Heavy lons at LHC

J. Seixas LIP/ DF IST Lisbon

Heavy lons at LHC

Introduction

- Observables
- Hard probes
- Prospects

- The idea behind the study of heavy ion collisions is to use the nucleus as a QCD laboratory
- It has strong implications for cosmology and astrophysics since is represents the creation of a mini-Bang
- Needs the understanding of collective effects in QCD matter

The Hagedorn argument

Introduction

- Observables
- Hard probes
- Prospects

• Statistical bootstrap model: As the collision energy increases the number of particles (states) increases. Hagedorn argued that the density of states goes as

 $\rho(m) = cm^a \exp(b.m)$

In a hadron gas the average energy is

$$\overline{E} = \frac{\int_{0}^{\infty} dE \ E\rho(E) e^{-E/T}}{\int_{0}^{\infty} dE \ \rho(E) e^{-E/T}} = \frac{\int_{0}^{\infty} dm \ m\rho(m) e^{-m/T}}{\int_{0}^{\infty} dm \ cm^{a+1} e^{-m(b-1/T)}} \longrightarrow \int_{0}^{\infty} dm \ cm^{a+1} e^{-m(b-1/T)}$$

- $T < b^{-1}$ that is, there *exists a limiting temperature* for the hadron gas! ($T_c = b^{-1} \sim 160$ MeV)
- This argument seems insensitive to the initial system type. So why should we use AA collisions? Simple exercises show why:

A simple exercise: p-p

Normal hadronic matter:

- $m_N = 0.94 \, GeV$; 0.17 N.fm⁻³
- ε= 0.94 x 0.17=0.16 GeV.fm⁻³
- Case 1: SPS (CERN)

 $\varepsilon \cong \frac{3 \times (0.5 \,\text{GeV})}{(\frac{4}{3}\pi)(1 \,\text{fm})^3} = 0.4 \,\text{GeV.fm}^{-3}$

Case 2: Tevatron (FNAL)

 E_{CM} ~ 1.8 TeV; <n_p>~20 $\rightarrow \epsilon$ ~ 2 GeV.fm⁻³

A simple exercise: A-A

In each nucleus:

$$N_{A} = \frac{3}{4} \left[2\pi R_{A} (1 \text{ fm})^{2} \right] \times n_{0} \cong A^{1/3}$$

where

n₀=0.17 GeV.fm⁻³

 R_A =1.14 A^{1/3} nuclear radius for mass number A

³/₄ come from averaging over the tube length in a central collision

 $\epsilon_{AA} \sim A^{1/3}(0.4 \text{ GeV.fm}^{-3}) \sim 2 \text{ GeV. fm}^{-3}$

Initial volume ~170 fm³

Check as an exercise

Heavy lons at LHC

- Introduction
- Observables
- Hard probes
- Prospects

- Chosing the correct observables is a major problem:
 - The complexity of the system is extremely high
 - If a dense and hot state is produced, its manifestation might be "hidden" during hadronization.
 - Collective x superposition effects
 - Colective effects: the role of thermodynamics
 - Control over background

Facilities

Accelerator	Location	Ion beam	Momentum \sqrt{s}		Commissioning date
			$[A \cdot \text{GeV}/c]$	[GeV]	
AGS	BNL	¹⁶ O, ²⁸ Si	14.6	5.4	Oct.1986
		¹⁹⁷ Au	11.4	4.8	Apr.1992
SPS	CERN	¹⁶ O, ³² S	200	19.4	Sep.1986
		²⁰⁸ Pb	158	17.4	Nov.1994
RHIC	BNL	¹⁹⁷ Au + ¹⁹⁷ Au	65	130	2000
		$^{197}{\rm Au} + ^{197}{\rm Au}$	100	200	2001
		$d + {}^{197}Au$	100	200	2003
		$^{197}{\rm Au} + ^{197}{\rm Au}$	31.2	62.4	2004
		⁶³ Cu + ⁶³ Cu	100	200	2005
LHC	CERN	²⁰⁸ Pb + ²⁰⁸ Pb	2800	5600	2009

Introduction

- Observables
- Hard probes
- Prospects

- Hagedorn: strong interacting matter should undergo a deconfining phase transition for large enough temperatures and densities.
- This fact was confirmed by LGT (although not clear whether it is the same physics).
- In fact LGT gave us first indication of the QCD phase diagram
- Unfortunately, LGT does not work everywhere.

