The Top quark

Michele Gallinard

IP Liston

- Introduction
- Discovery of the Top quark
- Object reconstruction
- Decay and production
- Cross section measurements

Contents

- Introduction (discovery, object ID)
- Top pair production at the Tevatron
- Top pair production at LHC

will use c=1

today

- Properties: differential cross section
- Mass measurements
- Spin correlation, charge asymmetry
- Single top production
- Flavor Changing Neutral Currents (FCNC)
- Search for top partners and 4th generation quarks
- Search for ttbar resonances

Introduction

- Discovery
- introduction to the top quark

1974

With the discovery of the J/Ψ :

quarks

$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix}$$

leptons

$$\begin{pmatrix} v_e \\ e \end{pmatrix} \begin{pmatrix} v_\mu \\ \mu \end{pmatrix}$$

1975-1977

- Tau (τ) lepton in Mark I data $(v_{\tau}$ from the decay kinematics)
- Discovery of the Y at Fermilab

$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} b \end{pmatrix}$$

$$\begin{pmatrix} v_e \\ e \end{pmatrix} \begin{pmatrix} v_\mu \\ \mu \end{pmatrix} \begin{pmatrix} v_\tau \\ \tau \end{pmatrix}$$

- b: non SM? iso-singlet? SM iso-doublet?
- 1984: DESY measurement of e⁺e⁻→b̄b FB asymmetry: (22.5 ± 6.5)%
 cf. 25.2% SM iso-doublet, 0% iso-singlet
- If SM is correct there must be a iso-doublet partner, the top quark
- Mass? b/c/s 4.5/1.5/0.5: Mass=15 GeV?

The theory: Why?

- The SM is not a "renormalizable" gauge theory in the absence of the top quark
- Renormalizability is a crucial feature, enabling the SM to be theoretically consistent and be usable as a tool to compute the rate of subnuclear processes between quarks, leptons, and gauge bosons
- Diagrams containing so-called "triangle anomalies" $^{I_{3A}}$ (right), cancel their contributions, thus avoid breaking the renormalizability of the SM, only if the sum of electric charges of all fermions circulating in the triangular loop is zero: $\Sigma Q = -1 + 3 \times [2/3 + (-1/3)] = 0$

lepton electric charge quark (up/down) charge

Searches in e⁺e⁻ collisions

- PETRA could reach ~20 GeV (late '70s)
 - -Search for narrow resonance
 - Look for increase in R=(# of hadron events)/(# of μμ events)
 - Global event characteristics: look for spherical component
 - Negative results. Set limits: M_t>23 GeV
- TRISTAN (~30 GeV) built to study the top quark (early '80s)
 - Similar search technique:
 - $-M_t>30 \text{ GeV}$
- SLC/LEP
 - -Look for Z→tt̄
 - -M_t>45 GeV
- Reached kinematic limit for direct searches at e⁺e⁻ colliders

Indirect searches from e⁺e⁻ colliders

• In the SM, various EWK observables depend on the mass of the top quark

- Precision measurements of the EWK parameters, allow to measure virtual corrections with sufficient precision to put constraints on M_{top}
 - Prediction upper limit<200-220 GeV

Michele Gallinaro - "The top quark" - March 22, 2018

8

Early searches at hadron colliders

CERN SppS (√s=540 GeV) built to observe W,Z

- Access to much higher energies
- Large backgrounds, low event rates
- Difficult reconstruction: jets

1984: UA1

- W→tb→lvbb
- Isolated high-p_T lepton
- 2 or 3 hadronic jets
- Observe 5 events (e+ ≥2 jets), 4 events (μ+ ≥2 jets)
- Expected background: 0.2 events
 - Fake leptons dominate; bbar/ccbar negligible
- Result consistent with M_{top}=40±10 GeV
- Stop before claiming discovery...
 - ⇒W+jet background was underestimated

Michele Gallinaro - "The top quark" - March 22, 2018

Searches at hadron colliders

- 1988 UA1
- Larger data sample (x6, total of 600nb⁻¹)
- Improved understanding of the backgrounds
- Fake leptons, W+jets, DY, J/Ψ, bbar/ccbar

<u>channel</u>	<u>observed</u>	expected background
$\mu + \ge 2$ jets	10 events	11.5 ± 1.5 events
$e + \ge 1$ jets	26 events	$23.4 \pm 2.8 \text{ events}$
	$(+23 \text{ expected if } \mathbf{M}_{\text{top}} = 40 \text{ GeV})$	

