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From collision remnants to physics
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We hunt for new physics with exciting signatures
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Discovery drives the LHC detectors concept

• Before discovery different signatures to be expected depending on the Higgs mass 

• 4π-hermetic general purpose detectors are needed covering: leptons, photons, jets, …
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Proton-remnants underly the hard processes

• Single proton collisions produce high multiplicity events
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• Single proton collisions produce high multiplicity events

• Distributions are approximately uniform in pseudo-rapidity

Average 15-20 charged
particles per inelastic 
collision

Proton-remnants underly the hard processes
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• Single proton collisions produce high multiplicity events

• Distributions are approximately uniform in pseudo-rapidity

• Most particles are pions with

strong interactions preserve isospin

Proton-remnants underly the hard processes
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• Single proton collisions produce high multiplicity events

• Distributions are approximately uniform in pseudo-rapidity

• Most particles are pions with

• As 𝝿0→𝛾𝛾 dominates N(𝛾)≈N(𝝿±) in the detector

electromagnetic
energy deposits

charged particle
tracks

a muon

minimum bias

trigger 
for physics

Proton-remnants underly the hard processes



 Beyond pions and photons

• Production of other particles suppressed by

• content of the proton (PDFs)

• mass (ms~19md)

• interactions
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strange particles account for O(10%) of the multiplicities



What can we detect?
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• Final states

• secondary vertices from long-lived decays 
only in rare cases

• Must interact within detector volume

• electromagnetic or strong interactions

• electrons, muons, photons

• neutral or charged hadrons

• Long-lived weakly interacting particles

• indirectly detected 

• missing transverse energy

• good resolution when balancing energy

maximum information
needed to reconstruct
the hard process



Particles and their interactions

• Detectors register the passage of particle through matter

• Combine absorbers (start interactions) with sensitive materials (convert to optical/voltage)
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Main concepts behind general purpose detectors
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Magnetic field “Fc = qvB” 

• separate by charge

• measure p by curvature

Calorimetry 

• measure E from deposits

• electromagnetic and hadronic

Inner tracking 

• minimal interference with event

• points to measure curved tracks

• particle identification 

Outer tracking 

• muons (weakly interacting)



SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

PRESHOWER
Silicon strips ~16m2 ~137,000 channels

SILICON TRACKERS
Pixel (100x150 μm) ~16m2 ~66M channels
Microstrips (80x180 μm) ~200m2 ~9.6M channels

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

STEEL RETURN YOKE
12,500 tonnes

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

CRYSTAL 
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO4 crystals

Total weight
Overall diameter
Overall length
Magnetic field

: 14,000 tonnes
: 15.0 m
: 28.7 m
: 3.8 T

CMS DETECTOR

The two general purpose detectors
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• Standalone measurement of p(μ)
• Resolution is flat in η and independent of pileup

• Two complementary p(μ) measurements

• Tracks point to primary vertex
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Particles and their interactions
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Material distribution in general purpose detectors
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Lightweight materials
(Si, gaseous)

High-Z materials

Dense materials (e.g. Iron, 
Copper, Brass, Stainless 
Steel, Uranium)

B field source

it’s a challenge to fit it all within volume
trade-off between best energy resolution and particle identification



6.6λI
σ/E ~110% / E1/2

3.8 T

20X0
σ/E ~3% / E1/2



Particle flow
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>60% of the energy of a 
jet may be reconstructed 
at the level of the tracker



Example: a jet of 5 particles

• Reconstruction starts in the tracker (start from easy tracks, use remaining hits for others)

• but that does 2/3 particles in this jet
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 pT=35 GeV
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Example: a jet of 5 particles
• Coarse granularity in the hadronic calorimeter

• See local energy maxima, connect neighbours

• Determine energy sharing iteratively



• The electromagnetic calorimeter sees things in coarser detail (Δɸ,Δη~0.02)

• Use to refine entry point in calorimeter, link to tracks and balance energy

• Cluster energy unassociated to tracks: photons and neutral hadrons

20
Example: a jet of 5 particles



Particle flow algorithm is a reconstruction paradigm
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Cluster
linked to track?

Photon 
(e.m. cluster)

Neutral hadron
(had cluster)

N

Y

Etrack

compatible 
with Ecalo?