- Introduction
- Observables
- Hard probes
- Prospects

• The QCD phase diagram: models & LGT suggest that transition becomes 1st order for some μ_B

- Introduction
- Observables
- Hard probes
- Prospects

• The QCD phase diagram: models & LGT suggest that transition becomes 1st order for some μ_B

- Introduction
- Observables
- SPS results
- RHIC results
- The LHC Era
- Prospects

• The QCD phase diagram: models & LGT suggest that transition becomes 1st order for some μ_B

- Introduction
- Observables
- SPS results
- RHIC results
- The LHC Era
- Prospects

Introduction

- Observables
- Hard probes
- Prospects

Stages of a heavy ion collision

- Before the collision the nuclei resemble 2 pancakes, being affected along the direction of motion by a boost factor Υ~100
- These pancakes are mostly composed of gluons carrying a tiny fraction x of the parent nucleons longitudinal momenta. Their density decreases rapidly with 1/x which implies, by the uncertainty principle that they should have relatively large transverse momenta
- This initial gluonic form of matter has been dubbed *Color Glass Condensate* (CGC). It is weakly coupled and dense. Dominates the wavefunction of all hadrons

- Observables
- Hard probes
- Prospects

Stages of a heavy ion collision

- At τ = 0 fm/c the two nuclei hit each other and the interactions start developing.
- The hard processes occur faster (within a time ~1/Q, by the uncertainty principle). They are responsible for the production of *hard particles*, i.e. particles carrying transverse energies and momenta of the order of Q: (hadronic) jets, direct photons, dilepton pairs, heavy quarks, or vector bosons. They are often used to characterize the topology of the collision.
- At τ= 0.2 fm/c the bulk of the partonic constituents of the colliding nuclei are liberated. This is when most of the final multiplicity is produced
- At the LHC Pb-Pb the density of the (non-equilibrium) medium at this stage is ~10 times the one of normal nuclear matter and the energy density ε> 15 GeV/fm³: *Glasma*

Introduction

- Observables
- Hard probes
- Prospects

• Stages of a heavy ion collision

- If the partons do not interact with each other (in pp collisions) they proceed to the final state. However in AA collisions they *do* interact strongly with each other. As a consequence of thermodynamics the medium equilibrates very rapidly (within ~1 fm/c). The dense partonic medium may be a strongly coupled *fluid* called the *Quark-Gluon Plasma* (QGP).
- At τ= 10 fm/c (for Pb-Pb collisions at the LHC) the QGP hadronizes
- Between 10 fm/c < τ < 20 fm/c the system is in equilibrium and forms a hot and dense *hadron gas* whose density and temperature decreases with time
- At τ~ 20 fm/c the density becomes so low that the hadrons do not interact any longer: This is the *freeze-out*. The outgoing particles have essentially the same thermal distribution as before in the fluid.

l/Ψ

NN collisions: QGP: Hot and dense hadron gas: Freeze-out: Drell-Yan qq thermal annihilation $\pi^+\pi^-$ thermal annihilation free hadron decay (cocktail)

- Introduction
- Observables
- Hard probes
- Prospects

• To make thermodynamics one needs specific objects. How does one measure the initial energy in HIC?

- Introduction
- Observables
- Hard probes
- Prospects

• To make thermodynamics one needs specific objects. How does one measure the initial energy in HIC?

Introduction

- Observables
- Hard probes
- Prospects

- Number of collisions can be very high (~800 in UU collision)
- Energy is deposited in a small region ~z=0 at t=0. Energy density is very high, but the baryon content is ~0 (QGP)
- As the particles stream out of this region the volume they occupy depends on time.
- We are going to observe these particles later, which implies that the initial energy density depends on proper time from our observational point of view.
- The particles which stream out are mostly pions, having p_T~0.35 GeV/c and m_T~0.38 GeV/c. These particles are characterized by their rapidity distribution dN/dy.

- Introduction
- Observables
- Hard probes
- Prospects

Bjorken estimation of initial energy density

• To reconstruct the inital distribution we have to relate their space-time positions to rapidity

$$m_T = \sqrt{p_T^2 + m^2}$$
; $p_z = m_T \sinh y$; $p_0 = m_T \cosh y$
The velocity is thus, for a particle streaming out of the origin

$$v_z = \frac{p_z}{p_0} = \tanh y = \frac{z}{t}$$

In terms of the proper time $\tau = \sqrt{t^2 - z^2}$
$$z = \tau \sinh y$$

$$t = \tau \cosh y$$

$$y = \frac{1}{2} \ln \frac{t+z}{t-z}$$

In the CMS the region around y=0 (central rapidity region) for a given τ corresponds to z=0.

