Higgs and physics Beyond the SM 1.- Higgs

Oscar Vives

8th IDPASC School IFIC, 21–28/05/2018

The Stardard Model

Gauge symmetry: $SU(3) \otimes SU(2)_L \otimes U(1)_Y$

Particle content:

Repr.	Q_L	u _R c	d_R^c	Н
Q. numb.	$(3, 2, \frac{1}{6})$	$(\bar{3}, 1, -\frac{2}{3})$	$(\bar{3}, 1, \frac{1}{3})$	$(1, 2, -\frac{1}{2})$
Spin	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0
Repr.	LL	e_R^c	$ u_R^c$	
Q. numb.	$(1, 2, -\frac{1}{2})$	(1, 1, 1)	(1, 1, 0)	
Spin	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	

Plus scalar potential, $V_{H} = \mu^{2} H^{\dagger} H + \lambda (H^{\dagger} H)^{2}$, and Yukawa couplings...

"Higgs" discovered. But, is it the SM Higgs??

4/21

\Rightarrow Impresive SM success !!

Fixing the ~ 25 parameters of the SM reproduces (nearly) all experimental results obtained to date.

\Rightarrow Impresive SM success !!

Fixing the ~ 25 parameters of the SM reproduces (nearly) all experimental results obtained to date.

Have we finished with fundamental physics?? or can we expect Physics Beyond the SM???

- Assignment of matter Quantum Numbers
- Unification of Gauge Couplings
- Origin of Spontaneous Symmetry Breaking
- Accomodate Quantum Gravity
- Large number of Flavour Parameters

- Assignment of matter Quantum Numbers
- Unification of Gauge Couplings
- Origin of Spontaneous Symmetry Breaking
- Accomodate Quantum Gravity
- Large number of Flavour Parameters

SM Observational "Problems"

- Assignment of matter Quantum Numbers
- Unification of Gauge Couplings
- Origin of Spontaneous Symmetry Breaking
- Accomodate Quantum Gravity
- Large number of Flavour Parameters

SM Observational "Problems"

- Need of non-baryonic Dark Matter
- CP violation source for Baryogenesis
- Mechanism of Inflation

- Assignment of matter Quantum Numbers
- Unification of Gauge Couplings
- Origin of Spontaneous Symmetry Breaking
- Accomodate Quantum Gravity
- Large number of Flavour Parameters

SM Observational "Problems"

- Need of non-baryonic Dark Matter
- CP violation source for Baryogenesis
- Mechanism of Inflation

We DO need Physics Beyond the SM !!

2 Higgs Doublet Models (2HDM)

Why a single scalar-doublet representation in SM??

Minimal possible extension of the SM: addition of a second scalar doublet, Φ_1 , Φ_2 , with the same hypercharge.

But ... is this phenomenologically allowed???

2 Higgs Doublet Models (2HDM)

Why a single scalar-doublet representation in SM??

Minimal possible extension of the SM: addition of a second scalar doublet, Φ_1 , Φ_2 , with the same hypercharge.

But ... is this phenomenologically allowed???

$$\mathcal{L}_{Y} = Y_{ij}^{(1)} Q_{i} d_{j}^{c} \Phi_{1} + Y_{ij}^{(2)} Q_{i} d_{j}^{c} \Phi_{2}$$
$$\implies \text{Tree-level FCNC} \\ (\text{in general})$$

2 Higgs Doublet Models (2HDM)

Why a single scalar-doublet representation in SM??

Minimal possible extension of the SM: addition of a second scalar doublet, Φ_1 , Φ_2 , with the same hypercharge.