Charged pion
(track+had cluster)

Y

deficit Muon
(track)

Electron
(track+e.m. cluster)

excess

Split 
cluster until 

balancedit also shapes the re-design 
of the detectors for Phase II of the LHC
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Particle flow algorithm is a reconstruction paradigm



Connecting the dots with tracking



Why?
24

P. Silva Tracking detectors

• Identify the vertex from the hard interaction

…but also secondary vertices from long lived particles



Why?
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• Identify the vertex from the hard interaction

…but also secondary vertices from long lived particles

• Measure particle trajectories

• momentum (p), energy loss (dE/dx), link to coarser calorimeters and muon chambers

JHEP 07 (2013) 122

arXiv:1411.4413

http://arxiv.org/abs/1305.0491
http://arxiv.org/abs/1411.4413


With what?

• Solid state detectors 

• Ge, Si, Diamond,...

• pixels and strips

26

P. Silva Tracking detectors



With what?
• Gaseous detectors 

• drift tubes, resistive plate chambers, cathod strip chambers, gas electron multipliers, ...

• usually for outer tracking
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How?
• While transversing a medium a charged particle leaves an ionization trace

• create a depletion zone in between electrodes: gaseous, liquid or solid-state (semi-conductor)

• ionization charges drift towards electrodes

• amplify electric charge signal and deduce position from signals collected in individual strips
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ionization chamber Si strip detector≈



Gaseous versus solid state

• In solid state detectors ionization energy converts in e-h pairs

• 10 times smaller with respect to gaseous-based ionization

• charge is increased → improved E resolution
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Gaseous versus solid state

• Higher density materials are used in solid state detectors

• charge collected is proportional to the thickness

• most probable value for Silicon

• excellent spatial resolution: short range for secondary electrons
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Inner tracking at the LHC

P. Silva Tracking detectors

CMS strips

CMS pixels

ATLAS SCT ALICE pixels

LHCb VELO

ATLAS pixels

ATLAS pixels (inner barrel layer) ALICE ITS

LHCb SciFi

2 x ~
2.5 m



Outer ⟷ inner tracking
32
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Coordinates for tracking
• The LHC experiments use a uniform B field along the beam line (z-axis)

• trajectory of charged particles is an helix – radius R

• use transverse (xy) and longitudinal (rz) projections

• pseudo-rapidity: transverse momentum:

• Impact parameter is defined from distance of closest approach to primary vertex
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Resolution for the impact parameter

• Depends on radii+space point precisions 

• For two layers we expect

• Improve with small r1, large r2

• Improves with better σi

34



Resolution for the impact parameter

• Depends on radii+space point precisions 

• For two layers we expect

• Improve with small r1, large r2

• Improves with better σi

• Precision is degraded by multiple scattering

• Gaussian approximation is valid

• Width given by

• extra degradation term for d0
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Resolution for the impact parameter

• For a track with θ≠900 we can write r → r/sinθ and x → x/sinθ

•  By substitution in the formulas of the previous slide we have:

• Typical resolution expected/measured 

• 100 μm @ 1 GeV        20 μm @ 20 GeV

• Typical lifetimes (rest frame) 

• B ~ 500μm    D0 ~120μm     𝝉 ~ 87 μm

36

geometry-dependent Material- and pT-dependent



Momentum measurement

• Circular motion under uniform B-field

• Typically measure the sagitta 

• deviation to straight line relates to R by

• Uncertainty in pT measurement improves with B, number of hits and path

• Multiple scattering introduces, again extra degradation
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Momentum resolution
38
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Si-based detectors



Usage of Si-based trackers for HEP
• Kemmer, 1979 transferred Si-technology for electrons to detector - NIM 169(1980)499

• NA11/32 spectrometer at CERN →

• 6 planes Si-Strip, <2k channels

• Resolution ~4.5μm

• SLD vertex detector at SLAC →

• 120-307 M pixels: 0.4%X0

• Resolution <4μm,  d0~11-9μm

• ALEPH detector at LEP →

• Enable precise measurements for B-physics (lifetime, b-tagging)
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Ionization energy loss in the Si

Most probable value of the Landau distribution for energy loss defines the minimum ionizing particle
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Si properties
• Widely used in high energy physics and industry 