⇒conclude M_{top}>44 GeV

Fermilab joins the hunt

- 1988-89: at CERN, UA2 remains after the upgrades
- √1.8 TeV@Fermilab vs. √0.63 TeV@CERN
- Much better reach for larger mass (only 75 GeV@UA2)
- At Tevatron, pair production dominates: tt→ Wb Wb

%	ev	μν	τν	qq^-
ev	1.2	2.5	2.5	14.8
μν		1.2	2.5	14.8
τν			1.2	14.8
$q\overline{q}$				44.4

Searches at CDF

ev+ ≥2 jets

- Dominant background: W+jets
- Discriminant: ev transverse mass
 - Background: W on-shell
 - Signal: W off-shell for M_{top} =40-80 GeV

$$\Rightarrow$$
M_{top}>77 GeV

UA2 uses similar technique: M_{top}>69 GeV

Searches at CDF (cont.)

eμ channel

- Event rate much lower: 2xBR(W→ev)
- Background very small (no W+jets, no Drell-Yan)
- Dominant background is Z→ττ→eμX (expect 1 event)
- Observe 1 event

 \Rightarrow M_{top}>72 GeV (expect 7 events for M_{top}=70 GeV)

Change of strategy: M_{top}>M_b+M_W

- Top quark decays to on-shell Ws: no $M_T(Iv)$ discriminant
- Main differences:
 - background: W+jets (largely quarks and gluons)
 - signal: W+jets (2 jets are b-jets)
- CDF publication on 88-89 data:
 - Dilepton: include ee, μμ, eμ (require missing ET, Z-veto)
 - Single lepton: require low p_T muon (semi-leptonic b-decays)

$$\Rightarrow$$
 M_{top}>91 GeV

19 countries 83 institutions, 664 physicists

D0 joins the hunt

DØ Detector

Searches at Tevatron: CDF and D0

1992-1995

- Tevatron with higher luminosity
- D0: excellent calorimetry, large solid angle and coverage
- CDF: precision vertex detector, good tracker, magnetic spectrometer

Run 1A:

D0: optimized search for M_{top}=100 GeV

```
-e\mu+\ge 1 jet+MET 1 evt (1.1 bkg)

-ee+\ge 1 jet+MET 1 (0.5)

-e+\ge 4 jets+MET 1 (2.7)

-\mu+\ge 4 jets+MET 0 (1.6)
```

 \rightarrow M_{top}>131 GeV@95%CL

Detecting the top quark at CDF

Strategy

- dilepton: +2 jets
- single lepton: b-tagging
 - 1) soft e/μ: semi-leptonic b-decay
 - 2) secondary vertex

New: CDF vertex detector (SVX) (40 μm impact parameter resolution) powerful discriminant against background

Tagging b-jets

- Top events contain B hadrons
- Only 1-2% of dominant W+jets background contains heavy flavor

55%

0.5%

1993

Coll. Meeting, Aug. 1993:

- Status report from each group (dilepton, single lepton)
- Small, not significant excess in all channels

Type	observed	background	
DIL	2 events	$0.56^{+0.25}_{-0.13}$	
SVX	6 tags	2.3 ± 0.3	3 events in
SLT	7 tags	3.1 ± 0.3	← common
total	12 events		

- In total, an excess of events
- Background fluctuation probability: 2.8σ
- Skepticism, additional studies, cross-checks
- Additional 8 months before making the results public

Final steps: CDF and D0

CDF: counting experiment yields 2.8o

- Few checks: no major discrepancy
- Other checks consistent with presence of signal
- Mass distribution looked good
- There were also other analyses at CDF
 - Difference of jet E_T spectra for signal and bkg
 - Separate two component for signal and bkg
 - CDF chose not to use those for first publication
- Use "counting" experiment

- Observed 7 events (expect 4-6 from bkg)
- No independent evidence

First evidence (1994)

VOLUME 73, NUMBER 2

PHYSICAL REVIEW LETTERS

11 JULY 1994

Evidence for Top Quark Production in $\bar{p}p$ Collisions at $\sqrt{s}=1.8~{\rm TeV}$

