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Introduction

Previous searches at LEP and the Tevatron.
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- High mass searches.
- MSSM Higgs searches: neutral, charged.

- Light pseudoscalar, resonant and non-resonant Higgs pair production.

Reminder of some shortcomings of the SM:
The Higgs mechanism. Production and decay of the Higgs boson at colliders: LEP, Tevatron and LHC.

Speaker: Ricardo Jose Morais Silva Goncalo (LIP Laboratorio de Instrumentacao e Fisica Experimenta

= Combined LHC mass measurement
RVl - 18:30 Higgs Physics 2 Oh3m [ S Tateioe L
Discovery of the Higgs boson in the different final states & 7
Case-study of the H->WW search h
Algorithms, challenges, tools ‘
Combination of search results °
Speaker: Dr. Patricia Conde Muino (LIP Laboratorio de Instrumentz xperimental de Part)
MoNDAY, 9 APRIL i v
RPA M - 18:30 Higgs Physics 3 ®1h30m
Models, properties, and interpretation. \ P SN
Case-study of the coupling strengths. 4‘ |
Case-study of the hypothesis test for different spin-parity assignments. E :
1 ;.
Speaker: Pedro Vieira De Castro Ferreira Da Silva (CERN) [ B ARR RSN
WEDNESDAY, 11 APRIL v

- Search for new physics in the Higgs sector.
- The Higgs boson and processes beyond the SM.
- Extensions of the SM, minimal and non-minimal extensions.

®1h30m

masses, WW scattering.
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Outlook

 |Introduction

 Hard-core theory
— Lagrangians and symmetries
— Quantum fields
— Problems with the Standard Model

* The Higgs mechanism

 The long way to discovery

— LEP experiments

— Tevatron experiments

— Search and Discovery at the LHC
* Higgs boson properties
* Open questions

Peter Higgs

™
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Introduction

Standard Model particles,
interactions, and hard-core theory
to set the scene...
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Standard model interactions

The interaction of gauge bosons with fermions is (very) well
described by the Standard Model

STRONG EM WEAK CC ; WEAK NC
|
|
g 8s q L e Lt d EW u 'q 87 q
|
g \‘\{7 m : \\{Z{
|
Only quarks All charged All fermions : All fermions
Never changes fermions Always changes | Never changes
flavour Never changes flavour ! flavour
flavour
o ~ 1 o~1/137 Oty jz ~ 1/40
Gluons Photon W+, W- Z0
massless massless very massive very massive
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Standard Model Total Production Cross Section Measurements
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Lagrangians, symmetries and all that
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Reminder: Lagrangians in
classical mechanics

The equations of motion of a system are derived from a
scalar Lagrangian function of generalized coordinates
and velocities (time derivatives of the coordinates)

L(g,q) =T -V

and from the Euler-Lagrange equations:

oL d OL __ 0
Oq;  dt 9q;




Example

Particle in a conservative potential V. The Lagrangian
1 > 2 -2 02
L =sm(z® 4y~ +2%) — V(z,vy, 2)

has derivatives (e.g. for x)

oL __ oV 0L d (0L v
or = —ou or = M, g (57) = mi
and Euler-Lagrange’s equations
OL d OL __ 0
8q3' dt 8q3 o
finally give us Newton’s familiar 2"9 |aw!
OV OV _a_v o mi— F

mr = —5-,my = — ay,mz



Symmetries and conservation laws

Noether’s theorem:

1f a system has a continuous symmetry property, then there are-

corresponding quantities whosé values are conserved in time.
Simplest case: Coordinates not explicitly appearing in the Lagrangian

=> Lagrangian invariant over a continuous transformation of the
coordinates

Example: mass m orbiting in the field of a fixed mass M

L(T, ¢, 7;‘7 QS) =T —V = %mrQ %mr2¢2 G]\fm

Since the lagrangian doesn’t depend explicitly on ¢ (symmetry with
respect to rotations in space), the Euler-Lagrange equation gives

d (OL OL '

Where the angular momentum J is a constant of motion!
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Let’s go to quantum fields...
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Schrodinger
(1887 - 1961)
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Schrédinger’s cat (?-?)



Now in quantum field theory...

