --prefix=/home/RUN/SCHOOL --disable-static --en able-MPI --enable-quad CC=mpicc FC=mpifort CXX=mpic++ --enab le-processes=all

make –j8: Here 8, numbers of cores of PC

francam@lhcpheno22:~/Work/Projects/SCHOOL/VBFNLO-3.0.0beta make -j8

make install:

francam@lhcpheno22:~/Work/Projects/SCHOOL/VBFNLO-3.0.0beta5\$
 make install

The installation path and compiler options stored in:

francam@lhcpheno22:~/Work/Projects/SCHOOL/VBFNLO-3.0.0beta5\$ head config.log

Output:

This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake.

It was created by VBFNLO configure 3.0.0beta5, which was generated by GNU Autoconf 2.69. Invocation command line was

\$./configure --prefix=/home/RUN/SCHOOL --disable-static --enable-MPI --enable-qua
d CC=mpicc FC=mpifort CXX=mpic++ --enable-processes=diboson

Binary and Input Files

Create a RUN directory somewhere and link the exe there:

francam@lhcpheno22:~/Work/Projects/SCHOOL/VBFNLO-3.0.0beta5\$
cd /home/RUN/SCHOOL/
francam@lhcpheno22:/home/RUN/SCHOOL\$ 1s
oin include lib share
francam@lhcpheno22:/home/RUN/SCHOOL\$ mkdir RUN
francam@lhcpheno22:/home/RUN/SCHOOL\$ cd RUN
francam@lhcpheno22:/home/RUN/SCHOOL\$ ln -s ../bin/vbfnlo
francam@lhcpheno22:/home/RUN/SCHOOL/RUN\$ ls
vbfnlo

• Copy input .dat files from the share folder

francam@lhcphe	eno22:/home/RUN/SCH	HOOL/RUN\$ cp/:	share/VBFNLO/*
dat .			
francam@lhcphe	eno22:/home/RUN/SCH	HOOL/RUN\$ 1s	
anom HVV.dat	histograms.dat	random.dat	vbfnlo.dat
anomV.dat	kk_coupl_inp.dat	spin2coupl.dat	
cuts.dat	kk_input.dat	susy.dat	
ggflo.dat	procinfo.dat	vbfnlo	

- Main files for SM physics:
 - vbfnlo.dat, gglo.dat, cuts.dat
 - vbfnlo.dat:
 - Process
 - Statistics
 - Energy Collider
 - EW input parameters
 - Masses....
 - Central Scale Choice

! General paramete	rs of the cal	lculation
PROCESS	= 100	 ! Identifier f
LOPROCESS_PLUS_JET	= false	! switch: LO p
LEPTONS	= 11 -11 11	-11 11 -12 ! final state
DECAY_QUARKS	= 93	! final state
!		
! lepton and quark n	umbering acco	ording to MC particle numb
! particles are give	n positive nu	umbers, antiparticles nega
! decay products hav	e to be group	ped according to their par
1		
!e− ve mu− vm	ta- vt	d u s c b
! 11 12 13 14	15 16	1 2 3 4 5
! DECAY_QUARKS = 93	includes all	possible combinations of
DECAY_QUARKS = 94	includes also	o b-quarks (u, u~, d, d~,
! LEPTONS = 98	includes all	possible combinations of
LEPTONS = 99	includes all	possible combinations of
1		
	- 4	
LO_IIERAIIONS	= 4	! number of iterations fo
NLO_ITERATIONS	= 4	: number of iterations to
LO_POINIS	- 20	: humber of points for LC
NLO_POINIS	= 20	: number of points for re
LO_GRID	$= "grid2_1"$	"grid2_2" "grid2_5" "grid
NLO_GRID	$= "grids_1"$	"grids_2 grids_3 grid
FLOOP CRID	= "grid5 1"	"grid5_2" "grid5_3" "grid
ELOOF_GRID	- grid5_i	grius_2 grius_3 griu
NLO SWITCH	= false	switch: nlo/lo calculat
FWCOR SWITCH	= false	Whether electroweak cor
FEBMIONLOOP	= 3	Contribution of gluon-i
ENTIONEOOL	2	0: none
		1: only box diagrams
		2: only Higgs resonance
		3: both contributions (
NLO SEMILEP DECAY	= 0	! controls whether OCD NI
	-	! 0: leading order hadron

