

P. Ferreira da Silva (CERN) Course on Physics at the LHC LIP, 15th March 2018

Calorimetry for pedestrians

Recall: we measure what collapses in the detector

Purpose of a calorimeter

- Primarily they measure the total energy of a particle, but they are versatile
 - can measure position, angle and timing
 - infer energy of neutrinos after energy balance

General properties

- length of showers induced in calorimeters increase logarithmically with E
- energy resolution improves with E
- fast signals, easy to reconstruct (unlike tracking) \Rightarrow trigger

• Almost impossible to do high energy physics without calorimeters

A very brief historical overview

- Nuclear Physics in the 50's usage of semi-conductor devices improving the energy measurement of radiation energy
- Cosmic Rays (1958) the first sampling calorimeter
- Particle Physics: adoption of electromagnetic and some times hadronic calorimeters as crucial components in experiments
 - Uranium/compensation (1975) uniformize response to e/γ and hadrons to improve resolution
 - 4π calorimeters
 - High precision calorimetry with crystals, liquid Argon, scintillating fibers
- Particle flow calorimeters for HL-LHC, CLIC/ILC (weighing more on reconstruction than hardware...)

ATLAS calorimetry system

CMS calorimetry system

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO₄ crystals

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels PRESHOWER Silicon strips ~16m² ~137,000 channels

FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels

7

Calorimetry in LHCb

Plastic+metal sandwiches

Calorimetry in ALICE

Electromagnetic calorimeters

• e/γ loose energy interacting with nuclei and atomic electrons

- e.m. showers will evolve very similarly independently on how they start
 - subsequent e or γ will branch according to these interactions

Processes initiated by electrons

0.56cm for Lead

Processes initiated by photons

Electromagnetic showers

- High energy e/γ will start a cascade of pair production and bremmstrahlung
 - multiplicative regime until secondaries start falling below Ec

e- in bubble chamber (70% Ne: 30% H₂) under 3T field

Electromagnetic showers

- High energy e/γ will start a cascade of pair production and bremmstrahlung
 - multiplicative regime until secondaries start falling below E_c

showers from two different energy photons in bubble chamber

A toy model for electromagnetic showers

- Start with a pair conversion followed by radiation,... $E \rightarrow E/2 \rightarrow E/4 \rightarrow ...$
- Scaling properties $N(x)=2^{x/X_0}$ $E(x)=E_0/2^{x/X_0}$
- Splitting energy reaches E_C limit, shower starts to be absorbed

$$x_{max} = X_0 \ln_2 \frac{E}{E_c} \qquad \qquad N_{max} = \frac{E}{E_c}$$

not so far from reality

Detailed simulation of an electromagnetic shower

16

Spread in the transverse plane

- Particles disperse with respect to initial axis
 - decay openings
 - multiple scattering of charged particles
 - γ in the region of minimal absorption travelling longer

• Define the Moliere radius as

lateral size containing 90% of the shower energy

$$R_M = \frac{21 \text{ MeV}}{E_c} X_0 \propto \frac{A}{Z}$$

Electromagnetic energy resolutions

Some challenges in maintaining energy resolution

- Intercalibration between cells needs to attain 1% level or better
 - use $\eta/\pi^0 \rightarrow \gamma\gamma$, Z \rightarrow ee and ϕ symmetry in minimum bias
- Track radiation damage / recovery of the crystals with a laser
 - inject light into crystals and normalize to PN diodes

A comparison of different e.m. calorimeters

Technology (Experiment)	Depth	Energy resolution	Date	
NaI(Tl) (Crystal Ball)	$20X_0$	$2.7\%/{ m E}^{1/4}$	1983	
$Bi_4Ge_3O_{12}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E}\oplus 0.7\%$	1993	
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E}\oplus 0.45\%$	1996	
CsI(Tl) (BaBar)	16–18X ₀	$2.3\%/E^{1/4}\oplus 1.4\%$	1999	
CsI(Tl) (BELLE)	$16X_{0}$	1.7% for $E_{\gamma} > 3.5~{ m GeV}$	1998	
PbWO ₄ (PWO) (CMS)	$25X_0$	$3\%/\sqrt{E}\oplus 0.5\%\oplus 0.2/E$	1997	
Lead glass (OPAL)	$20.5X_0$	$5\%/\sqrt{E}$	1990	
Liquid Kr (NA48)	$27X_0$	$3.2\%/\sqrt{E} \oplus \ 0.42\% \oplus 0.09/E$	1998	
Scintillator/depleted U (ZEUS)	20-30X ₀	$18\%/\sqrt{E}$	1988	
Scintillator/Pb (CDF)	$18X_0$	$13.5\%/\sqrt{E}$	1988	
Scintillator fiber/Pb spaghetti (KLOE)	$15X_0$	$5.7\%/\sqrt{E}\oplus 0.6\%$	1995	
Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E}\oplus 0.5\%\oplus 0.1/E$	1988	
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993	
Liquid Ar/Pb (H1)	20-30X ₀	$12\%/\sqrt{E}\oplus1\%$	1998	
Liquid Ar/depl. U (DØ)	$20.5X_0$	$16\%/\sqrt{E}\oplus 0.3\%\oplus 0.3/E$	1993	
Liquid Ar/Pb accordion (ATLAS)	$25X_{0}$	$10\%/\sqrt{E}\oplus 0.4\%\oplus 0.3/E$	1996	