We summarize a search for the top quark with the Collider Detector at Fermilab (CDF) in a sample of $\bar{p}p$ collisions at $\sqrt{s} = 1.8$ TeV with an integrated luminosity of 19.3 pb⁻¹. We find 12 events consistent with either two W bosons, or a W boson and at least one b jet. The probability that the measured yield is consistent with the background is 0.26%. Though the statistics are too limited to establish firmly the existence of the top quark, a natural interpretation of the excess is that it is due to $t\bar{t}$ production. Under this assumption, constrained fits to individual events yield a top quark mass of $174 \pm 10 \frac{1}{12}$ GeV/ c^2 . The $t\bar{t}$ production cross section is measured to be $13.9 \pm \frac{6}{13}$ pb.

Michele Gallinaro - "The top quark" - March 22, 2018

First measurements

VOLUME 74, NUMBER 14

PHYSICAL REVIEW LETTERS

3 April 1995

Observation of Top Quark Production in $\overline{p}p$ Collisions with the Collider Detector at Fermilab

We establish the existence of the top quark using a 67 pb⁻¹ data sample of $\overline{p}p$ collisions at $\sqrt{s} = 1.8$ TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those we previously published, we observe a signal consistent with $t\bar{t}$ decay to $WWb\bar{b}$, but inconsistent with the background prediction by 4.8σ . Additional evidence for the top quark is provided by a peak in the reconstructed mass distribution. We measure the top quark mass to be $176 \pm 8(\text{stat}) \pm 10(\text{syst}) \text{ GeV}/c^2$, and the $t\bar{t}$ production cross section to be $6.8^{+3.6}_{-2.4}$ pb

Michele Gallinaro - "The top quark" - March 22, 2018

First measurements

VOLUME 74, NUMBER 14

PHYSICAL REVIEW LETTERS

3 April 1995

Observation of Top Quark Production in $\overline{p}p$ Collisions with the Collider Detector at Fermilab

We establish the existence of the top quark using a 67 pb⁻¹ data sample of $\overline{p}p$ collisions at $\sqrt{s} = 1.8$ TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those we previously published, we observe a signal consistent with $t\bar{t}$ decay to $WWb\bar{b}$, but inconsistent with the background prediction by 4.8σ . Additional evidence for the top quark is

Michele Gallinaro - "The top quark" - March 22, 2018

First measurements

VOLUME 74, NUMBER 14

PHYSICAL REVIEW LETTERS

3 April 1995

Observation of Top Quark Production in $\overline{p}p$ Collisions with the Collider Detector at Fermilab

We establish the existence of the top quark using a 67 pb⁻¹ data sample of $\overline{p}p$ collisions at $\sqrt{s} = 1.8$ TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those we previously published, we observe a signal consistent with $t\bar{t}$ decay to $WWb\bar{b}$, but inconsistent with the background prediction by 4.8σ . Additional evidence for the top quark is

Michele Gallinaro - "The top quark" - March 22, 2018

Top quark and its relevance

Three generations of matter (fermions) Ш Ш 1.27 GeV/c² 171.2 GeV/c2 2.4 MeV/c2 ? GeV/c2 mass chargespin-Higgs Basics photon charm top up nameboson How to detect the top quark 104 MeV/c² 4.8 MeV/c2 4.2 GeV/c2 Quarks Tevatron vs LHC gluon down strange bottom <0.17 MeV/c2 <15.5 MeV/c² 91.2 GeV/c2 <2.2 eV/c2 electron muon Z boson neutrino neutrino neutrino Sauge bosons 1.777 GeV/c2 105.7 MeV/c² 80.4 GeV/c2 0.511 MeV/c² eptons electron W boson muon tau

The Large Hadron Collider

- Built to explore new energy frontiers
 - First colliding beams in 2009
 - started with "low" luminosity in 2010
 - -~5 fb⁻¹@7TeV delivered in 2011
 - -~20 fb⁻¹@8TeV in 2012
 - -~2 fb⁻¹@13TeV in 2015
 - -~84fb⁻¹@13 TeV in 2016/2017
- re-establish SM measurements
- access to new physics processes

⇒ Top quarks give access to SM and BSM (?)