- Main files for SM physics:
 - vbfnlo.dat, gglo.dat, cuts.dat
 - cuts.dat:
 - cuts for particles
 - Rapidity
 - PT

	input fil	Le	for	the	cut	parameters
	! Jet cut	s				
	!					
	RJJ_MIN	=	0.80	10		! min jet-jet R separation
	Y_P_MAX	=	5.0d	10		! max pseudorapidity for partons
	PGENKTJET	=	1.0d	10		! exponent of generalised k_T algorithm
	PT_JET_MIN	=	20.0)d0		! min jet pT
	Y_JET_MAX	=	4.50	10	!	! max jet rapidity
1	1					
	! Lepton	cι	its ((only	y app	plied to charged leptons)
	!					
	Y_L_MAX	=	2.50	10	!	! max lepton rapidity
	PT_L_MIN	=	10.0	100	!	: min lepton pl
	MLL_MIN	=	15.0)d0	!	! min. m_ll for charged leptons
	MLL_MAX	=	1020)		! max. m_11 for charged leptons
	MLL_OSONLY	=	true	2		! m 11 cuts apply to opposite-charged lep
	RLL_MIN	_	0.40	10	1	! min lepton-lepton K separation
	RLL_MAX	=	50.0	αυ		: max lepton-lepton k separation
	Dhata					
	: Photon	CL	163			
	:		1 5 4	10		l may nacydoranidity for photons
	T C MIN	_	2040	10	:	: max pseudorapidity for photons
	PCC MIN		0 60	, 10		I min photon-photon D generation
	RGG MAX	_	50 0	10		I max photon-photon R separation
	PHISOLCUT	_	0 76	10		I photon isolation cut
	EFISOLCUT	=	1.40			efficiency of photon isolation cut
	611501001		100			. criterency of photon isolation cas
	Additio	one	al cu	its		
	!					
	RJL MIN	=	0.60	10		! min jet-lepton R separation
	RJG MIN	=	0.60	10		! min jet-photon R separation
	RLG MIN	=	0.60	10		! min lepton-photon R separation
	—					
	MLG MIN	=	0.0d	10		! min. m lg for any comb. of charged lep
	MLG MAX	=	1.d2	20		! max. m lg for any comb. of charged lep
	PTMISS_MIN	=	0.0d	10		! minimal missing transverse momentum
						! (pt of neg. sum of 4-momenta of all vis

- Main files for SM physics:
 - vbfnlo.dat, gglo.dat, cuts.dat
 - ggflo.dat:
 - Specific for GFHjj processes
 - Eff vs Full Theory
 - Model SM or BSM
 - Switch on sub-processes

		loop particle(s)
LOOP	= 3	! 0 : effective theory
		! 1 : top-loop
		2 : bottom-loop (varies
		: 3 : top loop + bottom 1
		subprocess choice
UBPROO	=true	guark_guark_scattering
UBPROG	= true	guark-gluon scattering
UBPRGG	= true	duun gluon scattering
		·
	Mix	xing between different Higgs
IGGS MIX	= 0	! whether higgs mixing is
P EVEN MOD	= 1d0	! changes the strength of
PODD MOD	= 1d0	! changes the strength of
Further imp	ortant pa	arameters are present in the
have to be	changed t	there:
PROCESS	41xx	Identifier for gluon fusion
MODEL, HTYP	E	
TOPMASS		

000000 t H, A

Other files:

- histograms.dat, random.dat, procinfo.dat
 - Random.dat
 - chose initial seed number: by default 0
 - Procinfo.dat
 - List of processes
 - Histograms.dat
 - Change range of plotted histograms (Save compilation time)
 - Smearing & errors

```
This input file allows the user to alter the his
  enable smearing between adjacent bins and enable
SMEARING
                                   ! enable or disab
            = true
SMEAR VALUE = 0.10d0
                                   ! bin fraction wh
!! Error calculation for gnuplot histograms
CALC ERROR GNUPLOT = false
                                   ! calculate per b
!! Error calculation for root histograms defined in
 ! (an error estimation for the histograms in rootu
CALC ERROR ROOT = false
                                   ! calculate per b
  Error calculation for raw histogram data files
  Format for 1D data files:
  х
       v
           v-error
  Format for 2D data files:
               z-error
CALC ERROR 1D
                   = true
                                   ! calculate per b
CALC ERROR 2D
                   = false
                                   ! calculate per b
  Modify histogram ranges for x-axis
  1D Histograms:
   FORMAT = <min> <max>
  HIST ID1
                  0D0 250D0
                                        pT of taggin
  HIST ID2
                      0D0 500D0
                                        pT of taggin
  HIST ID3
                      0D0 200D0
                                        pT of taggin
  HIST ID4
                      -5D0 5D0
                                        y of tagging
  HIST ID5
                      -5D0 5D0
                                        y of tagging
                      -5D0 5D0
                                        y of tagging
  HIST ID6
  HIST ID7
                      0D0 500D0
                                        pT max of al
  HIST ID8
                      0D0 200D0
                                        pT min of al
  HIST ID9
                      0D0 5D0
                                        eta max of
  HIST ID10
                                         eta min of
                      0D0 5D0
-UU-:---F1
             histograms.dat
                              Top L1
                                          (Fundament
```

Francisco Campanario – Precise Phenomenology@LHC

Running the Code

Running (store output into a file):

francam@1hcph	eno22:/home/RUN/SC	HOOL/RUN\$ 1s		
anom_HVV.dat	ggflo.dat	kk_input.dat	spin2coupl.dat	vbfnlo.dat
anomV.dat	histograms.dat	procinfo.dat	susy.dat	
cuts.dat	kk_coupl_inp.dat	random.dat	vbfnlo	
francam@lhcph	eno22:/home/RUN/SC	HOOL/RUN\$ mpir	un -np 4 vbfnlo	> LOG.proc100_s
tat20_LO.out	£			

Output:

francam@lhcpheno22:/home/RUN/SCHOOL/RUN\$ ls histograms.* LOG.proc100_stat20_ LO.out gri* xsec* grid2_1.out.1 grid2_1.out.3 histograms.dat LOG.proc100_stat20_LO.out grid2_1.out.2 grid2_1.out.4 histograms.gp xsection.out histograms.dir:

hist_noerror.gp hist_witherror_1d.gp Kfac LO NLO francam@lhcpheno22:/home/RUN/SCHOOL/RUN\$

Running the Code

 grid2_1.out.X : MonteCarlo grid of random number. One can store it for next run, if parameter has not been changed

francam@lhcpheno22:/home/RUN/SCHOOL/RUN\$ cp grid2_1.out.4 grid2_1
francam@lhcpheno22:/home/RUN/SCHOOL/RUN\$

Cross section result: xsection.out

More Detail information of the Run in

francam@lhcpheno22:/home/RUN/SCHOOL/RUN\$ 1s LOG.proc100_stat20_L0.out LOG.proc100 stat20 L0.out