Imagine space as an infinite continuum of balls and springs,
where each ball is connected to its neighbours by elastic
bands. Particles are perturbations of this field

G,c’ E! c! E’ c:’ c!c
ePePe?e?e?eFt?
é?a?éffeéééfc =
(P(X,y) éfefeffeféééft =
| . éféféféf (= 2= 2al= al= =
é?&?efefez?efe = =
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Generalized coordinates are now fields (dislocation of each
spring)
¢ — ¢i(x")

In a relativistic theory we must treat space and time
coordinates on an equal footing, so the derivatives in the
classical equations are now

5 8 0
5V = 0= (571 35 ) By 53 )

In place of a Lagrangian we have a Lagrangian density (we
call it Lagrangian anyway, just to be confusing)

L(qu ddqtz) — £(¢278,u¢z) with: L = fﬁdS.’L‘

The new Euler-Lagrange equation now becomes

oL
Ou5.607) =0

EM)@



Gauge invariance

Take the Dirac Lagrangian for a spinor field Y representing a
spin-Y particle, for example an electron:

L = iyt — mapi)

It is invariant under a global U(1) phase transformation like:

Y(x) = Y’ (z) = e'PP(x)

Where ) is a constant

L= e "X X (jhpyH Dy — maprp) = L



Original sphere Global tfransformation

* *
------
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Local gauge invariance and interactions

If X =X (x) then we get extra terms in the Lagrangian: )
L = de " XyyH1e' X9, + iq(Dx) e X P — meT X e TXafn)
= L' — g (9ux)Y

But we can now make the Lagrangian invariant by adding an interaction
term with a new gauge field A, which transforms as:

AM%A;L:AM—(()MX
MEEY L= gy O — maptp — qihy A

A few things to note:

1. Gauge theories are renormalizable, i.e. calculable without infinities
popping up everywhere (Nobel prize of t'Hooft and Veltman)

2. The new gauge field A, is the photon in QED
3. The mass of the fermion is the coefficient of the term on Y

4. There is no termin A A* (the photon has zero mass) - this is the
beginning of the Higgs story...



Now for the problems...




1: Longitudinal gauge-boson
scattering

In the absence of the Higgs,
some processes have cross
sections that grow with the
centre of mass energy of the
collision... i.e. breaks unitarity!

The Higgs regulates the cross
section through negative
interference

w+ w+ Wt wt o Wt

o)
=
o

J.C.Romao [5]

W+ w+

Feynman diagrams contributing to longitudinal WW scattering



2: Mass of elementary particles and gauge bosons
Lorp = P(ivh0, — me) — epytp A, — 2F FPY + tmo A, AH

To keep the Lagrangian gauge invariant (against a U(1) local
phase transformation) the photon field transforms as:

]
Ay — Al = A, —
But the A* mass term breaks the invariance of the Lagrangian:

tmy A AP — 2mo (A, — 0,)(AF — OMx) # 2my A, AV

2

For the SU(2), gauge symmetry transformations of the weak
interaction the fermion mass term m_y also breaks invariance!

Bottom line: the SM (without the Higgs mechanism) results in
wrong calculations and breaks down for massive particles



The Higgs Mechanism

o W
c(1528 - 011

Ah

» Faois Englert
Peter Higgs (b. 1929) (b. 1932)




* |Introduce a SU(2) doublet of spin-0 complex fields
Qb_ (¢+> 1 (¢1 __i¢2
¢’ ) V2 \¢3+ it
 The Lagrangian is L= (a,u¢)T(au¢) o V(¢)
V(g) = 1?dTo 4+ AoT¢)?

N

Z

* With a potential

* For A>0, u’<0 the potential has a
minimum at the origin

* For A>0, u?<0 the potential has an
infinite number of minima at:

<>

2

v M i
|¢‘ vz V2 = 7 b
Pre

The choice of vacuum (lowest 2
energy state of the field) Qrﬁg@Jgspmgas{yemmetry of the Lagrangian
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Electroweak symmetry breaking

In the Standard Model with no Higgs
mechanism, interactions are symmetric
and particles do not have mass

Electroweak symmetry is broken:
— Photon does not have mass
— W, Z have a large mass