Tevatron vs LHC

Energy: 1.96 TeV

Int. Luminosity: 12 fb⁻¹

Age: ~25 years

Events/exp (1 fb⁻¹)

400 ee eμ, μμ

3.5k lepton + jets

Energy: 7/8/(13) TeV

Int. Luminosity: 6/23/(96) fb⁻¹

Age: ~9 years

Events/exp (1 fb⁻¹)

40k ee eμ, μμ

350k lepton + jets

What is the Top quark?

Quarks:
$$\begin{pmatrix} u \\ d \end{pmatrix}$$
 $\begin{pmatrix} c \\ s \end{pmatrix}$ $\begin{pmatrix} t \\ b \end{pmatrix}$
Leptons: $\begin{pmatrix} \nu_e \\ e \end{pmatrix}$ $\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}$ $\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}$

- It is the heaviest fundamental particle
 - $-M_{top} = 174.3 \pm 0.6 \text{ GeV}$ (arXiv:1407.2682)
- Weak isospin partner of the b-quark
- Completes the SM of quarks and leptons

How is the top quark produced?

Predicted cross sections:

Collider	$\sigma_{ m tot}$ [pb]	scales [pb]	PDF [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8%)
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	+6.2(2.5%) -6.4(2.6%)
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	+16.2(1.7%) -17.8(1.9%)

	LHC	Tevatron
gg	~85%	~10%
qq	~15%	~90%

Czakon et al. PRL 110, 252004 (2013)

How does a top quark decay?

- almost always t→Wb (i.e. V_{tb}~1)
- lifetime is short, and it decays before hadronizing
- the W is real:
 - can decay W→I_V (I=e,μ,τ), BR~1/9 per lepton
 - can decay W→qq, BR~2/3

Top quark decays

Top quarks (mostly) produced in pairs

- Dilepton (ee, μμ, eμ):
 - BR~5%, 2 leptons+2 b-jets+2 neutring
- Lepton (e or μ) + jets
 - BR~30%, one lepton+4jets (2 from b)neutrino
- All hadronic
 - BR~44%, 6 jets (2 from b), no neutrino

b-jets always present b-jet reconstruction plays important role

Prompt tracks

Displaced tracks

Interesting physics with Top quark

PRODUCTION

Cross section
Resonances X→tt
Fourth generation t'
Spin-correlations
New physics (SUSY)
Flavour physics (FCNC)

...

PROPERTIES

Mass
Kinematics
Charge
Lifetime and width
W helicity
Spin

<u>DECAY</u>

Branching ratios
Charged Higgs (non-SM)
Anomalous couplings
Rare decays
CKM matrix elements
Calibration sample @LHC

...

Particle identification

Object identification and reconstruction

Selection of top quark events

- Trigger:
 - single or double (isolated) lepton
- Leptons:
 - $-e/\mu$, p_T>20/30 GeV, $|\eta|$ <2.5
 - Identification/reconstruction
 - Tracker/calorimeter isolation

- Jets:
 - at least 2 jets, $p_T>30$ GeV, $|\eta|<2.5$
 - anti-kT algorithm, with cone 0.4-0.5
 - b-tagging is optional
- Missing transverse energy:
 - Typically require 30-40 GeV

Particle Flow event reconstruction

- Particle Flow (PF) combines information from all subdetectors to reconstruct particles produced in the collision
 - charged hadrons, neutral hadrons, photons, muons, electrons
 - use complementary info. from separate detectors to improve performance
 - tracks to improve calorimeter measurements
- From list of particles, can construct higher-level objects
 - Jets, b-jets, taus, isolated leptons and photons, MET, etc.

Challenge: Pile-up

 $Z \rightarrow \mu \mu$ Expected MET = 0

10 in-time + 10 out – of – time pileup

Jet reconstruction

- A "jet" is a cluster of energy deposited in a "small" η-φ region of the detector
 - It is not a unique object, it is defined by the jet algorithm (different choices yield different jets)
- The jet algorithm uses detector reconstructed objects (clusters, tracks, combined objects)
- It is "safe" to higher order effects when it does not change jet quantities
- Efficient and pure: jets correspond to partons

Missing transverse momentum

- Neutrinos (and "dark matter") escape the detector without detection
 - Also longitudinal momentum and energy of other final state particles escape undetected (along the beam-pipe)
 - Momentum is not measured along the z-direction
 - Missing momentum along z is unknown
- The momentum of the neutrinos can be reconstructed in the transverse plane
- Momentum which is missing to balance the total momentum to zero

transverse energy vector

$$extbf{\emph{E}}_{T}^{ ext{miss}} = -\sum_{i} extbf{\emph{p}}_{T}(i)$$

where the sum runs over the transverse momenta of all visible final state particles.