- Evolution of cross section per iteration
- Cuts, input parameters

```
grep –A10 "iteration " LOG*
```

```
accumulated statistics:
integral = 2.526406E+03, sigma = 8.685E+01, chi^2/iteration = 1.137E-13
MONACO: grid written to file grid2 1.out.1
MONACO input parameters:
ndim = 9, ncall = 256k, rtype = 0
iteration 2:
integral = 2.517866E+03, sigma = 1.211E+01
efficacy = 2.196E-02, raw efficacy = 6.304E-04
f positive = 5.790E-1, f zero = 4.210E-1, f negative = 0.000E+0
accumulated statistics:
integral = 2.518029E+03, sigma = 1.199E+01, chi^2/iteration = 9.485E+03
MONACO: grid written to file grid2 1.out.2
MONACO input parameters:
ndim = 9, ncall = 512k, rtype = 0
iteration 3:
integral = 2.519003E+03, sigma = 4.462E+00
efficacy = 6.445E-02, raw efficacy = 6.097E-04
f positive = 7.485E-1, f zero = 2.515E-1, f negative = 0.000E+0
accumulated statistics:
integral = 2.518885E+03, sigma = 4.182E+00, chi^2/iteration = 1.529E-02
MONACO: grid written to file grid2 1.out.3
MONACO input parameters:
ndim = 9, ncall = 1M, rtype = 0
integral = 2.527116E+03, sigma = 2.348E+00
efficacy = 3.209E-02, raw efficacy = 5.977E-04
f positive = 8.057E-1, f zero = 1.943E-1, f negative = 0.000E+0
accumulated statistics:
integral = 2.525142E+03, sigma = 2.047E+00, chi^2/iteration = 1.481E+00
MONACO: grid written to file grid2 1.out.4
 result (LO): 2525.1423327782900 +- 2.0474729506923652
                                                                     fb
```


Plots: histograms.gp or individually in histograms.dir

Generating the plots:

francam@lhcpheno22:/home/RUN/SCHOOL/RUN\$ gnuplot histograms.gp Warning: empty y range [0:0], adjusting to [-1:1] Warning: empty y range [0:0], adjusting to [-1:1] Warning: empty y range [0:0], adjusting to [-1:1] Warning: empty y range [0:0], adjusting to [-1:1]

The ouput: histograms.ps

medilig linepineirozza / indille/ nom/ ecirocii/

francam@lhcpheno22:/home/RUN/SCHOOL/RUN\$ ls histograms. histograms.dat histograms.dir/ histograms.gp histograms.ps

• Opening the file:

francam@lhcpheno22:/home/RUN/SCHOOL/RUN\$ gv histograms.ps
Default Plots: Limited amount

Default Plots: Limited amount

Adding New histograms: GF HJJJ

Adding New Histograms:

Source code: utilities/histograms.F

<pre>francam@lhcpheno22:~/Work/Projects/SCHOOL/VBFNLO-3.0.0beta5\$ 1</pre>						
amplitudes/	doc/	lib/	PDFsets/	src/		
autom4te.cache/	helas/	loops/	phasespace/	utilities/		
config/	include/	m4/	regress/			
$F_{\text{max}} = F_{\text{max}} = \frac{1}{2} $						

Define the new histograms:

francam@lhcpheno22:~/Work/Projects/SCHOOL/VBFNLO-3.0.0beta5\$ grep -i "call createhist" utilities/histograms.F
* call CreateHist(ID, title, #bins, min, max)
call CreateHist(1, "dS/dpT_j (fb/GeV)",100,0d0,250d0) !pT of tagging jets
call CreateHist(2, "dS/dpTmax_j (fb/GeV)",100,0d0,500d0) !pT of tagging jet with higher pT
call CreateHist(3, "dS/dpTmin_j (fb/GeV)",100,0d0,200d0) !pT of tagging jet with lower pT
call CreateHist(4, "dS/dy_j (fb)",100,-5d0,5d0) !y of tagging jets
call CreateHist(5, "dS/dy_j1 (fb)",100,-5d0,5d0) !y of tagging jet with higher pT
call CreateHist(6, "dS/dy_j2 (fb)",100,-5d0,5d0) !y of tagging jet with higher pT
call CreateHist(6, "dS/dy_j2 (fb)",100,-5d0,5d0) !y of tagging jet with lower pT
call CreateHist(7, "dS/dpTmax_1 (fb/GeV)",100,0d0,200d0) !pT_max of all leptons
call CreateHist(9, "dS/d]eta[max_1 (fb)",100,0d0,5d0) !leta[_max of all leptons

21.05.2018

Adding histograms: histograms.F

Filling the histogram with the observable:

SFNLO-3.0.0beta5\$ grep -i	"call FillHist"	utilities/histograms.F
0.5d0, NLO)		
0.5d0, NLO)		
NLO)		
NLO)		
0.5d0, NLO)		
NLO)		
0.5d0, NLO)		
NLO)		
0.5d0, NLO)		
0.5d0, NLO)		
	3FNLO-3.0.0beta5\$ grep -i *0.5d0, NLO) *0.5d0, NLO) , NLO) , NLO) *0.5d0, NLO) *0.5d0, NLO) *0.5d0, NLO) *0.5d0, NLO) *0.5d0, NLO)	3FNLO-3.0.0beta5\$ grep -i "call FillHist" *0.5d0, NLO) *0.5d0, NLO) , NLO) *0.5d0, NLO) *0.5d0, NLO) *0.5d0, NLO) *0.5d0, NLO) *0.5d0, NLO) *0.5d0, NLO)

Higgs observables:

```
oT of the Higgs boson
       CALL legoy(v(0:3,1),pH T,yH,phiH)
       call FillHist ( 69, pH T, dw, NLO)
       call FillHist (75, yH, dw, NLO)
Higgs Jet correlations
       do i = 0, 3
          temp(i) = v(i, 1) + jets(i, 1)
       enddo
       call leqoy(temp,pthj,yhj,phihj)
       call FillHist (76, pthj, dw, NLO)
       call FillHist(77, yhj, dw, NLO)
       call FillHist (78, phihj* 180d0 / Pi, dw, NLO)
```

PT Higgs in GF HJJJ Production: Preliminary

dS/dpT_H (fb/GeV)

Future Developments VBFNLO

- Interface with Herwig Parton Shower and Hadronization
 - Iván Rosario Bonastre, et al.
- Electroweak Corrections
- New GF induced processes
 - HJJJ (B)SM
 - HH pair at NLO (B)SM
 - Jonathan Ronca et al.

Summary

LHC complicated machine

PDF's, Hard Process, Parton Showers and Hadronization

Factorization of different parts is crucial

Precision is needed to find hints of new physics

NLO, NNLO QCD & EW NLO needed

There are many public tools to do phenomenology

VBFNLO, one of the group

THANK YOU FOR YOUR ATTENTION

BACKUP SLIDES

$$\mathcal{M}_{\tau} = \mathcal{M}_{\tau}^{D=4} + (D-4)\mathcal{M}_{\tau}^{DR},$$

 $\mathcal{M}_{\tau}^{DR} \rightarrow \text{Rational Terms}$ coming from $\gamma^{\mu}\gamma_{\mu} = D$ contractions

These terms are written:

$$\mathcal{M}_{\tau}^{(D=4,DR)} = \sum_{i,j,\tau} \mathrm{SM}_{i,\tau} \ \mathrm{F1}_{j},$$

-

 $SM_{i,\tau}$: Standard matrix elements along the quark line

$$SM_{1,\tau} = \bar{u}(k_2)\gamma^{\mu_4}\gamma^{\mu_3}\gamma^{\mu_2}\gamma^{\mu_1}\not\!\!\!/_4\not\!\!\!/_3\not\!\!\!/_2\omega_{\tau}u(k_1), \quad \omega_{\pm} = \frac{1 \pm \gamma^5}{2}$$

$$\mathsf{F1}_j = \sum_k \mathsf{F}_k \prod_{m,n} p_m \cdot \epsilon(p_n),$$

 F_k : Functions with loop information ($B_0, C_0, ..., F_{ij}$)

$$\mathcal{M}_{\tau}^{D=4}$$
 & \mathcal{M}_{τ}^{DR} : Full Result

$$\mathcal{M}_{\tau}^{D=4} = \widetilde{\mathcal{M}}_{\tau} + \frac{\mathcal{M}_{\tau}^{1}}{\epsilon} + \frac{\mathcal{M}_{\tau}^{2}}{\epsilon^{2}},$$
$$(D-4)\mathcal{M}_{\tau}^{DR} = \widetilde{\mathcal{N}}_{\tau} + \frac{\mathcal{N}_{\tau}^{1}}{\epsilon},$$