But ... is this phenomenologically allowed???

$$C_{Y} = Y_{ij}^{(1)}Q_{i}d_{j}^{c}\Phi_{1} + Y_{ij}^{(2)}Q_{i}d_{j}^{c}\Phi_{2}$$
$$\implies \text{Tree-level FCNC} \\ (in general)$$

Theory and phenomenology of two-Higgs-doublet models G.C. Branco, *et al.*, Phys.Rept. 516 (2012) 1-102

However: Paschos-Glashow-Weinberg theorem: no tree-level FCNC iif all fermions with given charge and SU(2) representation receive contributions from a single source

 \Rightarrow In 2HDM can be enforced with discrete symmetries

However: Paschos-Glashow-Weinberg theorem: no tree-level FCNC iif all fermions with given charge and SU(2) representation receive contributions from a single source

 \Rightarrow In 2HDM can be enforced with discrete symmetries

• Type I 2HDM

Only Φ_1 charged under Z_2

$$\begin{aligned} \Phi_1 &\to -\Phi_1, \quad \Phi_2 \to \Phi_2, \quad \Psi_i \to \Psi_i \\ \mathcal{L}_Y &= Y^d_{ij} Q_i d^c_j \Phi_2 + Y^u_{ij} Q_i u^c_j \tilde{\Phi}_2 \qquad \tilde{\Phi}_i = i\tau_2 \Phi^*_i \end{aligned}$$

However: Paschos-Glashow-Weinberg theorem: no tree-level FCNC iif all fermions with given charge and SU(2) representation receive contributions from a single source

 \Rightarrow In 2HDM can be enforced with discrete symmetries

• Type I 2HDM

Only Φ_1 charged under Z_2

$$\begin{split} \Phi_1 &\to -\Phi_1, \quad \Phi_2 \to \Phi_2, \quad \Psi_i \to \Psi_i \\ \mathcal{L}_Y &= Y^d_{ij} Q_i d^c_j \Phi_2 + Y^u_{ij} Q_i u^c_j \tilde{\Phi}_2 \qquad \tilde{\Phi}_i = i\tau_2 \Phi^*_i \end{split}$$

 Φ_1 and d_R^c charged under Z_2

$$\begin{split} \Phi_1 &\to -\Phi_1, \quad \Phi_2 \to \Phi_2, \quad d_R^c \to -d_R^c, \quad \Psi_i \to \Psi_i \\ \mathcal{L}_Y &= Y_{ij}^d Q_i d_j^c \Phi_1 + Y_{ij}^u Q_i u_j^c \tilde{\Phi}_2 \end{split}$$

2HDM Scalar potential

General scalar potential (real, Z_2 softly broken) with two doublets:

$$\begin{split} V_{H} &= m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} \\ &+ \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \Phi_{1}^{\dagger} \Phi_{1} \Phi_{2}^{\dagger} \Phi_{2} + \lambda_{4} \Phi_{1}^{\dagger} \Phi_{2} \Phi_{2}^{\dagger} \Phi_{1} \\ &+ \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} \right] \end{split}$$

Minimization of the potential preserving electric charge:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ (\nu_1 + \rho_1 + i\eta_1)/\sqrt{2} \end{pmatrix} \longrightarrow \langle \Phi_1 \rangle = \begin{pmatrix} 0 \\ \frac{\nu_1}{\sqrt{2}} \end{pmatrix}$$

$$\Phi_2 = \begin{pmatrix} \phi_2^+ \\ (\nu_2 + \rho_2 + i\eta_2)/\sqrt{2} \end{pmatrix} \longrightarrow \langle \Phi_2 \rangle = \begin{pmatrix} 0 \\ \frac{\nu_2}{\sqrt{2}} \end{pmatrix}$$

We must require stability of the scalar potential \Rightarrow potential bounded from below.

We must require stability of the scalar potential \Rightarrow potential bounded from below. $\lambda_1 \ge 0, \quad \lambda_2 \ge 0, \quad \lambda_3 \ge -\sqrt{\lambda_1 \lambda_2},$

$$\lambda_3 + \lambda_4 - |\lambda_5| \ge -\sqrt{\lambda_1 \lambda_2}$$

On the other hand, quadratic terms can be negative for some values of the fields \rightarrow spontaneous symmetry breaking.