Challenge: MET

- Performance of the MET measurement depends on the measurement of ALL particles in the event
- Measurement is affected by:
 - Noise, mis-calibration, various calorimeter problems (dead channels, etc)
 - Modeling of QCD background events, pile-up, multiple interactions, ...
 - Muon momentum measurement (muons inside jets)
 - Cosmic background events
 - Beam halo (i.e. collisions upstream of detector, parallel to beam)
- MET significance

Challenge: b-tagging

- •Lifetime: τ_b~1-2 psec
- Reduction of background obtained by identifying jets from b-quarks
- Two methods:
 - Secondary vertex tagging
 - Semileptonic decays of b-hadrons in jets ($b \rightarrow \ell \nu_{\ell} X$)

b-tag: fake rates and efficiencies

CMS-BTV-16-001

- b-tag optimization: trade-off between fake rate and efficiency
- studied the performance of different tagging working points
- Uncertainty on data/MC scale factor, depending on algorithms

Top quark decays

Top quarks (mostly) produced in pairs

Secondary vertex

- Dilepton (ee, μμ, eμ):
 - BR~5%, 2 leptons+2 b-jets+2 neutring
- Lepton (e or μ) + jets
 - BR~30%, one lepton+4jets (2 from b)neutrino
- All hadronic
 - BR~44%, 6 jets (2 from b), no neutrino

b-jets always present b-jet reconstruction plays important role

Prompt tracks

Displaced tracks

Measurements

Measurement of the cross section

Top quark events

- LHC@13TeV cross section ~100 times larger than Tevatron
- select ttbar events at LHC:
 - understand/calibrate detector
 - -measure properties
- event selection includes SM control events
- ttbar final state is complex (ie not mass peak)
- Top quarks and new physics:
 - ttbar sample may contain new physics
 - look at jet multiplicity bins (since ttbar is background e.g. for SUSY), or other variables

Theory cross sections: TeV vs LHC

Collider	$\sigma_{ m tot}$ [pb]	scales [pb]	PDF [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8%)
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	+6.2(2.5%) -6.4(2.6%)
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	+16.2(1.7%) -17.8(1.9%)

Including NNLO+NNLL approximations PRL 110, 252004 (2013) (M. Czakon et al.)

Top cross section at 7/8 vs 13 TeV

- LHC collisions started at 7/8 TeV
- LHC design is at 14 TeV
- Top cross section drops faster than background processes at lower sqrt{s}
 - $top \sigma(7TeV) = 172 pb$
 - $\text{top } \sigma(8\text{TeV}) = 246 \text{ pb}$
 - $top \sigma(13TeV) = 832 pb$
- Background is more "flat"

Cross section measurement

Dilepton channel

- Branching ratio (BR) ~5%
- Background: small
- Clean final state
 - two leptons + ≥2 jets + MET
 - kinematic variables
- Signal visible w/without b-tagging
- Main systematics: JES, lepton ID, (pileup, b-tag, signal modeling)

Lepton + jets

- BR ~30%
- Background: moderate
- Selection:
 - one lepton + ≥3 jets + MET
 - may require b-tag

- Main backgrounds:
 - hadronic multi-jet, W+jets

Lepton + jets channel (cont.)

Use kinematics to select ttbar

- mass of sec. vertex
- -topology, etc.

Categorize events and extract σ_{tt} from fit

All hadronic

- BR ~46%
- Background: large
- Selection:
 - ≥6 jets + kinematical selection
 - require b-tag
- Main backgrounds:
 - hadronic multi-jet

All hadronic

- BR ~46%
- Background: large
- Selection:
 - ≥6 jets + kinematical selection
 - require b-tag
- Main backgrounds:
 - hadronic multi-jet
 - same selection without b-tag

LHC cross section measurements

13 TeV

Cross sections

- Cross section measurements provide test of pQCD predictions
- Standard "candle": ttbar is a dominant background for NP searches
- Comparison in different channels may provide constraints on BSM

Cross sections (cont.)