Effective current approach

$$A_{V_1V_2V_3V_4,\tau} = J_{V_1^*}^{\mu_1} J_{V_2^*}^{\mu_2} \mathcal{M}_{\mu_1\mu_2,\tau} \equiv \mathcal{M}_{V_1^*V_2^*,\tau},$$

$$J_{V_{1}^{*}}^{\mu_{1}}(q_{1}) = \frac{-I}{q_{1}^{2} - M_{V_{1}^{*}}^{2} - IM_{V_{1}^{*}}\Gamma_{V_{1}^{*}}} \left(g_{\mu}^{\mu_{1}} - \frac{q_{1}^{\mu_{1}}q_{1\mu}}{q_{1}^{2} - M_{V_{1}^{*}}^{2} - IM_{V_{1}^{*}}\Gamma_{V_{1}^{*}}}\right) \Gamma_{V_{1}^{*}V_{1}V_{3}}^{\mu}$$

12 Universal Blocks \approx 5000

Code: Fast to compile & Easy to handle, e.g. numerical uncertainties

• Ward Identities Gauge Test: $(\epsilon(p_i) \rightarrow p_i)$

hexline=penline(1)-penline(2) penline=boxline(1)-boxline(2)

Divergent pieces factorize against born amplitude

$$\mathcal{M}_{V_1...V_n,\tau} = g_{\tau}^{V_1 f} \dots g_{\tau}^{V_n f} C_F \frac{\alpha_s(\mu)}{4\pi} \left(\widetilde{\mathcal{M}}_V + \left(\frac{4\pi\mu^2}{-s} \right)^{\epsilon} \Gamma(1+\epsilon) \left[-\frac{2}{\epsilon^2} - \frac{10-D}{2\epsilon} \right] \mathcal{M}_{V_1...V_n,\tau}^B \right)$$

Renormalization scale independence

For on-shell massless particles(g, γ), transversality must be used($\epsilon(p_i) \cdot p_i = 0$)

Higgs Searches

$$\begin{split} p_{t,e} &> 7\,{\rm GeV}\,, && |\eta_e| < 2.5\,, \\ p_{t,\mu} &> 5\,{\rm GeV}\,, && |\eta_\mu| < 2.4\,, \\ p_{t,\ell_{\rm hardest}} &> 20\,{\rm GeV}\,, && m_{4\ell} > 100\,{\rm GeV}\,, \\ p_{t,\ell_{\rm second-hardest}} &> 10\,{\rm GeV}\,, \end{split}$$

 $\begin{array}{ll} 40 < m_{\ell\ell} < 120\,{\rm GeV} & \mbox{ for the }\ell\ell\mbox{ pair with mass closer to }m_Z, \\ 12 < m_{\ell\ell} < 120\,{\rm GeV} & \mbox{ for the other }\ell\ell\mbox{ pair,} \\ m_{\ell\ell} > 4\,{\rm GeV} & \mbox{ for any oppositely-charged pair of leptons.} \end{array}$

Francisco Campanario – VV@nNLO

LoopSim

Sum of weights = 0 (Unitarity)

Ingredients

VBFNLO:

ZZ@NLO ZZj@NLO GF ZZ@LO GF ZZj@LO

Note that GF ZZ@LO contributes at NNLO and GF ZZj@LO contributes at NNNLO

Merging Convention:

GF ZZ@LO + GF ZZj@LO = GF ZZ@nLOZZ@NLO + ZZj@NLO + GF ZZ@LO = ZZ@nNLO

4 lepton observables

 $m_{\ell\ell}^2 \simeq \frac{1}{4} p_{T,Z}^2 \Delta R_{\ell,\ell}^2$

 $p_{T,Z} \lesssim 10 \, m_{\ell\ell}$

21.05.2018

WW

WZ

- $H_T = \sum p_{T,jets} + \sum P_{T,I} + E_{T,mis}$
 - Huge K-factors from LO to NLO
 - Good agreement between nLO and NLO at large H_T values
 - Large nNLO corrections
 - Small R_{LS} uncertainties at large H_T
 - Marginal reduction of scale uncertainties

*n*NLO corrections beyond scale uncertainty
 *n*NLO with veto: Large corrections, larger scale uncertainties