We must require stability of the scalar potential \Rightarrow potential bounded from below. $\lambda_1 \ge 0, \quad \lambda_2 \ge 0, \quad \lambda_3 \ge -\sqrt{\lambda_1 \lambda_2},$

$$\lambda_{1} = 0, \quad \lambda_{2} = 0, \quad \lambda_{3} = -\sqrt{\lambda_{1}\lambda_{2}}$$
$$\lambda_{3} + \lambda_{4} - |\lambda_{5}| \ge -\sqrt{\lambda_{1}\lambda_{2}}$$

On the other hand, quadratic terms can be negative for some values of the fields \rightarrow spontaneous symmetry breaking.

This must be checked after loop corrections and for all scales (μ) ...

$$V(\phi_i) = V_{ ext{tree}}(\phi_i) + rac{1}{64\pi^2} \sum_{lpha} m_{lpha}^4(\phi_i) \left[\log\left(rac{m_{lpha}^2(\phi_i)}{\mu^2}
ight) - rac{3}{2}
ight]$$

S. Coleman & E. Weinberg.

In the minimum EW symmetry is broken: $v^2 = v_1^2 + v_2^2$ and $\tan \beta = \frac{v_1}{v_2}$, with v_1 and v_2 functions of the parametrers of the potential, m_{ij}^2 and λ_i .

$$\Rightarrow Five physical scalars: H^{\pm}, H, h, A.$$

In the minimum EW symmetry is broken: $v^2 = v_1^2 + v_2^2$ and $\tan \beta = \frac{v_1}{v_2}$, with v_1 and v_2 functions of the parametrers of the potential, m_{ij}^2 and λ_i .

$$\Rightarrow Five physical scalars: H^{\pm}, H, h, A.$$

Charged scalars

$$\mathcal{L}_{m^{\pm}} = \frac{m_{+}^{2}}{v^{2}} \begin{pmatrix} \phi_{1}^{-} & \phi_{2}^{-} \end{pmatrix} \begin{pmatrix} v_{2}^{2} & -v_{1}v_{2} \\ -v_{1}v_{2} & v_{1}^{2} \end{pmatrix} \begin{pmatrix} \phi_{1}^{+} \\ \phi_{2}^{+} \end{pmatrix} ,$$

with, $m_+^2 = [m_{12}^2/(v_1v_2) - \lambda_4 - \lambda_5] (v_1^2 + v_2^2)$ the mass of the charged Higgs $H^{\pm} = -\phi_1^{\pm} \sin \beta + \phi_2^{\pm} \cos \beta$, and a zero eigenvalue (Goldstone boson, G^{\pm}) eaten by W^{\pm} .

Pseudoscalar

$$\mathcal{L}_{\mathcal{A}} = rac{m_{\mathcal{A}}^2}{v^2} \begin{pmatrix} \eta_1 & \eta_2 \end{pmatrix} \begin{pmatrix} v_2^2 & -v_1v_2 \ -v_1v_2 & v_1^2 \end{pmatrix} \begin{pmatrix} \eta_1 \ \eta_2 \end{pmatrix} \, ,$$

with, $m_A^2 = [m_{12}^2/(v_1v_2) - 2\lambda_5](v_1^2 + v_2^2)$ the mass of the pseudoscalar, and a Goldstone boson, G^0 eaten by Z^0 .

Pseudoscalar

$$\mathcal{L}_{\mathcal{A}} = rac{m_{\mathcal{A}}^2}{v^2} \begin{pmatrix} \eta_1 & \eta_2 \end{pmatrix} \begin{pmatrix} v_2^2 & -v_1 v_2 \\ -v_1 v_2 & v_1^2 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} \, ,$$

with, $m_A^2 = [m_{12}^2/(v_1v_2) - 2\lambda_5](v_1^2 + v_2^2)$ the mass of the pseudoscalar, and a Goldstone boson, G^0 eaten by Z^0 .