• Low ionization energy

• Band gap is 1.12 eV

• Takes 3.6 eV to ionize atom → remaining yields 
phonon excitations

• Long free mean path → good charge collection 
efficiency

• High mobility → fast charge collection

• Low Z → reduced multiple scattering

• Good electrical properties (SiO2) 

• Good mechanical properties

• Easily patterned to small dimensions

• Can be operated at room temperature

• Crystalline → resilient against radiation

42
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Bond model of semi-conductors

• Covalent bonds formed after sharing electrons in the outermost shell

• Thermal vibrations

• break bonds and yield electron conduction (free e-)

• remaining open bonds attract free e- → holes change position → hole conduction
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Energy bands structure compared

• In solids, the quantized energy levels merge 

• Metals: conduction and valence band overlap

• Insulators and semi-conductors: conduction and valence band separated by energy (band) gap

• If μ (band gap) sufficiently low : electrons fill conduction band according to Fermi-Dirac statistics
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Intrinsic carrier concentration
• Energy state occupation probability follows Fermi statistics distribution

• Typical behaviour @ room temperature

• excited electrons move to conduction band

• electrons recombine with holes

• Excitation and recombination in thermal equilibrium

• Intrinsic carrier concentration given by

       with A=3.1x1016 K-3/2cm-3 and E
g
/2k

B
=7x103K

45

ni~1.45x1010 cm-3  

⇒1/1012 Si atoms is ionized



Intrinsic S/N in Si detectors
46
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Example: Si detector with thickness d=300µm

Intrinsic S/N in Si detectors



S/N in intrinsic Si detector

For a 300μm thickness sensor

• Minimum ionizing particle (MIP) creates:

• Intrinsic charge carriers (recall slide 43):

Number of thermally-created e-h pairs exceeds mip signal by factor 10!
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Si doping: n-dope bond model

• Doping with a group 5 atom (e.g. P, As, Sb)

• atom is an electron donor/donator

• Weakly bound 5th valence electron

• Positive ion is left after conduction electron is released

49
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Si doping: n-dope bond model II
• Energy level of donor is below edge of conduction band

• Most electrons enter conduction band at room temperature

• Fermi level moves up with respect to pure Si

50
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Si doping: p-dope bond model

• Doping with a group 3 atom (e.g. B, Al, Ga, In)

• atom is an electron acceptor

• open bond attracts electrons from neighbouring atoms

• acceptor atom in the lattice becomes negatively charged

51
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Si doping: p-dope bond model - II
• Energy level of acceptor is above edge of conduction band

• Most levels are occupied by electrons → holes in the valence band

• Fermi level moves down with respect to pure Si

52
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p-n junctions

• Difference in Fermi levels at the interface of n-type or p-type

• diffusion of excess of charge carriers until thermal equilibrium (or equal Fermi level)

• remaining ions create a depletion zone: electric field prevents further the diffusion

53
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p-n junctions
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Biasing p-n junctions

Forward-biased junction
• Anode to p, cathode to n

• Depletion zone becomes narrower

• Smaller potential barrier facilitates diffusion

• Current across the junction tends to increase
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Reverse-biased junction

• Anode to n, cathode to p

• e,h pulled out of the depletion zone

• Potential barrier is suppressed

• Only leakage current across junction



Depletion zone width and capacitance

• Characterize depletion zone from Poisson equation with charge conservation:

• Typically: Na=1015 cm-3 (p+ region) >> Nd=1012cm-3 (n bulk)

•Width of depletion zone (n bulk):

•Device is similar to a parallel-plate capacitor

• Depletion voltage saturates the capacitance

• Typical curve obtained for CMS strip detector
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Leakage current

• Thermal excitation generates eh pairs

• Reverse bias applied separates pairs

• eh pairs do not recombine and drift

⇒ leakage current

57

• Depends on purity, defects and temperature

⇒ usually require detector cooling 

    for stable operation (-30o-10oC)



Charge collection

• eh pairs move under the electric field

• larger biases smaller collection times

• typically smaller than LHC bunch crossing
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Simulation by Thomas Eichhorn (KIT)

1 2 3 4 5

charge collection simulation for a 450 incident particle



Position resolution (DC coupled)

• Segmentation of the implants determines precision in position reconstruction

• Typical configuration

• p implants in strips

• n-doped substract ~300μm (2-10kΩcm)