Ingredients at NLO

 $|\mathcal{M}_{m+1}|^2$ factorizes if partons i, j are collinear or one of them is soft:

 $V_{ij,k}$ depends on dipole type. e.g. initial state $g \rightarrow q\bar{q}$ with final state spectator:

$$_{m}\langle s|V_{k}^{ai}|s'\rangle_{m} = 8\pi\mu^{2\epsilon}\alpha_{S}T_{R}[1-\epsilon-2x_{ik,a}(1-x_{ik,a})]\delta_{ss'}$$

TECHNICAL DETAILS: NUMERICAL ISSUES AT NLO

$$\begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

$$B_0(p_1) = I_2(p_1) = \int \frac{dl^n}{2\pi} \frac{1}{(l^2)(l+p_1)^2} = \int \frac{dl^n}{2\pi} \frac{1}{N_0 N_1}$$

with

$$N_0 = l^2, \qquad \qquad N_1 = (l+p_1)^2$$

$$I_3^{\mu_1}(p_1^2, p_2^2, p_1 \cdot p_2) = p_1^{\mu_1}C_1 + p_2^{\mu_1}C_2$$

Contracting with $p_1^{\mu 1}$ or $p_2^{\mu 1} \to$ Recursion Relations

$$\begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} B_0(1) - B_0(0) - r_1 C_0 \\ B_0(2) - B_0(1) - (r_2 - r_1) C_0 \end{pmatrix} = \begin{pmatrix} R_1 \\ R_2 \end{pmatrix}$$
$$C_1 = (\Delta^{(3)})^{(-1)} (\tilde{Z}_{11} R_1 + \tilde{Z}_{12} R_2)$$
$$C_2 = (\Delta^{(3)})^{(-1)} (\tilde{Z}_{12} R_1 + \tilde{Z}_{22} R_2)$$

If $\Delta^{(3)}$ small \rightarrow Cancellations and lost of precision.

$$\begin{split} \Delta^{(3)} &= 4(p_1^2 p_2^2 - p_1 p_2^2); & \det Abs^{(3)} = 4(abs(p_1^2 p_2^2) + abs(p_1 p_2^2)) \\ x &= \frac{\Delta^{(3)}}{\det Abs^{(3)}} \text{ order of cancellation.} \\ 1 \text{ digit} &\to \frac{100 - 99}{199} = 5 * 10^{-3} < x < \frac{900 - 91}{191} = 4.6 * 10^{(-2)} \\ 2 \text{ digit} &\to 5 * 10^{-4} < x < 4.6 * 10^{(-3)} \end{split}$$

Precision for C_0, C_i	for $x = 4.6 * 10^{(-6)}$
--------------------------	---------------------------

Integral	Precision
C_0	dble -5 digits =11 digits
C_1, C_2 C_0 -5 digits=6 digits	
C_{11}, C_{12}	C_0 -2(5 digits)=1 digits

Point instable: Gauge test $\geq 10^{-6}$

- Pentagons: $\sim 2/1000$
- Hexagons: 2%-10%

Instabilities due to small Gram determinants in C and D functions

 $det/|det| \approx 10^{(-5)} \rightarrow cancellation of 3-5 digits expected$

- D's, up to Rank 3 \rightarrow 9-15 digits loss over 16 of Dble precision
- For Hexagons:

1/3 pts fails the gauge test for an accuracy of 10^{-1}

We need more digits for those \rightarrow Quadruple precision

Point unstable: Gauge test $\geq 10^{-6}$

- Pentagons: ~2/1000
- Hexagons: 2%-10%

Instabilities due to small Gram determinants in C and D functions

If Gauge test Failed(10% of the times)

1) QUAD only to determine $C_0, D_0, C_{ij}, ... (10\% of the CPU)$ Gauge test failed: $10\% \rightarrow 0.2\%$ (0.02%, 0.0008%, 0)

2) Full QUAD for 0.2% Gauge test failed: $0.2\% \rightarrow 0.1\%$

From $400\% \rightarrow 50\%$ CPU time in adition. $\Delta < 10^{-6} \rightarrow$ Routines for small Gram Determinants.