- Introduction
- Observables
- Hard probes
- Prospects

• A is the superposition region of the 2 nuclei. The volume is $A\Delta z$. Denote by τ_0 the proper time in which QGP is formed and equilibrated. Δz

The particle number density at *z*=0 is \leftrightarrow 1 dN dy ΔN $\overline{A\Delta z} = \overline{A} \overline{dy} \overline{dz} \Big|_{y=0}$ $1 \, dN$ $\left. \frac{1}{A} \frac{du}{dy} \frac{1}{\tau_0 \cosh y} \right|_{y=0}$ The energy of a particle with rapidity y is $m_T \cosh y$. Therefore the initial energy density is $\epsilon_0 = m_T \cosh y \frac{1}{A\Delta z}$ z=0 $m_T dN$ $\epsilon_0 =$ $\tau_0 \sim 1 \, \mathrm{fm/c}$ $A\tau_0 dy$

- Introduction
- Observables
- Hard probes
- Prospects

- Bjorken estimation of initial energy density
 - We are thus left with problems:
 - 1. Measure (or calculate) the rapidity distribution
 - 2. Determine the overlapping region
 - This must be complemented by a knowledge of collective x superposition processes. The Glauber model gives the number of collisions as a function of the impact parameter of the collision. Allows centrality estimation

Glauber model

Introduction

- Observables
- Hard probes
- Prospects

- A simple geometrical picture of a AA collision.
- Semi-classical model treating the nucleus-nucleus collisions as multiple NN interactions: a nucleon of incident nucleus interacts with target nucleons with a given density distribution.
- Nucleons are assumed to travel on straight line trajectories and are not deflected even after the collisions, which should hold as a good approximation at very high energies.
- NN inelastic cross section σ_{NN}^{in} is assumed to be the same as in the vacuum.
- The nucleons are assumed to be randomly distributed according to a Woods-Saxon distribution corresponding to the density profile

$$\rho(r) = \rho_0 \frac{1}{1 + \exp\left(\frac{r - R}{a}\right)}$$

Au:
$$R = 6.38 \text{ fm}$$

 $a = 0.54 \text{ fm}$
 $\rho_0 = 0.169 \text{ fm}^{-3}$
 $\sigma_{NN}^{in} = 42 \text{mb}$
 $@\sqrt{s_{NN}} = 200 \text{ GeV}$

Glauber model

Introduction

- Observables
- Hard probes
- Prospects

- A simple geometrical picture of a AA collision.
- Semi-classical model treating the nucleus-nucleus collisions as multiple NN interactions: a nucleon of incident nucleus interacts with target nucleons with a given density distribution.
- Nucleons are assumed to travel on straight line trajectories and are not deflected even after the collisions, which should hold as a good approximation at very high energies.
- NN inelastic cross section σ_{NN}^{in} is assumed to be the same as in the vacuum.
- The nucleons are assumed to be randomly distributed according to a Woods-Saxon distribution corresponding to the density profile

Glauber model

- Introduction
- Observables
- Hard probes
- Prospects

A CMS example		Fraction of events / 0.05 TeV	PbPb	CMS ر s _{NN} = 2.76 Te	V ====================================			
Σ E _T in HF [TeV]								
Centrality	0-5%	5-10%	10-15%	15-20%	20 - 25%	25-30%		
N_{part}	381 ± 2	329 ± 3	283 ± 3	240 ± 3	203 ± 3	171 ± 3		
Centrality	30 - 35%	35 - 40%	40-45%	45-50%	50-55%	55-60%		
$N_{ m part}$	142 ± 3	117 ± 3	95.8 ± 3.0	76.8 ± 2.7	60.4 ± 2.7	46.7 ± 2.3		
Centrality	60-65%	65 - 70%	70-75%	75 - 80%	80-85%	85-90%		
$N_{ m part}$	35.3 ± 2.0	25.8 ± 1.6	18.5 ± 1.2	12.8 ± 0.9	8.64 ± 0.56	5.71 ± 0.24		

Table 1. Average N_{part} values and their uncertainties for each PbPb centrality range defined in 5 percentile segments of the total inelastic cross section. The values were obtained using a Glauber MC simulation with the same parameters as in ref. [14].