Higgs mechanism: mass of W and Z
results from the Higgs mechanism

Masses of fermions come from a
direct interaction with the Higgs field

02/04/18 R. Gongalo - Physics at the LHC , 25
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EWK Symmetry Breaking in Pictures

Q _,.‘
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* We have at this point a massive scalar field with vacuum
expectation value v and mass
mp = V2A\v

4 gauge fields: W), W), WB) and BY) which transform to give
the massive W*, W-and Z, and massless A (the photon)

mw = 3gwv
mz = 50V gy +9°

with g, g, the couplings of electromagnetic and weak forces

* Defining the Weinberg angle as g t
< — tanb
W W
we also get the relation between m
W o
the masses of W and Z mo COS 9W

 Fermions get their masses from interaction terms with the Higgs
field (Yukawa coupling)
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The Story So Far...
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What we think we know:
mp — \/ﬁ?}

Higgs mass (was) the only unknown
parameter

We can give mass to W* and Z while keeping
the photon massless

Relation between masses of W and Z

Higgs couples to W and Z with strengths
proportional to their masses

Higgs couples to all fermions with a strength
proportional to their mass

f W+
g
_____ Mt 5 He-----d& Myow

mw __
W = cos Oy

Z

gf =

2

my

v




ATLAS Preliminary 2011 + 2012 Data
—— Obs. \s=7TeV: |Ldt=4.6-4.8 fb"
---- Exp. \s=8TeV: |Ldt=5.859fb"

300 400 500 600
m, [GeV]
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A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON

John ELLIS, Mary K. GAILLARD * and D.V. NANOPOULOS **
CERN, Geneva

Received 7 November 1975

We should perhaps finish with an apology and a caution. We

apologize to experimentalists for having no idea what is the mass of the

5)54)

Higgs boson, unlike the case with charm and for not being sure of

its couplings to other particles, except that they are probably all very

small, For these reasons we do not want to encourage big experimental
searches for the Higgs boson, but we do feel that people performing expe-

riments vulnerable to the Higgs boson should know how it may turn up.
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Integrated Ium|n03|ty ~700 pb-!
Shutdown: September 2000
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Low-mass searches at LEP

The decay branching ratios depend only on m,;:

O my <2m,.:: H— yy + large lifetime; O my > 2m, up to 1000 GeV/c?:
Y
H . o li==
_______ W §
oh
Y E
G
Qm, <2m;: H — e‘e dominates; PRI
' m 3

Qm,<2m: H — uu dominates;

Qm,<3-46GeV: H— gg dominates;

(00000 g 10 42
H top 1On?, wtr, KK, ” |
nm, ... etc

"00000 g 10 3 eHll W

Qm, <2m,: H— tr and cc dominate; 10
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Higher-mass Higgs production at LEP

+ N WW-Fusion
e Z & e ﬁ ----------------- V
’ .
4 .
W
* o? .
L g Higes » H
Strahlung ."
oW
H o’
e e d ------------------ V
- 2 - -
Higgsstrahlung e WW-Fusion
>l :—
g — 189 GeV
L — 200 GeV
ol ~ %7
10 3 —— 208 GeV
— 189 GeV Sl
—— 200 GeV 10 k
— 208 GeV \
L L 10-3‘.“1““1““1““
90 100 110 120 80 %0 100 110 120
my, (GeV) m,, (GeV)
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Higgs decays: focus on 37 generation

:;;Z_E;?:I. ’ , ¢ )
H—bb } - Zw
.;::._-_:_-_.:".}..—" \ ]

-

H—b

b
Z \ W

b } Z-¢e'e
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4-jets

missing
energy

T-channel

T-channel

lepton
channel
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51%

15%

2.4%

5.1%

4.9%

WW » qqaq
ZZ » qqqq
QCD 4-jets

WW -» qqlv
ZZ » bbwv

WW » qqTtVv

ZZ » bbTT

ZZ > qqTT

QCD low mult. jets

ZZ » bbee
ZZ » bbup
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Summary of all Higgs
candidates found at LEP

Invariant mass of all candidates

In total |7 candidates selected

I5.8 background events expected

Expectation for mp=115 GeV

8.4 events

Corresponding excess was not observed

Final verdict from LEP

mup>114.4 GeV @ 95% CL

.\k
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Vs = 200-210 GeV
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LEP’s Final Legacy: the Blue Band Plot