(0.007%,0)

However, QUAD ~ 40 times slower than Dble precision!!!! First: Evaluate Dble Precision and apply Gauge Test If Gauge test Failed(10% of the times) Option 1 1) Revaluation with QUAD precision Option 2 1) QUAD only to determine $C_0, D_0, C_{ij}, ... (10\% \text{ of the CPU})$ Gauge test failed: $10\% \rightarrow 0.2\%$ (0.02%,0.0008%,0) 2) Full QUAD for 0.2% Gauge test failed: $0.2\% \rightarrow 0.1\%$ (0.007%,0) From 400% \rightarrow 50% CPU time in addition

For 5 10^5 cut-accepted points with VBFNLO for EW pp ${\rightarrow} \rm WWjj$

 $\begin{aligned} \epsilon = & abs((QUAD-Dbl))/abs(QUAD) \\ Imp(,2,3,n): \text{ Gauge test} \leq & 10^{(-1,-2,-3,n)} \rightarrow Dble = QUAD \end{aligned}$

References VV@LHC

VBFNLO:

https://www.itp.kit.edu/~vbfnloweb/wiki/doku.php?id=overview

LoopSim:

https://loopsim.hepforge.org/

NNLO QCD

- γγ :Catani, Cieri, de Florian, Ferrera, Grazzini 2011]
- W γ /Zγ: Grazzini, Kallweit, Rathlev, Torre 2013, Grazzini, Kallweit, Rathlev 2015
- ZZ :Cascioli et al. '14, Grazzini, Kallweit, Rathlev 2015
- WW: [Gehrmann et al. 2014

GF LO

- γγ: D. A. Dicus and S. S. D. Willenbrock, Phys. Rev. D 37 (1988) 1801
- Zγ : J. J. van der Bij and E. W. N. Glover, Phys. Lett. B206 (1988) 701,
- ZZ: . E. Glover and J. van der Bij, Phys.Lett. B219 (1989) 488
- WW: T. Binoth, M. Ciccolini, N. Kauer and M. Kramer, JHEP 12 (2006) 046.

NLO EW(on-shell):

- WW/WZ: E. Accomando and A. Kaiser, Phys.Rev. D73 (2006) 093006.
- W γ / Zγ: E. Accomando, A. Denner, and C. Meier, Eur.Phys.J.C47 (2006) 125–146
- ZZ A. Bierweiler, T. Kasprzik, and J. H. Kühn,arXiv:1305.5402, J.Baglio, N.D.Li, M. Weber Phys. Rev.D 88 (2013) 113005.

GF H+2J:

- Background to WBF
- Sensitive to: CP-structure and coupling of fermions
- NLO known within Effective Theory[Campbell,Ellis,Zanderighi hep-ph/0608194]
- LO known for the full Theory [Del Duca et al.hep-ph/0105129;FC,Kubocz,Zeppenfeld 1011.3819]

GF H+3J:

Background to WBF process¹ (CJV strategies known at NLO)

¹[Figy,Hankele,Zeppenfeld 0710.5621; FC,Figy,Platzer,Sjodahl 1308.2932]

- NLO corrections known within Effective Theory [Cullen et al. 1307.4737]
- Here: LO corrections for the full Theory [FC,Kubocz 1306.1830; 1402.1154]
- Soft radiation: Distort CP-sensitive distributions?

• sensitive to the CP-structure \rightarrow azimuthal angle correlation

$$Y_q = \frac{m_q}{v}$$

bottom-quark: suppressed top-quark: effective theory

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{H^0gg} + \mathcal{L}_{A^0gg} = \frac{1}{v} \frac{\alpha_s}{12\pi} G^{a}_{\mu\nu} G^{a,\mu\nu} H + \frac{1}{v} \frac{\alpha_s}{8\pi} G^{a}_{\mu\nu} \tilde{G}^{a,\mu\nu} A$$

Validity: m_{Higgs} < m_t and p^l_T < m_t
If used correcty → powerful tool
bottom loops: Not described (Important in BSM)

¹[Dolan,Harris,Jankowiak,Spannowsky 1406.3322]