Neutral scalars

$$\mathcal{L}_{\mathcal{H}} = - \begin{pmatrix} \rho_1 & \rho_2 \end{pmatrix} \begin{pmatrix} m_{12}^2 \frac{v_2}{v_1} + \lambda_1 v_1^2 & -m_{12}^2 + \lambda_{345} v_1 v_2 \\ -m_{12}^2 + \lambda_{345} v_1 v_2 & m_{12}^2 \frac{v_1}{v_2} + \lambda_2 v_2^2 \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix},$$

with, $\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5$. Two physical neutral scalars: light Higgs, $h = \rho_1 \sin \alpha - \rho_2 \cos \alpha$ and heavy Higgs, $H = -\rho_1 \cos \alpha - \rho_2 \sin \alpha$

Type-III 2HDM

Tree-level FCNCs can still be present if suficiently small...

$$\mathcal{L}_{Y} = \eta_{ij}^{d} Q_{i} d_{j}^{c} \Phi_{1} + \eta_{ij}^{u} Q_{i} u_{j}^{c} \tilde{\Phi}_{1} + \xi_{ij}^{d} Q_{i} d_{j}^{c} \Phi_{2} + \xi_{ij}^{u} Q_{i} u_{j}^{c} \tilde{\Phi}_{2}$$

- Cheng-Sher ansatz: $\xi_{ij} = \lambda_{ij} \sqrt{m_i m_j} \frac{\sqrt{2}}{v}$, with $\lambda_{ij} \sim \mathcal{O}(1)$.
- Minimal Flavour Violation (MFV) (~ Branco-Grimus-Lavoura):
 ⇒ All FC proportional to CKM matrix.
- Alignment models (Pich-Tuzon): Proportionality of η and ξ Yukawa matrices: $\xi_{ij}^d = \eta_{ij}^d, \xi_{ij}^u = \eta_{ij}^u$.

Type-III 2HDM

Tree-level FCNCs can still be present if suficiently small...

$$\mathcal{L}_{Y} = \eta_{ij}^{d} Q_{i} d_{j}^{c} \Phi_{1} + \eta_{ij}^{u} Q_{i} u_{j}^{c} \tilde{\Phi}_{1} + \xi_{ij}^{d} Q_{i} d_{j}^{c} \Phi_{2} + \xi_{ij}^{u} Q_{i} u_{j}^{c} \tilde{\Phi}_{2}$$

- Cheng-Sher ansatz: $\xi_{ij} = \lambda_{ij} \sqrt{m_i m_j} \frac{\sqrt{2}}{v}$, with $\lambda_{ij} \sim \mathcal{O}(1)$.
- Minimal Flavour Violation (MFV) (~ Branco-Grimus-Lavoura):
 ⇒ All FC proportional to CKM matrix.
- Alignment models (Pich-Tuzon): Proportionality of η and ξ Yukawa matrices: $\xi_{ij}^d = \eta_{ij}^d, \ \xi_{ij}^u = \eta_{ij}^u$.

Somewhat *ad hoc* models, but can be motivated with flavour symmetries . . .

2HDM phenomenology

B-physics constraints From low-energy observables: $B \to \tau \nu_{\tau}$, $B \to D \tau \nu_{\tau}$, $D_s \to \tau \nu_{\tau}$, $B \to X_s \gamma$, $B_0 - \bar{B}_0$ mixing.

Additional Higgs scalars $(m_{H^+}^2 \simeq m_H^2 \simeq m_A^2)$ above 300 GeV for low tan β and even 600 GeV for tan $\beta = 50$.

LHC bounds

Searches in $pp \rightarrow tH^+ \rightarrow t\tau^+\nu$ and $pp \rightarrow tH^+ \rightarrow t t\bar{b}$.

15/21

LHC bounds

Searches in $pp \rightarrow tH^+ \rightarrow t\tau^+\nu$ and $pp \rightarrow tH^+ \rightarrow t t\bar{b}$.

Model independent bounds on Higgs production at LHC. No sign found so far...