Particle production

Introduction

- Observables
- Hard probes
- Prospects

- Fermi: Because of saturation of the phase space, the multi particle production resulting from the high energy elementary collisions is consistent with a thermal description.
- In heavy-ion collisions, hydrodynamical behavior, that is, local thermal equilibrium and collective motion, may be expected because of the large number of secondary scatterings.
- In the case of pure thermal motion <E_{kin}>~T; thermodynamical "blast-wave" model of Schnedermann et al.

$$\frac{d\sigma}{m_{\rm T} dm_{\rm T}} \propto \int_0^R r dr m_{\rm T} I_0 \left(\frac{p_{\rm T} \sinh \rho}{T_{\rm fo}}\right) K_1 \left(\frac{m_{\rm T} \cosh \rho}{T_{\rm fo}}\right),$$

Freeze-out temperature Mod. Bessel func.

Particle production

- Introduction
- Observables
- Hard probes
- Prospects

Because of decay products from the resonances, a steeper component exist in low- m_{τ} region for pions. Proton and antiproton distributions look flatter than those for pions and kaons.

Introduction

- Observables
- Hard probes
- Prospects

- Particle abundances can be evaluated by integrating particle yields over the complete phase space
- Unlike the momentum distributions, particle ratios are expected to be insensitive to the underlying processes.
- It is found that the ratios of produced hadrons are well described by a simple statistical model based on the grand-canonical ensemble: particle density of species *i* is given by

$$n_{i} = \frac{g_{i}}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2} dp}{\exp[(E_{i} - \mu_{i})/T_{ch}] \pm 1}$$

 g_i - spin degeneracy

 $\mu_i = \mu_B B_i - \mu_S S_i - \mu_{I_3} I_i^3$ - chemical potential

Baryon quant. number

Strangeness quant. number

Isospin "z-component" quant. number

- Introduction
- Observables
- Hard probes
- Prospects

- With this model only two parameters are independent: the temperature T_{ch} and the baryon chemical potential μ_B . Data gives $T_{ch} \sim 170 \ MeV \ \mu_B \sim 270 \ MeV$
- Chemical equilibrium seems to hold. Particle yield ratios are well described:

 Intriguing fact: abundances of multi-strange particles *also* show chemical equilibrium. They are supposed to decouple early from the fireball → do not have enough time to reach the chemical equilibrium if they are produced in hadronic interactions. Early thermalization?

- Introduction
- Observables
- Hard probes
- Prospects

50-90 %

 26.7 ± 2.5

18.84

- Introduction
- Observables
- Hard probes
- Prospects

 36.9 ± 5.7

35.5

 0.58 ± 0.09

0.56

Particle distributions at LHC: the CMS case

- Introduction
- Observables
- Hard probes
- Prospects

- Particle distributions at LHC: the CMS case
 - Expectations: in a very dense medium the random walk of partons should increase the production of high p_T hadrons (Cronin effect)

For p_T > 2 GeV one observes a suppression in R_{AA} consistent with energy loss of partons in the medium

Introduction

- Observables
- Hard probes

• Prospects

Particle distributions at LHC: the CMS case

Fig. 7 Measurements of the nuclear modification factor R_{AA} in central heavy-ion collisions at three different center-of-mass energies, as a function of $p_{\rm T}$, for neutral pions (π^0), charged hadrons (h^{\pm}) , and charged particles [12, 27-30], compared to several theoretical predictions [32-37] (see text). The error bars on the points are the statistical uncertainties, and the yellow boxes around the CMS points are the systematic uncertainties. Additional absolute T_{AA} uncertainties of order ±5 % are not plotted. The bands for several of the theoretical calculations represent their uncertainties

Jet quenching (again)

- Introduction
- Observables
- Hard probes
- Prospects

- Introduction
- Observables
- Hard probes
- Prospects

LGT shows that the interquark potential is screened. At
 T=0 the hamiltonian for the <u>q q system</u> is

$$H = \frac{p^2}{2\mu} - \frac{\alpha_{eff}}{r} + kr$$

However, in a QGP the hamiltonian should be $H = \frac{p^2}{2u} - \frac{\alpha_{eff}e^{-\frac{r}{\lambda_D}}}{r}$

Debye screening length

 To study the stability of the system one can use the uncertainty relations

$$E(r) = \frac{1}{2\mu r^2} - \frac{\alpha_{eff} e^{-\frac{r}{\lambda_D}}}{r}$$

A bound state exists if the energy has a minimum

$$-\frac{1}{2\mu r^{3}} + \frac{\alpha_{eff}\left(1 + \frac{r}{\lambda_{D}}\right)e^{-\frac{r}{\lambda_{D}}}}{r^{2}} = 0$$

