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The Stardard Model

Gauge symmetry:  SU(3) ® SU(2), ® U(1)y

Particle content:

Repr. QL ug ds H

Q. numb. | (3,2,¢) | (3,1,-3) | 3.1,3) | (1,2,—3)
Spin 3 3 3 0
Repr. L e'f? yf\,

Q. numb. | (1,2,—3) | (1,1,1) | (1,1,0)
Spin % % %

Plus scalar potential, Vi = u>HTH + A (HTH)z, and Yukawa
couplings. ..
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“Higgs" discovered. But, is it the SM Higgs??
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|EW Global Fit|
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Impresive SM success !
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—> |Impresive SM success !

Fixing the ~ 25 parameters of the SM reproduces
(nearly) all experimental results obtained to date.
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—> |Impresive SM success !

Fixing the ~ 25 parameters of the SM reproduces
(nearly) all experimental results obtained to date.

Have we finished with fundamental physics??
or can we expect Physics Beyond the SM777
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SM Theoretical “Problems”
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SM Theoretical “Problems”

e Assignment of matter Quantum Numbers
e Unification of Gauge Couplings

e Origin of Spontaneous Symmetry Breaking
e Accomodate Quantum Gravity

e Large number of Flavour Parameters
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We DO need Physics Beyond the SM !!
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2 Higgs Doublet Models (2HDM)

Why a single scalar-doublet representation in SM?7

Minimal possible extension of the SM:
addition of a second scalar doublet,
&1, ®,, with the same hypercharge.

But .. .is this phenomenologically allowed???
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2 Higgs Doublet Models (2HDM)

Why a single scalar-doublet representation in SM?7

Minimal possible extension of the SM:
addition of a second scalar doublet,
&1, ®,, with the same hypercharge.

But .. .is this phenomenologically allowed???
Ly =Y Qidrdy + v Qidf o,

—>Tree-level FCNC!!!
(in general)

Theory and phenomenology of two-Higgs-doublet models G.C.

Branco, et al., Phys.Rept. 516 (2012) 1-102
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However: Paschos-Glashow-Weinberg theorem: no tree-level FCNC
iif all fermions with given charge and SU(2) representation receive
contributions from a single source

—> In 2HDM can be enforced with discrete symmetries
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o [Type | 2HDM

Only &1 charged under 2,
¢1 — —¢'1, ¢'2 — ¢2, W,‘ — \U,'
Ly = Y{Qidf b, + YEQiufd, b; = im0}
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However: Paschos-Glashow-Weinberg theorem: no tree-level FCNC
iif all fermions with given charge and SU(2) representation receive
contributions from a single source

—> In 2HDM can be enforced with discrete symmetries

o [Type | 2HDM

Only &1 charged under 2,
¢1 — —¢'1, ¢'2 — ¢2, W,‘ — \U,'
Ly = Y{Qidf b, + YEQiufd, b; = im0}

o | Type 1l 2HDM |
®; and dg charged under 2,
O = —dy, Sy =y, dp— —di, V=V
Ly = YIQidedy + Y} Qiufd,
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2HDM Scalar potential

General scalar potential (real, Z, softly broken) with two
doublets:

by 2
Vi = 5000+ mB0le; — mb, (010, + 0]y ) + 2 (¢]0y)
A
vo2 (cb*cbz) + s O]y dId, + Ay dIO, Dl
/\5 i TRY
v |(002) 4 (v102)
Minimization of the potential preserving electric charge:
) (3)
q) - . — q) = \Z1
! Qw+m+mﬂﬁ (1) A
i) (3)
q) - . — q) - Va
2 Qw+m+mVﬁ (2) %
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We must require stability of the scalar potential

= potential bounded from below.
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We must require stability of the scalar potential

= potential bounded from below.

A1=>0, A2>0, 3> —vVA1A,
A3+ A —|As| > —v A1 A2

On the other hand, quadratic terms can be negative for some
values of the fields — spontaneous symmetry breaking.
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We must require stability of the scalar potential

= potential bounded from below.

A1=>0, A2>0, 3> —vVA1A,
A3+ A — |As| > =V A1 A2

On the other hand, quadratic terms can be negative for some
values of the fields — spontaneous symmetry breaking.

This must be checked after loop corrections and for all scales

(k).
V(6) = Vireo(61) + 5 QZ a(#1) ['° ( W)‘ﬂ

S. Coleman & E. Weinberg.
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In the minimum EW symmetry is broken: v? = vZ + vZ and
tan 8 = % with v; and v» functions of the parametrers of the

potential, m,?j and \j.

=

Five physical scalars:

H*, H, h, A
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In the minimum EW symmetry is broken: v? = vZ + vZ and
tan 8 = % with v; and v» functions of the parametrers of the

potential, m,?j and \j.

—> |Five physical scalars: H=, H, h, A.

