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Calorimetry for pedestrians



Recall: we measure what collapses in the detector

* Particles need to interact in matter = destructive interaction

*dE/dx is converted in a signal

«  collect: charge, light, heat
&l hadron

ionization el U0 ol

Ionization excitation of base plastic

base plastic ' A
v>e 108m u Forster energy transfer :

Cerenkov radiation primary fluor
~1%
emit UV, ~340 nm 10 W/WE)

104m Y

absorb UV photon secondary fluor
(~0.05% wt/wt )

emit blue, ~400 nm
1m Y

scintillation absorb blue photon photodetector




Purpose of a calorimeter

* Primarily they measure the total energy of a particle, but they are versatile
can measure position, angle and timing

infer energy of neutrinos after energy balance

- General properties
length of showers induced in calorimeters increase logarithmically with E
energy resolution improves with E

fast signals, easy to reconstruct (unlike tracking) = trigger

* Almost impossible to do high energy physics without calorimeters



A very brief historical overview

Nuclear Physics in the 50’s usage of semi-conductor
devices improving the energy measurement of
radiation energy

Cosmic Rays (1958) - the first sampling calorimeter

Particle Physics: adoption of electromagnetic and
some times hadronic calorimeters as crucial
components in experiments

*  Uranium/compensation (1975) - uniformize
response to e/y and hadrons to improve

resolution

49t calorimeters

* High precision calorimetry with crystals, liquid
Argon, scintillating fibers

Particle flow calorimeters for HL-LHC, CLIC/ILC

(weighing more on reconstruction than hardware...)

~100 eV per photon
10 000 photons/MeV

2.9 eV per e-h pair
350 000 pairs/MeV
o/E ~ 0.2%

ok
S| ™
> \ A Scintillat
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Energy (keV)




ATLAS calorimetry system

Tile barrel

TIRTIII

.............
o e f,)uhf?_u _&_n' Rl dadedong

LAr hadronic
end-cap (HEC)

LAr electromagnetic o AN |
end-cap (EMEC) &9 & (oo B

LAr electromagnetic

barrel |
LAr forward (FCal)



CMS calorimetry system

PRESHOWER
Silicon strips ~16m? ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channel:

CRYSTAL
ELECTROMAGNETIC

CALORIMETER (ECAL)
~76,000 scintillating PbBWO, crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels



Calorimetry in LHCb

ECAL HCAL

SPD/PS M3
RICH2 Mg M2 \

(

Plastictmetal sandwiches



Calorimetry in ALICE

g




Electromagnetic calorimeters

- ely loose energy interacting with nuclei and atomic electrons

Recoil
e lonization electrg
Target e ’

. bremmstrahlung I;ﬁi;z?‘t electron /,(I)
atrest .7
R Y

C {Ae

*  photoelectric effect .-~ .-
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* Compton scattering

. . ~U e
©  pair production  .............. rucleus \
.............. > P

El;;:t;on\‘

-e K.

* e.m. showers will evolve very similarly independently on how they start

- subsequent e or y will branch according to these interactions

v




Processes initiated by electrons

CriticalenergY(E)' [ R I I IIIIII| [ R
ionization and radiation are : . Positrons Lead (Z =82) __0'20
at the same level \\/ B _
1 | Electrons i
oo — ~ 10— ‘
7 7+ cte o —0.15
< Bremsstrahlung |
7 MeV for Lead N -
b —_O 10
Mum Ionization 4
0.5 Mpgller (¢7) i
Radiation length (Xo): - _
quantifies by how much the Bhabha (¢™) —0.05
energy flux is reduced by |/e / _
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Processes initiated by photons

Photo-electric effect N ! | | | | |
Mmec® . -, B .
o~ ZSQ4(L)_' /2 % 8%, (b) Lead (Z=82) =
E ¥ e o - experimental Gy
IMbF Y R _
Compton scattering g
<
_InFkE 2 L -
O~ [— 8
E < kb -
9
8 . —
. . (]
Pair production o
w
o
7TA 1 5 — _
OR ———x 4(Z+1
O N4 X, (Z+1) WL _
N
probability to convert 10 mb W
after | Xo is e7/9 10 eV 1 keV 1 MeV 1 GeV 100 GeV