July 2010 My = 158 GeV
6 . 1 K O
Decades of searches A %
. r had — o
In Many 5] i i —0.02758+0.00035 =
experiments... % i - 0.02749+0.00012 1°
4 - % % eee incl. low Q2 data —§
o
By July 2010: N 18
— LEP+Tevatron+SLD éf 3 - —
limits 1
— Higgs excluded o | _
m,<114.4 GeV at
95% CL . )
— Plus between 158
and 175 GeV 0 Excluded /" Preliminary
30 100 300



o

- Sea rclggls at the Tevatron.

Proton-dyti-proton collider at s'/2=1.96 TeV
First superegfiducting accelerator

Shutdown: 3 Séptember 20| |
Almost 10 fb! of data for analysis

»
- — —
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Higgs production at the Tevatron

Vector

q .
Wz i boson fusion
- HO
q - HO  §
Associated (fermion annihilation and
| production q vector boson scattering)
\\* — _-
. . .
SM Higgs production
- Only """" prrrrTT | | I |
Gluon fusion available at 103L TeVII -

hadron colliders o (]
g t t HO
9 t
t

HO

@
1

gg,qq — tth

TeVALHC Higgs working group
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Ll
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Most sensitive searches

Al
|
E]
T
_ \'%
l = .
'& |0 e .".-"‘ s o Y, W
\' 80 100 120 140 160 180 00
m. (Gev/c™)
At low mass use h—bb final states * At high mass use H=>WW final states
associated production withW or Z - benefit from high gluon-gluon cross section
challenging: b-tagging, jet resolution +  challenging: lepton acceptance, missing energy

backgrounds: top, W/Z+heavy flavour di-bosons - backgrounds: top, di-bosons

02/04/18 R. Gongalo - Physics at the LHC 44



The final stand of the Tevatron

combined CDF /DO thresholds

S
N

« By the end of its lifetime, the |30 o
Tevatron had very sophisticated
analyses of a huge number of

channels

2l

10 fbo™

Tevatron: 1
Max. expectation

12 fb™!
95% CL Imit
30 evidence

(@]
©
ey

* By that time the LHC was collecting .~ —— 50 discovery ]
data and analysing it very fast © 80 100 120 140 160 180 200
Higgs mass (GeV/c?)

integrated luminosity/expt. (fb™")
o)

—_
o

 The CDF and DO experiments

[ —Observed  Tevatron Run I, L, <10 fb”
obtained a significant excess of o ected e SMHiggs combination

around 3 standard deviations in the
mass range 115<M <140 GeV

" [1 Expected £ 2 s.d.
- +== Expected if m, =125 GeV/c?

95% C.L. Limit/SM

* Not enough to claim discovery, but
consistent with the LHC results

L | L L L 1 L 1 L | L L L 1 L L L | L L 1

100 120 140 160 180 200
m,, (GeV/c?)
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It takes time to get it right

1 Ilfllwlluglulgyi

v v 2 M : § 20

=== ATLAS p-value

. muux CMS p-value
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L] ATLAS excl.
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- I_L-rrri......:.
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_4 i
10110 120 130 140 150 160 170 180 190 200 210
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EPS-HEP 2011 conference [6]
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Discovery channels

Discovery was made in ATLAS and CMS with about 5 fb! of 7 TeV data and 20
fb! of 8 TeV data per experiment; several channels combined

h—~v:h—Z2Z2* > 40;h > WW* h = 17777 h — bb

This means about 400 000 Higgs bosons produced in about 8 000 000 000 000
000 (8x10*°) proton collisions

— Only about 4000 events with Higgs bosons contributed to the discovery

> L
LI L LA LI I N R N ®40_.D8182011+2012
%) - CMS Preliminary —¢— Data g = [ SM Higgs Boson l|_4|TLZlqz§ Al
O) [ (s=7TeV,L=5.11f"(CIC) ~— S+BFit ] 2 .k m,=124.3 GeV (fit TLL 2 :
- o L=51107(CIC) Bika Fit Component ] € 351 . \s=7TeV |Ldt=4.6f
05000 ys=8TeV, L =19.6 fb" (CIC) 9 ponent S "L []Background Z, 2Z B
: " ' ' [d=to . o “  \s=8TeV JLdt=20.71b
T [ Background Z+jets, ff
B -20 30 7 Syst.Unc.
25
20F14
C |
15
-
101 ]
5F | [
L L | 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 L ] 0 ll . I n 0 0 i
120 130 140 150 100 150 200 250
m,, (GeV) m, [GeV]
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Combining Higgs Channels