- Introduction
- Observables
- Hard probes
- Prospects

This can be written in the form

$$x(1 + x)e^{-x} = \frac{1}{x}$$

The function is 0 at x=0, increases to a maximum value of 0.840 at x=1.62 and decreases to 0 as x→∞.
 Therefore a solution exists only if the rhs < 0.84. In other words

 $\alpha_{eff}\mu\lambda_D$

 $=\frac{r}{\lambda_D}$

• The Debye screening length depends on the temperature. From lowest order perturbative QCD

$$\lambda_D(PQCD) = \sqrt{\frac{2}{3g^2} \frac{1}{T}} = 0.36 \text{ fm } @ T = 200 \text{ GeV}$$

LGT gives $\lambda_D \sim 0.18 \text{ fm}$

The Satz-Matsui argument

Introduction

- Observables
- Hard probes
- Prospects

• For a $c\bar{c}$ system $\mu = 1.84$ GeV/2 and $\alpha_{eff} = 0.52$; the Bohr radius is 0.41 fm and thus this system **can not be bound** for T=200 MeV

- For a QGP α_{eff} decreases with *T*; at *T*=1.5*T_c* $\alpha_{eff} = 0.2$ which implies that the critical temperature ~130 MeV
- By the way, for a ss̄ system the Bohr radius is 3.8 fm. Therefore this system cannot be bound in a QGP@T=200 MeV
- The J/Ψ or Y are not suppressed at hadronization, which makes them excellent probes. What to expect:
- At T=0 (no QGP) the J/ Ψ or Y should be normally produced
- At T>T_c (QGP) these states should be suppressed
- This should affect also (and probably mostly) the excited states

- Introduction
- Observables
- Hard probes
- Prospects

• At LHC: the J/Ψ CMS example. The baseline

Figure 8: Non-prompt J/ ψ signal extraction for pp collisions at $\sqrt{s} = 2.76$ TeV: dimuon invariant mass fit (left) and pseudo-proper decay length fit (right).

- Introduction
- Observables
- Hard probes
- Prospects

- Introduction
- Observables
- Hard probes
- Prospects

At LHC: the J/ Ψ CMS example

Figure 12: Left: yield of inclusive J/ψ (blue circles) and prompt J/ψ (red squares) divided by T_{AA} as a function of N_{part} . The results are compared to the cross sections of inclusive J/ψ (black triangle) and prompt J/ψ (black cross) measured in pp. The inclusive J/ψ points are shifted by $\Delta N_{part} = 2$ for better visibility. Right: nuclear modification factor R_{AA} of prompt J/ψ as a function of N_{part} . A global uncertainty of 6%, from the integrated luminosity of the pp data sample, is shown as a grey box at $R_{AA} = 1$. Statistical (systematic) uncertainties are shown as bars (boxes).

- Introduction
- Observables
- Hard probes
- Prospects

Figure 9: The pp dimuon invariant-mass distribution in the range $p_T < 20 \text{ GeV}/c$ for |y| < 2.4 and the result of the fit to the Y resonances.

- Introduction
- Observables
- Hard probes
- Prospects

Introduction

Observables

Hard probes

Prospects

• At LHC:

- The non-prompt J/ Ψ produced in AA is strongly suppressed when compared to pp collisions (problem with pp...)
- The suppression of non-prompt J/y is of a comparable magnitude to the charged hadron R_{AA} measured by ALICE, which reflects the in-medium energy loss of light quarks.
- The non-prompt J/y yield though strongly suppressed in the 20% most central collisions, shows no strong centrality dependence, within uncertainties, when compared to a broad peripheral region (20–100%).
- Furthermore, this suppression of non-prompt J/y is comparable in size to that observed for high- p_T single electrons from semileptonic heavy-flavour decays at RHIC in which charm and bottom decays were not separated.
- The Y(1S) yield divided by T_{AA} as a function of $p_{T'}$ rapidity, and centrality has been measured in PbPb collisions.
- No strong centrality dependence is observed within the uncertainties. The suppression is observed predominantly at low p_T.
- CDF measured the fraction of directly produced Y(1S) as ~50% for Y(1S) with pT > 8 GeV/c. Therefore, the Y(1S) suppression could be indirectly caused by the suppression of excited Y states, as indicated by earlier results from CMS.

What about feed-down?