Photon Energy



Electromagnetic showers
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High energy e/y will start a cascade of pair production and bremmstrahlung

multiplicative regime until secondaries start falling below Ec

e

D

50 GeV/c

Depth (m)

e- in bubble chamber (70% Ne: 30% H;) under 3T field



Electromagnetic showers

14

- High energy e/y will start a cascade of pair production and bremmstrahlung

- multiplicative regime until secondaries start falling below E.

showers from two different
energy photons in bubble chamber




A toy model for electromagnetic showers

15

n=0: n=1 n=2: n=3

Start with a pair conversion followed by radiation,... E = E/2 & E/4 — ...

------------------------------------------------------------

*
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

------------------------------------------------------------

: : max :
E, : g EC : not so far from reality

------------------------------------------------------------



Detailed simulation of an electromagnetic shower
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E
tma.x ~ In ge— + 0.5 t95% — tma.x -+ OOSZ -+ 96
E. .
0.125 : I T .f'~,l.‘4 I | | | | | | [ [ | [ | | l__' 100 :.
- 30 GeV electron i
0.100 — incident oniron ] g9 ¥
- - <
+ i 1 A
S 0.075 - 6o &
Q i 1 0@
= i 1 79
S l 1 : 8
R 0.050 — — 40 ¥
= i . Photons ::: "g
- 1/6.8 o 1 2
0.025 |— x1/ . ° 90 Z
- Electrons | 1
0.000 & '
0 5 10 15 200

t = depth in radiation lengths



Spread in the transverse plane
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Particles disperse with respect to initial axis

decay openings

multiple scattering of charged particles

y in the region of minimal absorption travelling longer

------------------------------------------------

Define the Moliere radius as

------------------------------------------------

L

lateral size containing 90% of the shower energy

Y

Geant4 simulation

-=-2mm air gap

- 4mm air gap

E | ’
é 50+
Q -
40
- Moliére radius ‘
30— g
- 90% containment
20 ,
- ’I
- A
B -
10f—.-¥ x'(./
- ‘.,x’ 68% containment
T L CMS-TDR-15-02
0llllllllllllllllllllllllllllll
0 5 10 15 20 25 30

Layer number

% sh


https://cds.cern.ch/record/2020886/files/LHCC-P-008.pdf

Electromagnetic energy resolutions
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in the shower development, degradation at low energy  leakage, calibration, non
energy deposited. Enhanced if due to electronics noise, uniformity, radiation damage,
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Some challenges in maintaining energy resolution

19

CMS Preliminary 2017 251" (13 TeV)

. . R N F T T I T
* Intercalibration between cells needs to attain 1% level or better > 0
G 250
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A comparison of different e.m. calorimeters
Technology (Experiment) Depth Energy resolution Date
Nal(T1) (Crystal Ball) 20X,  2.7%/El/4 1983
BisGe3O12 (BGO) (L3) 22Xy  2%/VE & 0.7% 1993
CsI (KTeV) 21Xo  2%/VE @ 0.45% 1996
CsI(T1) (BaBar) 16-18X, 2.3%/EY/* & 1.4% 1999
CsI(T1) (BELLE) 16X  1.7% for Ey > 3.5 GeV 1998
PbWO4 (PWO) (CMS) 25Xy 3%/VE®0.5%®02/E 1997 &—
Lead glass (OPAL) 20.5X9 5%/VE 1990
Liquid Kr (NA48) 21Xo  3.2%/VE® 0.42% @ 0.09/E 1998
Scintillator/depleted U~ 20-30Xy 18%/VE 1988
(ZEUS)
Scintillator/Pb (CDF)  18Xg  13.5%/VE 1988
Scintillator fiber/Pb 15X  5.7%/VE ®0.6% 1995
spaghetti (KLOE)
Liquid Ar/Pb (NA31)  27Xo  7.5%/VE ®0.5% @ 0.1/E 1988
Liquid Ar/Pb (SLD) 21X  8%/VE 1993
Liquid Ar/Pb (H1) 20-30Xo 12%/VE ® 1% 1998
Liquid Ar/depl. U (D@) 20.5Xq 16%/VE & 0.3% @ 0.3/E 1993
Liquid Ar/Pb accordion 25X  10%/VE ©0.4% ®0.3/E 1996 <——