- Assignment of matter Quantum Numbers
- Unification of Gauge Couplings
- Origin of Spontaneous Symmetry Breaking
- Accomodate Quantum Gravity
- Large number of Flavour Parameters

- Assignment of matter Quantum Numbers
- Unification of Gauge Couplings
- Origin of Spontaneous Symmetry Breaking
- Accomodate Quantum Gravity
- Large number of Flavour Parameters

SM Observational "Problems"

- Assignment of matter Quantum Numbers
- Unification of Gauge Couplings
- Origin of Spontaneous Symmetry Breaking
- Accomodate Quantum Gravity
- Large number of Flavour Parameters

SM Observational "Problems"

- Need of non-baryonic Dark Matter
- CP violation source for Baryogenesis
- Mechanism of Inflation

- Assignment of matter Quantum Numbers
- Unification of Gauge Couplings
- Origin of Spontaneous Symmetry Breaking
- Accomodate Quantum Gravity
- Large number of Flavour Parameters

SM Observational "Problems"

- Need of non-baryonic Dark Matter
- CP violation source for Baryogenesis
- Mechanism of Inflation

We DO need Physics Beyond the SM !!

• Only possible extension of symmetry beyond Lie Symmetries (Coleman-Mandula Theorem).

Correct Unification of Gauge couplings at M_{GUT},
 GUT assignment of Quantum numbers (anomaly cancellation).

• Solution of the Hierarchy Problem, strong motivation for low-energy SUSY.

• "Natural" Mechanism of Electroweak Symmetry Breaking , Radiative Symmetry Breaking.

SUSY is a necessary ingredient in String Theory.
 Local Supersymmetry ⇔ Supergravity.

Coleman–Mandula Theorem

In the 60's attempts to combine internal and Lorentz symmetries ...

The only conserved quantities that transform as tensors under Lorentz transformations in a theory with non-zero scattering amplitudes in 4D are the generators of the Poincare group and Lorentz invariant quantum numbers (scalar charges).

 2×2 spinless particle scattering, bosonic conserved charge, $\Sigma_{\mu\nu}$, $\langle 1 | \Sigma_{\mu\nu} | 1 \rangle = \alpha p_{\mu}^{1} p_{\nu}^{1} + \beta g_{\mu\nu}$

So, in the scattering process,

$$p_{\mu}^{1}p_{\nu}^{1}+p_{\mu}^{2}p_{
u}^{2}=p_{\mu}^{3}p_{
u}^{3}+p_{\mu}^{4}p_{
u}^{4}$$
 & $p_{\mu}^{1}+p_{\mu}^{2}=p_{\mu}^{3}+p_{\mu}^{4}$

Not possible in a theory with non-zero scattering.

However: Coleman-Mandula theorem does not forbid conserved spinor charges, Q_{α} (transforming like fermions under Lorentz)

$$egin{aligned} & \mathcal{Q}_{lpha} | \mathsf{Boson}
angle &= | \mathsf{Fermion}
angle & \mathcal{Q}_{lpha} | \mathsf{Fermion}
angle &= | \mathsf{Boson}
angle \ & \left[\mathcal{Q}_{lpha}, \mathcal{H}
ight] = 0 & \left[\left\{ \mathcal{Q}_{lpha}, ar{\mathcal{Q}}_{\dot{eta}}
ight\}, \mathcal{H}
ight] = 0 \end{aligned}$$

Supersymmetry Algebra

$$\{Q_{\alpha},\bar{Q}_{\dot{\beta}}\}=2\sigma^{\mu}_{\alpha\dot{\beta}}P_{\mu}\qquad \{Q_{\alpha},Q_{\beta}\}=0\qquad \qquad \{\bar{Q}_{\dot{\alpha}},\bar{Q}_{\dot{\beta}}\}=0$$

Supersymmetry relates particles of different spin with equal quantum numbers and identical masses.

$$\begin{pmatrix} \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} \end{pmatrix} \sim \begin{pmatrix} \begin{pmatrix} q \; (\text{quark}) \\ \tilde{q} \; (\text{squark}) \end{pmatrix} \end{pmatrix} \quad \begin{pmatrix} \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix} \end{pmatrix} \sim \begin{pmatrix} \begin{pmatrix} g \; (\text{gluon}) \\ \tilde{g} \; (\text{gluino}) \end{pmatrix} \end{pmatrix}$$

Chiral supermultiplet

Gauge supermultiplet