Charged scalars‘

_ mi_ - — V2 —Viv2 ¢+
Lot = 7 (¢1 ¢2) (—vng V12 )<¢§_) ,

with, m2 = [mf,/(viv2) — As — Xs] (v + v3) the mass of the
charged Higgs H = —qﬁ[ sinf3 + gbf cos 3, and a zero
eigenvalue (Goldstone boson, G*) eaten by W=.
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Pseudoscalar

2 2
m V. —ViVp Uil
Ly = -5 2
A v (m m) <—V1V2 2 )(m),

with, m3 = [m?,/(viv2) — 2Xs] (vf + v3) the mass of the
pseudoscalar, and a Goldstone boson, GY eaten by 70,
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Pseudoscalar
2

2
m V. —ViVp Uil
Ly = -5 2
A V2 (7]1 772) (—V1V2 V12 ) <772) )

with, m3 = [m?,/(viv2) — 2Xs] (vf + v3) the mass of the
pseudoscalar, and a Goldstone boson, GY eaten by 70,

| Neutral scalars |

Ly = —(m ) mipy v _m%2+)‘345‘/1"2 p1
" m12+)\345V1V2 m12 L+ Aov2 )’

with, A345 = A3 + Ay + A\s. Two physical neutral scalars:
light Higgs, h = pisina— prcosa and
heavy Higgs, H = —p1 cosa — pa sina
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Type-lIl 2HDM

Tree-level FCNCs can still be present if suficiently small. . .

Ly = nfQidfdy +nhQiufdy + ¢ Qidf 0y + £ Qiuf &,

e Cheng-Sher ansatz: & = Ajj,/mim; # with A\jj ~ O(1).

e Minimal Flavour Violation (MFV) (~ Branco-Grimus-Lavoura):
—> Al FC proportional to CKM matrix.

e Alignment models (Pich Tuzon): Proportionality of 1 and &

Yukawa matrices: gu = nU i =
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Tree-level FCNCs can still be present if suficiently small. . .
Ly = nfQidfdy +nhQiufdy + ¢ Qidf 0y + £ Qiuf &,

e Cheng-Sher ansatz: & = Ajj,/mim; # with A\jj ~ O(1).

e Minimal Flavour Violation (MFV) (~ Branco-Grimus-Lavoura):

—> Al FC proportional to CKM matrix.

e Alignment models (Pich Tuzon): Proportionality of 1 and &
Yukawa matrices: gu = nU i =
Somewhat ad hoc models, but can be motivated with flavour
symmetries . ..
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2HDM phenomenology

B-physics constraints
From low-energy observables: B — 1v., B — D7v,, Ds — TUv-,

B — Xsv, By — B, mixing.

700 e e e

E 95% CL excluded regions
=

: oo | b x 1)
= B BB )

[ B(B— Dtv)/B (B~ Dev)
— = B(K—uw)/B (v—uv)

—— Combined fit (toy MC)
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400
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200

100

Additional Higgs scalars (m?,, ~ m, ~ m?) above 300 GeV
for low tan 5 and even 600 GeV for tan 8 = 50.
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LHC bounds

Searches in pp — tH* — t77v and pp — tHT — t th.

19.7 b (8 TeV)
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LHC bounds

Searches in pp — tHt — t7v and pp — tHT — t tb.

T
- ATLAS
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Model independent bounds on Higgs production at LHC. No
sign found so far. ..
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e Only possible extension of symmetry beyond
Lie Symmetries (Coleman—Mandula Theorem).

e Correct Unification of Gauge couplings at MgyT,
GUT assignment of Quantum numbers (anomaly cancellation).

e Solution of the Hierarchy Problem,
strong motivation for low-energy SUSY.

e “Natural” Mechanism of Electroweak Symmetry
Breaking , Radiative Symmetry Breaking.

e SUSY is a necessary ingredient in String Theory.
Local Supersymmetry < Supergravity.
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| Coleman—Mandula Theorem]

In the 60's attempts to combine internal and Lorentz symmetries ...

The only conserved quantities that transform as tensors under
Lorentz transformations in a theory with non-zero scattering
amplitudes in 4D are the generators of the Poincare group
and Lorentz invariant quantum numbers (scalar charges).

2 x 2 spinless particle scattering, bosonic conserved charge, ¥,
<1|Z,uu‘1> = O‘P};pi + /Bg/w

So, in the scattering process,
PPy + Paps = PPy + Papy & p,+ P =P+ P,

Not possible in a theory with non-zero scattering.
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However: Coleman—Mandula theorem does not forbid conserved
spinor charges, Q, (transforming like fermions under Lorentz)

Q«|Boson) = |Fermion)  Q,|Fermion) = |Boson)

[Qu, H] = 0 [{Qa @y}, H] = 0

‘ Supersymmetry Algebra ‘

{Qa,@g}zzasﬂpp, {QaaQﬂ}:O {Qon@ﬁ}zo

Supersymmetry relates particles of different spin with equal
quantum numbers and identical masses.

()~ (g &) ()~ ((E&m))

Chiral supermultiplet Gauge supermultiplet

20/21