• depletion voltage <200 V

• backside P implant establishes ohmic contact and prevents early breakdown

• Al metallisation

• Field is closest to the collecting electrodes (where most of the signal is)
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Position resolution (AC coupled)

• AC coupling blocks leakage current from amplifier

• Deposit SiO2 between p+ and Al strip

• Capacitance ~32 pF/cm

• Shorts through pinholes may be reduced with a 
second layer of Si3N4

• Use large poly silicon resistor (R>1MΩ) 
connecting the bias voltages to the strips
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CMS module
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Pixel sensors

• High track density better resolved with 2D position information

• back-to-back strips for 2D position information → yields “ghost” hits

• Hybrid pixel detectors with sensors and bump-bonded readout chips

62

P. Silva Tracking detectors

one sensor, 16 front-end chips and 1 master controller chip
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Performance: S/N
• Signal depends on the thickness of the depletion zone and on dE/dx of the particle

• Noise suffers contributions from:

• Optimizing S/N

• NADC>thr,  given high granularity most channels are empty

• decrease noise terms (see above)

• minimize diffusion of charge cloud after thermal motion ▶
• (typically ~8μm for 300μm drift)

• radiation damage severely affects S/N (next slide)
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capacitance leakage 
current

parallel 
resistor

series 
resistor

CMS strips



Influence of radiation
• Si is not fully robust against radiation  

• induced defects result in noise, inefficiency, leakage,…

• need to increase depletion voltage at higher fluences

• expected hit finding efficiency after 10 years of LHC operation: 95%
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CMS tracker

• Pixel detector: ~1m2 area

• 1.4k modules  ⇒ 66M pixels

• Strips: ~200m2 area

• 24k single sensors, 15k modules

• 9.6M strips = electronics channels

• 75k readout chips
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CMS tracker budget
• In some regions can attain 1.8X0

• often photons will convert, electrons will radiate  :(

• use for alignment and material budget estimation :)

• Precise knowledge is crucial, e.g. for Higgs with γ and electrons in the final state

67
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X-ray of the CMS tracker

• Use photon conversions (γ → e+e-)

• probability of interaction depends on the transversed material (1-e-x/X0)

• 54% of the H → γγ events have are expected to have at least one conversion
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69Electrons
They brem
Brem photons	 convert

Trackmomentum
change	followed by	
Gaussian Sum Filter

Brem clusters	collected
by	« track tangents »	

Conversion	tracks
collect secondary
electron clusters



…to be continued

70



Summary

• Hunting for new physics: wide variety of final states vs underlying event/pileup

• general purpose detectors attempt to cover all possible signatures while rejecting background

• choice of technology: trade-off between particle identification, resolution and budget

• Particle flow as a paradigm

• use the best out of the detectors for optimal performance

• yields a close 1:1 physics reconstruction of the hard process final state

• Magnetic field and tracking play a crucial role and set the base

• B field is at the heart of the experiment

• tracking detectors are at the base of the reconstruction

tomorrow: calorimetry, performance, and trigger
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Backup
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The magnet is the heart of an experiment I

• Goal: measure 1 TeV muons with ẟpT/pT=10% without charge error

•                                        this implies ~50μm uncertainty in measuring s

• either use “continuous tracking” or “extreme field”

• From Ampere’s theorem:  

          ⇒ n= 2168 (120) turns per coil in CMS (ATLAS)

• special design needed for superconducting cable in CMS

• size limited by magnetic pressure (P≈6.4 MPa)
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The magnet is the heart of an experiment II
74

ATLAS CMS

B 0.6T (8 coils, 2x2x30 turns) 4T (1 coil,  2168 turns/m)

Challenges
• spatial/alignment precision over large surface
• 1.5GJ  energy stored

• design and winding of the cable 
• 2.7GJ energy stored

Drawbacks

• limited pointing capabilities 
• non-trivial B
• additional solenoid (2T) needed for tracking
• space needed

• limits space available for calorimetry
• no photomultipliers for calorimeters
• multiple scattering in iron core
• poor bending at large angles



Radiation levels: a challenge for detectors and electronics

• Activation of materials, impurities, loss of transparency/response, spurious hits …

• additional shielding/moderators needed to limit radiation impact in the detectors
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Position resolution

• Affected by different factors

• transverse drift of electrons to track

• strip pitch to diffusion width relationship

• statistical fluctuations on energy deposition
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