Hadronic showers

What is an hadronic shower?

Particle spectra in a proton shower

2 106 oi+/n e+/-2 ohoton 10⁵ strange proton p∕n 104 $E \times \Phi(E) [cm]$ 2 10³ <u>p/n</u> 2 $\pi^{+/-}$ 10² 2 10¹ 2 10⁰ 10-2 10⁻³ 10-4 10⁻¹ 10⁰ 10^{2} 10¹ E_{k lab} (GeV)

Showers depend heavily on the incident particle...

Based on simulation. The integral of each curve gives the relative fluence of each particle.

Particle spectra in a proton shower

24

Based on simulation.

Particle spectra in a proton shower

Electromagnetic fraction, fem

25

Hadronic showers are unique

- There are never two alike and need to be analyzed case-by-case
 - hardware compensation: enhance the nuclear energy through materials
 - high granularity calorimeter: enable feature extraction and cluster-by-cluster calibration
 - dual-readout: measure the e.m. energy fraction

٠

• particle flow: calorimeter identifies particle type, energy used only if no track

e.m. (hadronic) component is shown in red (blue)

Containment of an hadronic shower

- The interaction length quantifies the mean distance before undergoing a nuclear interaction
- Interaction length (λ) is significantly larger than the radiation length (X₀)

$$\lambda = 35 \ A^{1/3} \mathrm{g/cm^2}$$

e.m. shower

27

π*

Characteristics of different materials

Energy reconstruction I

- Need to gather energy spread in time: integrate pulse shape by weighting / fitting
 - calorimeters often need more time to integrate signals with respect to tracking devices
 - hadron showers: slow neutron component can appear significantly delayed in time (>100ns)

Energy reconstruction II

- Need to gather energy spread in space : clustering algorithms are needed
 - algorithm needs to be adapted to the particle type, segmentation, material upfront, shower components
 - often several iterations needed, depending on how busy an event is

typical PF algorithms (implemented in Pandora)

Resolutions and response - ATLAS TileCal

Typically hadronic calorimeters exhibit

- **non-linearity**, different response to e/γ and hadrons (compensation)
- significantly poorer resolutions compared to e.m. calorimeters

Resolutions and response - CMS HCAL

- Performance is mainly driven by materials used, segmentation, depth
 - but also material upfront and readout

Eur. Phys. J. C (2009) 60: 359-373

partially compensated by reconstruction (next slide)

Particle flow algorithm is a reconstruction paradigm

33

Compensating resolution performance with particle flow

- Particle flow optimizes the usage of the detector
 - most energy energy ends-up being estimated by tracks and the electromagnetic calorimeter
 - recover linearity and significantly improve in energy resolution

Possible directions in calorimetry: high granularity

- 52 Si sensor layers interleaved with Pb, Cu, stainless steel
 - small cell sizes (~0.5cm²) to cope with 200 pileup events and allow feature extraction
 - timing capabilities (~30-50ps) per cell to allow association to primary vertex
- Sampling limits resolution...

Possible directions in calorimetry: high granularity

- 52 Si sensor layers interleaved with Pb, Cu, stainless steel
 - small cell sizes (~0.5cm²) to cope with 200 pileup events and allow feature extraction
 - timing capabilities (~30-50ps) per cell to allow association to primary vertex
- Sampling limits resolution...
 - ... but can we see deposits in layers as images \Rightarrow machine learned PFlow?

from TensorFlow's image recognition API

Getting data on tape: trigger systems

Recall: the proton-proton cross section

38

Why do we trigger?

• Data rates at hadron colliders are too high

- most events are expected not to be interesting anyway
- save to tape only relevant physics
- need a trigger = online selection system which reduces rates by a factor of $\sim 10^5$

Collider	Crossing rate (kHz)	Event size (MB)	Trigger rate	Raw data rate (PB/year)	Data rate after trigger (PB/year)
LEP	45	0.1	5 Hz	10 ²	~0.01
Tevatron	2.5	0.25	50-100 Hz	10 ⁴	0.1
HERA	10	0.1	5 Hz	10 ⁴	0.01
LHC	40		100-200 Hz	10 ⁵	I

How do we trigger?

Α

DAQ Data acquisition system

Mass storage

Performs real-time selection based on a subset of the data to record

Trigger system

Collects the data from all the sub-detectors and trigger systems and sends them to mass storage for offline analysis

Readout+decisions=dead-time

- Signals are random but incoming at an approximate fixed rate
- Need a busy logic
 - Active while trigger decides whether the event should be kept or not
 - Induces a deadtime in the system
 - System will only accept a fraction of the triggers

$$\nu = f(1 - \nu\tau) \Rightarrow \nu = \frac{f}{1 + f\tau} < f$$

System tends to be inefficient for long readout times

Solution: de-randomize with a buffer

• A fast, intermediate buffer can be introduced

Works as a FIFO queue

(First In First Out)

2→8553110→
28553110→

- Smooths fluctuations = derandomizes
- Decouples the slow readout from the fast front-end

A moderate size buffer is able to retain good efficiency

Trigger system architecture for bunched collisions

- The ADC are synchronous with beam crossings
- Trigger output is stochastic
 - FIFO is needed to derandomize

ATLAS LHC Run I architecture

- May need to accommodate several levels with increased complexity
- If first layer latency is smaller than bunch crossing than the combined latency is v_{L1} x t_{L2}

Trigger system architecture for bunched collisions

- The ADC are synchronous with beam crossings
- Trigger output is stochastic
 - FIFO is needed to derandomize

ATLAS LHC Run I architecture

- May need to accommodate several levels with increased complexity
- If first layer latency is smaller than bunch crossing than the combined latency is v_{L1} x t_{L2}

• CMS architecture

- Add trigger level between readout and storage
- CPU Farm used for high level trigger
- Can access some/all processed data
- Perform partial/full reconstruction

44

Be fast = keep it to the point, details come later

Can only use a sub-set of information

- Typically energy sums, threshold flags, coarser detector, tracklets
- Resolutions (energy and position) are coarser by definition

Tracking at LI (muon case)

Reconstruct segments in each muon chamber Combine segments to form track and measure p_T (rough)

Combining information from different sub-detectors

- Accommodate several sources
 - Busy logic needs to be included
 - Can perform a global OR
 - Or combine certain trigger objects and apply simple topological cuts
 - High level quantities (masses, square roots are expensive! Avoid if possible

Overall L1 trigger latency

Event building

- Parallelize the sum of the parts of the event to build = slicing
- At CMS 8 independent "slices" are used in order to achieve a 100 kHz rate

High level trigger

- After event is built can be shipped to a farm for processing before storage
- Events are independent : easy to parallelize
- Keep out rate at ~300Hz / latency at ~40-50 ms, can afford to use
 - high granularity of the detectors
 - offline reconstruction-like algorithms

ATLAS HLT farm:

LHCb readout switch:

Trigger/DAQ performance in LHC experiments

- Typical values for LHC run I
 - May depend on luminosity
- Notice that the final bandwidth has to be kept
 - total trigger rate must not exceed allocated bandwidth
 - prescale triggers if needed

Collider	ATLAS	CMS	LHCb	ALICE
LI latency [µs]	2.5	3.2	4	1.2/6/88
LI output rate [kHz]	75	100	1000	2
FE readout bandwidth [GB/s]	120	100	40	25
Max. average latency at HLT [ms]	40 (EF 1000)	50	20	
Event building bandwidth [ms]	4	100	40	25
Trigger output rate [Hz]	200	300	2000	50
Output bandwidth [MB/s]	300	300	100	1200
Event size [MB]	1.5	I	0.035	Up to 20

Wrap-up

Summary

- Calorimeters make the particles collapse to measure its energy, direction time
 - electromagnetic interactions have scaling properties, easy to reconstruct
 - hadronic interactions depend on energy, incoming particle, have distinct properties
 - best performance conjugates careful/clever detector design and reconstruction
 - calorimeters provide most input to the trigger: coarse, fast information

- Trigger systems take decisions based on a preview of (parts of) the event
 - layered structure to allow to store ~I-I.5MB events at a rate of 300-200 Hz
 - first layers usually implemented in hardware, last layer in CPU farms

References

- W. R. Leo, "<u>Techniques for Nuclear and Particle Physics Experiments</u>", Springer
- H. Spieler, "<u>Semiconductor Detector Systems</u>", Oxford Science Publications
- R.Wigmans, "<u>Calorimetry</u>", Oxford University Press
- Fabjan and Gianotti, "Calorimetry for particle physics", Rev. Mod. Phys. 75, 1243
- Particle Data Group, "Experimental Methods and Colliders", Chin. Phys. C, 40, 100001 (2016)