Introduction

- Observables
- Hard probes
- Prospects

- The Satz-Masui argument affects all quarkonia states, including the ones which decay to J/Ψ and Y, such as the χ states.
- In the Satz-Matsui picture these states are not supposed to melt at the same temperature.
- LGT support this view
- A sequential suppression scenario is thus quite probable in which the χ states melt first and at higher temperatures the J/Ψ and Y states melt.
- How is it possible to test this scenario?
- The answer is in the polarization of these states.

Prospects

- Introduction
- SPS results
- RHIC results
- The LHC Era
- Prospects

- Heavy ion collisions at high energies have provided a wealth of information concerning the phase structure of QCD
- However, the accelerator information must be complemented by other (astrophysical?) information. Extreme densities at T=0 not accessible
- Properties of matter at extreme conditions are surprisingly different from expected
- QGP thermodynamics is starting now
- What about pp?

Frames and parameters

The azimuthal anisotropy is not a detail

- Two very different physical cases
- Indistinguishable if λ_{φ} is not measured (integration over φ)

Frame-independent polarization

FLSW, PRL 105, 061601; PRD 82, 096002; PRD 83, 056008

...and a series of questions to answer

• Is there a simple composition of processes, probably dominated by one single mechanism, that is responsible for the production of all quarkonia?

...and a series of questions to answer

• Is there a simple composition of processes, probably dominated by one single mechanism, that is responsible for the production of all quarkonia?

P. Faccioli et al, PLB 736(2014) 98

...and a series of questions to answer

• Is this mechanism perturbed in the presence of matter at high density and high temperature?

Pioneering measurements at SPS: NA60

• λ_{θ} and λ_{φ} measured (p-A); HX and CS frames used.

http://arxiv.org/abs/0907.5004 http://arxiv.org/abs/0907.3682

A first step in this program at LHC: polarization as a function of multiplicity

CMS p-p

A first step in this program: polarization as a function of multiplicity

68

CMS p-p

Summary

• The new quarkonium polarization measurements have many improvements with respect to previous analyses and shed, when combined with cross-section data, a new light on quarkonium production

Will we (finally) manage to solve an old puzzle?

- General advice: do not throw away physical information! (azimuthal-angle distribution, rapidity dependence, ...)
- A new method based on rotation-invariant observables gives several advantages in the measurement of decay distributions and in the use of polarization information
- Quarkonium polarization could be used to probe hot and dense matter. A complete program is under way.

Direct vs prompt J/ψ

The <u>direct</u>-J/ ψ polarization (cleanest theory prediction) can be derived from the <u>prompt</u>-J/ ψ polarization measurement of CDF knowing

• the $\chi_c\text{-to-J/}\psi$ feed-down fractions

J/ψ polarization as a signal of colour deconfinement?

[values for high p_T ; cf. NRQCD]

CMS data:

- up to 80% of J/ ψ 's disappear from pp to Pb-Pb
- more than 50%
 (≥ fraction of J/ψ's from ψ' and χ_c)
 disappear from peripheral to central collisions
- → sequential suppression gedankenscenario: in central events ψ' and χ_c are fully suppressed and all J/ ψ 's are *direct*

It may be impossible to test this directly:

measuring the χ_c yield (reconstructing χ_c radiative decays) in PbPb collisions is prohibitively difficult due to the huge number of photons

However, a change of prompt-J/ polarization must occur from pp to central Pb-Pb!

- 1) prompt J/ ψ polarization in pp
- 2) χ_c -to-J/ ψ fractions in pp
- 3) χ_c polarizations in pp
- 4) prompt J/ ψ polarization in PbPb

Simplifying assumptions:

- direct-J/ ψ polarization is the same in pp and PbPb
- normal nuclear effects affect J/ ψ and χ_c in similar ways
- χ_{c1} and χ_{c2} are equally suppressed in PbPb

When will we be sensitive to an effect like this?

In this scenario, the χ_c disappearance is measurable at ~5 σ level with ~20k J/ ψ 's in central Pb-Pb collisions

Prospects

- Introduction
- SPS results
- RHIC results
- The LHC Era
- Prospects

- Heavy ion collisions at high energies have provided a wealth of information concerning the phase structure of QCD
- However, the accelerator information must be complemented by other (astrophysical?) information. Extreme densities at T=0 not accessible
- Properties of matter at extreme conditions are surprisingly different from expected
- QGP thermodynamics is starting now
- What about pp?

• Backup

Cronin x Nuclear matter effects

- Introduction
- Observables
- Hard probes
- Prospects