CMS-TOP-14-016

⇒meas. challenging the theory

Collider	$\sigma_{ m tot} \; [m pb]$	scales [pb]	pdf [pb]	
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)	_4
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8%)	-
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	+6.2(2.5%) -6.4(2.6%)	
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	+16.2(1.7%) -17.8(1.9%)	

Differential cross section

- Measure differential cross section
 - Test perturbative QCD
 - Test BSM scenarios (Z' decays, etc) with narrow resonance

- $\frac{1}{\sigma_{t\bar{t}}} \frac{d\sigma_{t\bar{t}}}{dX}$
- Cross sections measured as a function of p_T , η , invariant mass of the final state leptons, top quarks, and the ttbar system
- Good agreement found in dilepton and lepton+jet channels

end

- Introduction on top quark
- Basic concepts on production and decays
- Cross section measurements and relevance to BSM searches

Next lecture: ``Top quark properties and beyond"

Interesting physics with top quarks

- Cross section
- Mass
- Kinematical properties
 - Is there a X→ttbar?
 - W polarization
 - Spin correlations
- Rare decays
- Single top
- Top quark is unusually heavy: maybe is it different?

Role of top quark physics

- Top quark physics after the Higgs discovery
 - Special role in EWSB mechanism?
 - Does it play a role in non-SM physics?
 - Are the couplings affected?
 - Main background for many NP searches
- Monitoring of production mechanism
- Interpretation of m_{top}: top, W,
 Higgs masses
- Are properties consistent with our understanding of EWSB?
- Is there any sign of NP in top production/decay?

About the top quark

- The heaviest known elementary particle
- Large mass, coupling to the Higgs ~1
 ⇒no hadronization
- Several open questions
 - Is top mass generated by the Higgs mechanism?
 - Special role in EWSB mechanism?
 - Does it play a role in non-SM physics?
 - Are the couplings affected?
- Main background for many New Physics searches
- Top quark measurements may provide insight into physics beyond SM

Collider energies for top searches

A summary of colliders in search for the top quark

Year	Collider	Particles	References	Limit on m_t
1979-84	Petra (Desy)	e^+e^-	[45]-[58]	$> 23.3 \text{ GeV/c}^2$
1987-90	TRISTAN (KEK)	e^+e^-	[59]-[63]	$> 30.2 \text{GeV/c}^2$
1989-90	SLC (SLAC), LEP (CERN)	e^+e^-	[64]-[67]	$> 45.8 \text{GeV/c}^2$
1984	SppS (Cern)	$p\bar{p}$	[70]	$> 45.0 \text{ GeV/c}^2$
1990	SppS (Cern)	$p\widetilde{p}$	[71, 72]	$> 69 \text{ GeV/c}^2$
1991	TEVATRON (FNAL)	$par{p}$	[73]-[75]	> 77 GeV/c ²
1992	TEVATRON (FNAL)	$par{p}$	[76, 77]	$> 91 \text{ GeV/c}^2$
1994	TEVATRON (FNAL)	$p\tilde{p}$	[79, 80]	> 131 GeV/c ²
1995	TEVATRON (FNAL)	$p\bar{p}$	[37]	$= 174 \pm 10^{+13}_{-12} \text{ GeV/c}^2$
	And the second of the second o	10-7E/11/	[38]	$=199^{+19}_{-21}\pm 22~\mathrm{GeV/c^2}$

Dilepton channel

- Branching ratio (BR) ~5%
- Background: small
- Clean final state
 - two leptons + ≥2 jets + MET
 - kinematic variables
- Signal visible w/without b-tagging
- Measure cross section:
 - ee, μμ, eμ final states
 - btag (CSV): eff 85%, misID 10%
 - Cut and count
- Main systematics: JES, lepton ID, (pileup, b-tag, signal modeling)

$$\sigma_{
m tar{t}} = 239 \pm 2 \, ({
m stat.}) \pm 11 \, ({
m syst.}) \pm 6 \, ({
m lum.}) \, {
m pb} \quad \pm 5\%$$

Tau_h+lepton final state

PLB 739(2014)23

- one isolated lepton (e/ μ)
- at least two jets (one b-tagged)
- OS tau (hadronic decay),
- MET