/Production
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The p, Discovery Plot

° po is the combined ATLAS Preliminlary | 2011 I+2012ID.'=1ta ]
babil h —— Obs. Vs=7TeV: |Ldt=4.6-4.8 b
probability that --- Exp. Vs=8TeV: |Ldt=5.859fb"

the background
fluctuates to look
like signal
 Translated into the
one-sided
Gaussian
probability

100 200 300 400 500 600
m, [GeV]

* This corresponds to a probability of 1 in 3.5 million that
this was a false positive from fluctuating backgrounds
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COMING UP NEKT:

What we have found out since
A (qwck) foretaste of the next few Iectures




Spin and Parity

* First concern after observation!

* Some observable quantities sensitive to J: for example
angle between leptons from W decay in H->WW

e PurelJ’=0,1% 1, and 2* excluded with 97.8, 99.97, 99.7,
and 99.9% Confidence Level (ATLAS arXiv 1307.1432; CMS

Phys. Rev. D 92, 012004)

250 -

- T T T ]
e - ATLAS H—vyy —— J°=0"Expected -
& £ - Vs=8TeV J-L dt=207fb"' ® JS=0"Data -
c 200 .
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Mass: around 125GeV

Used to be the only unknown nggS bOSOn IMNass

SM-Higgs parameter,
remember? ©

For a while, different 3 NP AL e ate
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value from ATLAS+CMS
has 0.2% precision!

m,, [GeV]

m,=125.09+0.21 (stat)+0.11 (syst) GeV
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Going beyond the standard model

But the Standard Model is not complete; there are still many unanswered
guestions.

Why do we observe matter and almost no antimatter if we believe there is
a symmetry between the two in the universe?

What is this "dark matter" that we can't see but has visible gravitational
effects in the cosmos?

Are quarks and leptons actually fundamental, or made up of even more
fundamental particles?

Why are there exactly three generations of quarks and leptons? What is the
explanation for the observed pattern for particle masses?

How does gravity fit into all of this?
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Many possible theories

There are a large number of models which predict new
physics at the TeV scale accessible at the LHC:

= Supersymmetry (SUSY)

= Extra dimensions

= Extended Higgs Sector e.g. in SUSY Models
= Grand Unified Theories (SU(5), O(10), ES, ...)
= |eptoquarks

= New Heavy Gauge Bosons

= Technicolour

= Compositeness

Any of this could still be found at the LHC and most have a
connection to the Higgs boson
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Pole top mass M, in GeV

] A b)it of fun...
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Higgs mass M, in GeV RG-Improved poten‘ual
What if..l

— At higher orders, Higgs potential doesn’t have to be stable
— Depending on m, and m,, second minimum can be lower than EW minimum =
tunneling between EW vacuum and true vacuum?!
“For a narrow band of values of the top quark and Higgs boson masses, the
Standard Model Higgs potential develops a shallow local minimum at energies
of about 10'® GeV, where primordial inflation could have started in a cold
metastable state”, I. Masina, arXiv:1403.5244 [astro-ph.CO]

— See also: V. Brachina, Moriond 2014 (Phys.Rev.Lett.111, 241801 (2013)), G. Degrassi
et al, arXiv:1205.6497v2; R.Contino, Workshop sulla fisica p-p a LHC, 2013
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Top mass M, in GeV

The universe seems to live

SM
near a critical condition Sroken EW/ l Unbroken EW
JHEP 1208 (2012) 098 M

Why?! 0 "
Explained by underlying theory?
Anthropic principle?
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Where we stand now?

* The Higgs may very well be a
window into the new physics
which we know must exist

 \We now have very precise m

results from the Higgs sector
* And no surprises (yet?)

_ |l WANT TO
* But the truth is out BELIEVE

there! Must keep
looking!




The End
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