(ATLAS)
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What is an hadronic shower?
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e

' ABSORBER 2
: : EM.
5 COMPONENT
: J
- . P )
: , HADRONIC
5 COMPONENT
! A y

Charged pions, kaons, protons, neutrons, etc...
Products of strong interactions will start “mixed” showers

Requires longer containment than e.m showers

hadronic (visible)
25%



Particle spectra in a proton shower
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Particle spectra in a proton

shower

24
> 1
& i
g i lead
> 09 =~== em cascade
g : * * * hadronic cascade
.g. L e heavy particle recoil
3 0.8 - - == nuclear photons
§ i —— missing energy
® 07 |
: e.m.
0.6 __ -
: 05 [
Showers depend heavily on 5
the incident particle and its energy... 04 [
0.3 F~.
?’}(
0.2
0.1 |
o F 1 1 1 -l. * 1 1 11 l 1 1 1 1 1 1 1 1
10° 10°
primary energy [GeV]

Based on simulation.



Particle spectra in a proton shower

25

Showers depend heavily on

the incident particle and its energy...

Average em shower fraction, < f,,,>

...and fluctuations are non-gaussian!

A

0.7
 Parameterization: oy S
(k1) o
06l Uamm 1= [{%J e g
¢ A "
‘ . " B # .
0.5 g .‘
04} - */’ - — Cuk=08. E,=07GeV)
g /- —— Pb k=082, Eq= 1.3GeV)
e NIM A316(1992) 184 .
A NIM A300(1997) 202
03 N et - .
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Pion energy (GeV)
100 b
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JOF
D ol L
0 02 04

b
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Electromagnetic fraction, f,



Hadronic showers are unique
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There are never two alike and need to be analyzed case-by-case

hardware compensation: enhance the nuclear energy through materials
high granularity calorimeter: enable feature extraction and cluster-by-cluster calibration
dual-readout: measure the e.m. energy fraction

particle flow: calorimeter identifies particle type, energy used only if no track

e ——
-

Nt &, O

e.m. (hadronic) component is shown in red (blue)



Containment of an hadronic shower

27

The interaction length quantifies the mean distance before undergoing a nuclear interaction

Interaction length (A) is significantly larger than the radiation length (Xo)

-----------------------------

llllllllllllllllllllllllllllll

e.m. shower

hadronic shower

1

1
( 1cm

2cm )

|

|

( 20cm

40 cm )




Characteristics of different materials
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Energy reconstruction |
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Amplitude (ADC counts)

Need to gather energy spread in time:integrate pulse shape by weighting / fitting

800

700

600

500

400

300

200

100

calorimeters often need more time to integrate signals with respect to tracking devices

hadron showers: slow neutron component can appear significantly delayed in time (>100ns)

T

NIM A 606 (2009) 362-394
/\

0%

I|III|III|III|III|IIIIIII|III|

lIlllllllIlll|lll|lll|lll|lll|

|

L1l

1 2 3 4 5 6
Samples (25 ns steps)

9

Energy (GeV)

...and then there is pileup

CMS simulation, Vs=13 TeV PU=20/BX, 25 ns

. e Observed signal

- — Total pulse

- — In-time pulse

- — Out-of-time pulses

- .

= -

0 1 2 3 4 5 6 7 8 9

Time sample

CMS DPS 2015-016



https://ac.els-cdn.com/S016890020900792X/1-s2.0-S016890020900792X-main.pdf?_tid=fe42d735-4980-4745-86ad-60407b7b87db&acdnat=1521111879_8b6b6f6f516f3210f8569b86230b4847
https://twiki.cern.ch/twiki/bin/view/CMSPublic/EcalDPGResultsCMSDPS2015016

Energy reconstruction |l

30

Need to gather energy spread in space : clustering algorithms are needed

+ algorithm needs to be adapted to the particle type, segmentation, material upfront, shower components

* often several iterations needed, depending on how busy an event is

ConeClustering

Algorithm

Topological

/<\.
Association

Algorithms Cone Back-scattemd Looping

associations tracks tracks

Track-Cluster

Association : :
Algorithms 38 GeV '. ’ 18 GeV

12Gev § 32 GeV
Reclustering

Algorithms 30 GeV Track(|

Pﬁ)jected track

Cluster first ] s
| position

layer position

T '
I [3 Gev h Fragment Removal
3 GeV .
' Algorithms
6 Ge 6 GeV ‘
9 GeV 9 GeV
Layers in close Fraction of energy PFO Construction
contact in cone

Algorithms
. hadron

typical PF algorithms (implemented in Pandora)


http://www.hep.phy.cam.ac.uk/linearcollider/pandora/

Resolutions and response - ATLAS TiIeCaI

o/E (%)

Typically hadronic calorimeters exhibit

non-linearity, different response to e/y and hadrons (compensation)

significantly poorer resolutions compared to e.m. calorimeters

18 | NIM A 606 (2009) 362-394 o 0.94 F
- ® data ) E
16 |- [] simulation 0.92

10 GeV

14 =

0.84 F
0.82 |

|
E ()/Epeam

10 |-

< 100 GeV

180 GeV

llll

I 1 | I
0.05 0.1 0.15 0.2 0.25 0.3 0.35 10

A\ / Epeam (GeV2)

102
Epeam (GeV)


https://ac.els-cdn.com/S016890020900792X/1-s2.0-S016890020900792X-main.pdf?_tid=fe42d735-4980-4745-86ad-60407b7b87db&acdnat=1521111879_8b6b6f6f516f3210f8569b86230b4847

Resolutions and response - CMS HCAL

2

Performance is mainly driven by materials used, segmentation, depth

but also material upfront and readout

partially compensated by reconstruction (next slide)

Eur. Phys. ]. C (2009) 60: 359373

‘Gaussian Mean... ;...
O | Raw : '
----- ----g"Correcz:ted

. .
1 l 1 1 1 L I 1 1 1 1 l

..................

(/o))
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B e/h |

L iTli4
i gl diadld
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o
o
—

10 102
Measured HB Energy (GeV)


https://link.springer.com/content/pdf/10.1140/epjc/s10052-009-0959-5.pdf

Particle flow algorithm is a reconstruction paradigm

33

Ref jet

CMS | oT = 85 GeV

Simulation

Calo jet /

pT= 59 GeV PF jet

pr=81GeV




Compensating resolution performance with particle flow

34

Response

""'I"I"I'i:

1.2

0.8

0.6

0.4

0.2

Particle flow optimizes the usage of the detector

most energy energy ends-up being estimated by tracks and the electromagnetic calorimeter

recover linearity and significantly improve in energy resolution

Anti- k R=0.4
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high granularity 3

Possible directions in calorimetry:

= W

—>

300 GeV

I CMS HGCAL

48X, 51X,
41h

165X, 24X, 27X, 29X, 32X, 35X, 38X, 42X 45X,
29%  33h  35h  38h

1.3%h 1.7 20 23 M 2.6 h

hadron 30X, 46X, 63X, 78X, 95X, 130X,
016%  024A  032h  04A  048%  065%  085h

52 Si sensor layers interleaved with Pb, Cu, stainless steel

small cell sizes (~0.5cm?) to cope with 200 pileup events and allow feature extraction

timing capabilities (~30-50ps) per cell to allow association to primary vertex

* Sampling limits resolution...



Possible directions in calorimetry: high granularity
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CMS HGCAL

32 GeV
electron

-
=L2]
AT

9
\
3
_> i
300 GeV . <
hadron 30X, 46X, 63X, 78X, 95X, 130X, 165X, 24X, 27X, 29X, 32X, 35X, 38X, 42X, 45X, 51X,
0.16 A 0.24 1 032x 04 0.48 ) 0.65 0.85 13h 1.7 20A 23 M 267 l 297 A 33h 357 A 3. 8) 4.1 7

» 52 Si sensor layers interleaved with Pb, Cu, stainless steel
- small cell sizes (~0.5cm?2) to cope with 200 pileup events and allow feature extraction

©  timing capabilities (~30-50ps) per cell to allow association to primary vertex

* Sampling limits resolution... mite __
black widow

L : : kroach

... but can we see deposits in layers as images = machine learned PFlow? —
starfish

from TensorFlow’s image recognition APl


https://www.tensorflow.org/tutorials/image_recognition

37

Getting data on tape: trigger systems



Recall: the proton-proton cross section

38
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Why do we trigger!?

39

e Data rates at hadron colliders are too high

< most events are expected not to be interesting anyway

= save to tape only relevant physics

= need a trigger = online selection system which reduces rates by a factor of ~10°

Collider Crossing Event size Trigger Raw data Data rate
rate (kHz) (MB) rate rate after
(PB/year) trigger

(PB/year)

LEP 45 0.1 5 Hz 10° ~0.01

Tevatron 2.5 0.25 50-100 Hz 10° 0.1

HERA |0 0.1 5Hz 10° 0.01

LHC 40 ] 100-200 Hz 10° I




How do we trigger!?

40

DAQ
Trigger system Data acquisition
system
Performs real-time Collects the data from all the
selection based on a sub-detectors and trigger
subset of the data to systems and sends them to

record mass storage for offline analysis

Mass storage




Readoutt+decisions=dead-time

41

e Signals are random but incoming at an approximate fixed rate

¢ Need a busy logic

= Active while trigger decides whether the event should be kept or not

< |nduces a deadtime in the system

- System will only accept a fraction of the triggers V = f(1— V”'lj V= 1

1000

-’
== No deadtime '.'
w— 0.1%/HZ ’¢'
800 0.5%/Hz ",
N vV = f o"
I — ¢
> 600 1+ fr o
[~ "
Q .
= ’
[+2 ’
e .
v ‘o’
g 400 R t=1ms
- ’
o P
,
’
'O
200 L’
'O
=5ms
% 200 00 600 800 1000

Input frequency (Hz)

f <f
+ fr
input rate  readout time
100
w— 0.1%/Hz
90 — (0.5%/HZ
80
70}
9
2
S so} 7=1ms
40}
30
2 =5ms
105 200 200 600 800

Input frequency (Hz)

e System tends to be inefficient for long readout times

1000



Solution: de-randomize with a buffer

42
e A fast, intermediate buffer can TADC~0 MS Treadout=1 MS
be introduced e wET ",
Mg H k. | depth=1
= Works as a FIFO queue 90l . T == depth=5 ||
N «+» depth=10
( First In First Out) ‘\ — depth=50
80 - “ -
= [0]6)6]0]0] 0]
= ((06]6)6]0]0)0) 70
=+ Smooths fluctuations = derandomizes =
60
= Decouples the slow readout from the
fast front-end sol
40
¢ A moderate size buffer is able 3R G 0w == 0

to retain good efficiency | /A



Trigger system architecture for bunched collisions

43

The ADC are synchronous with
beam crossings

Trigger output is stochastic

- FIFO is needed to derandomize

ATLAS LHC Run
architecture

= May need to accommodate several
levels with increased complexity

= |f first layer latency is smaller than
bunch crossing than the combined
latency isv  xt
LI L2

T L1 Trigger
Discriminator

Busy Logic




Trigger system architecture for bunched collisions

44
) o): q
The ADC are synchronous with U p
beam crossings Q 7 Timing
i . . Sensor ( e
rigger output is stochastic Beam crossing

- FIFO is needed to derandomize

ATLAS LHC Run |
architecture

= May need to accommodate several
levels with increased complexity

= |f first layer latency is smaller than
bunch crossing than the combined
latency isv  xt
LI L2

CMS architecture

= Add trigger level between readout
and storage

= CPU Farm used for high level trigger

= Can access some/all processed data

= Perform partial/full reconstruction

_Start —
]
Abort 1
7 L1 Trigger
Discriminator
<lo-
EIEQ |Full = Busy Logic
Buffer/
Processin
High Level

Trigger




Be fast = keep it to the point, details come later
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¢ Can only use a sub-set of information

o(L1) - 9(SC)

= Typically energy sums, threshold flags, coarser detector, tracklets

<= Resolutions (energy and position) are coarser by definition

T T 17 um60

y CMS 2008
50
0.2_ 40
0 =130
0.2 120
-10

-04
CEETEE BEPUEU U SN U N U U S U N S _o
04 -02 0 02 04

n(L1) -n(SC)

L1 matched candidates
N W & O O N 0O O

e
T

3 CMS 2008
:l_ll““l““l lb] lesaal gy llul—l-ll.j
5-0.4-0. 3-02-01 0 0.1 0.2 03 04 0.

EL(L1)/E (SC) - 1



Tracking at L1 (muon case)
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Reconstruct segments in each muon chamber Muon Trigger
Combine segments to form track OT CSC RPC
and measure pT (rough)

Finder Finder

Example: CMS Muon L1 * ~— Segment || Segment

Finder




Combining information from different sub-detectors
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Example' CMS L1 Trigger

23<|n|<5 3 n|<3 |n|<3 4slnl<21 $ 8<In|<24'lnl<1-2

CSC e Accommodate several
hits hlts sources

= Busy logic needs to be
included

= Can perform a global OR

= Or combine certain trigger
objects and apply simple

Comp- topological cuts

arator

finder finder

= High level quantities
* * (masses, square roots are

Global Muon Trig ger) expensive! Avoid if possible

- — (TRK,ECAL,)
Global Trig ger TTC System)—> CAL MU




Overall LI trigger latency
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Level-1 Accept/Reject

Synchronization delay
Level-1 signal distribution

Global Trigger Processor
Regional Trigger Processors

Trigger Primitive Generation

Synchronization delay

Data transportation to Control Room

Detector FrontEnd Digitizer
Particle Time of Fligth

TIME

-

~3UsS

Much of the time
spent on signal
transmission

(here CMS)

Light cone

Room

Experiment
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Event building

e Parallelize the sum of the parts of the event to build = slicing

are used in order to achieve a 100 kHz rate

’»

e At CMS 8 independent “slices

R4




High level trigger
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e After event is built can be shipped to a farm for processing before storage
e Events are independent : easy to parallelize

e Keep out rate at ~300Hz / latency at ~40-50 ms, can afford to use

= high granularity of the detectors

= offline reconstruction-like algorithms

ATLAS HLT farm: readout switch:
SN

AN




Trigger/DAQ performance in LHC experiments
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e Typical values for LHC run |

= May depend on luminosity

e Notice that the final bandwidth has to be kept

= total trigger rate must not exceed allocated bandwidth

= prescale triggers if needed

Collider ATLAS CMS LHCb ALICE
L1 latency [Ms] 2.5 3.2 4 1.2/6/88
L1 output rate [kHz] 75 100 1000 2

FE readout bandwidth [GB/s] 120 100 40 25

Max. average latency at HLT [ms] 40 (EF 1000) 50 20

Event building bandwidth [ms] 4 100 40 25
Trigger output rate [Hz] 200 300 2000 50
Output bandwidth [MB/s] 300 300 100 1200
Event size [MB] 1.5 | 0.035 Up to 20






Summary
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Calorimeters make the particles collapse to measure its energy, direction time
° electromagnetic interactions have scaling properties, easy to reconstruct
* hadronic interactions depend on energy, incoming particle, have distinct properties
- best performance conjugates careful/clever detector design and reconstruction

* calorimeters provide most input to the trigger: coarse, fast information

Trigger systems take decisions based on a preview of (parts of) the event
- layered structure to allow to store ~1|-1.5MB events at a rate of 300-200 Hz

*first layers usually implemented in hardware, last layer in CPU farms
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