Determine τ fakes from data

- Expected to be dominated by quark/gluon jets
- Estimate from multi-jet/W+jets: use data

dominant syst.: τ fakes, b-tag

Good agreement between measurement and predictions

$$\sigma_{t\dot{t}}(e\tau_h) = 255 \pm 4 \, (stat) \pm 24 \, (syst) \pm 7 \, (lumi) \, pb;$$

$$\sigma_{t\dot{t}}(\mu\tau_h) = 258 \pm 4 \, (stat) \pm 24 \, (syst) \pm 7 \, (lumi) \, pb.$$

±10%

Single lepton channel

- Include both muon and electron channels (untagged)
- Use kinematical differences between ttbar and W+jets

 $\sigma_{t\bar{t}} = 179.0 \pm 3.9 \text{ (stat)} \pm 9.0 \text{ (syst)} \pm 6.6 \text{ (lumi) pb}$

Differential cross sections

CMS-TOP-12-041, arXiv:1404.3171

- Measurements performed in fiducial volume to minimize model dependency
- Improve ttbar modeling and reduce uncertainties
- Sensitive to BSM effects
- Correct for detector effects ("unfolding" to particle level) and acceptances
- $\frac{1}{\sigma_{t\bar{t}}} \frac{d\sigma_{t\bar{t}}}{dX}$
- Good agreement in dilepton and lepton+jet channels, at different energies
- Large uncertainties at high jet multiplicities dominated by JES and MC modeling

Michele Gallinaro - "The top quark" - March 22, 2018

Differential cross section

CMS-TOP-12-028

- Measure differential cross section
 - Test perturbative QCD
 - Test BSM scenarios (Z' decays, etc) with narrow resonance
- Reconstruct event kinematic properties

- $\frac{1}{\sigma_{t\bar{t}}} \frac{d\sigma_{t\bar{t}}}{dX}$
- Cross sections measured as a function of p_T , η , invariant mass of the final state leptons, the top quarks, and the ttbar system
- Good agreement found in dilepton and lepton+jet channels

NNLO approx better describes data

Michele Gallinaro - "The top quark" - March 22, 2018

Differential cross section

CMS-TOP-12-028

- Measure differential cross section
 - Test perturbative QCD
 - Test BSM scenarios (Z' decays, etc) with narrow resonance
- Reconstruct event kinematic properties

- $\frac{1}{\sigma_{t\bar{t}}} \frac{d\sigma_{t\bar{t}}}{dX}$
- Cross sections measured as a function of p_T , η , invariant mass of the final state leptons, the top quarks, and the ttbar system
- Good agreement found in dilepton and lepton+jet channels
 - NNLO approx better describes data
 CMS Preliminary, 12.2 fb¹ at √s = 8 TeV

Michele Gallinaro - "The top quark" - March 22, 2018

All-hadronic: cross section

JHEP 05(2013)065. EPJC 74(2014)2758

- Fully hadronic final state (BR~46%)
- Six jets and no leptons in the final state
- Reconstruct ttbar system and fit with least χ^2 method
 - reconstruct both W bosons
 - m_{top1}=m_{top2} are free parameters
 - b-jets are taken as b-quark candidates
 - take permutation with smallest χ^2
- Multijet QCD is main background (from data)
 - Use same selection without b-tag reg.
 - Re-weigh mass spectrum from anti-tagged sample
- Templates are inputs for likelihood fit for cross section measurement
 - Signal and background templates
 - Signal fraction is a free parameter

$$\sigma_{
m tar t} = 139 \pm 10 \, ({
m stat.}) \pm 26 \, ({
m syst.}) \pm 3 \, ({
m lum.}) \, {
m pb}$$

Dominant syst.: JES, b-tag

Jet energy correction from Top

- Use semi-leptonic events
 -1 isol μ (p_T>30 GeV)+≥4 jets (40 GeV)
- Estimate jet energy corrections by applying event-by-event kinematical fit to W and Top masses
- Likelihood is used to assign jets
- Kinematical fit returns $P(\chi^2)$
- Find best JES by minimizing χ^2

Measuring the top mass

Challenging:

> Lepton+jets

- undetected neutrino
 - P_x and P_v from E_T conservation
 - 2 solutions for P_z from M_W=M_{Iv}
- leading 4-jet combinatorics
 - 12 possible jet-parton assignments
 - 6 with 1 b-tag
 - 2 with 2 b-tags
- ISR + FSR

➤ Dileptons

- (less statistics)
- two undetected neutrinos
- less combinatorics: 2 jets

LO final state:

experiment sees:

