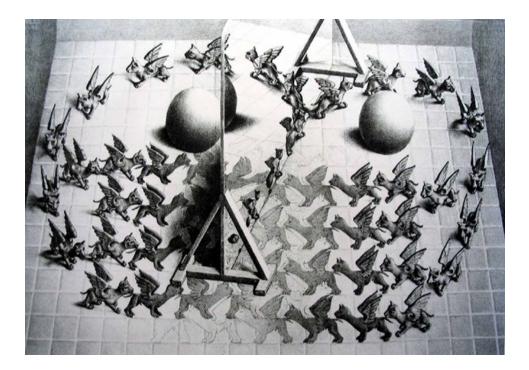
Physics at LHC: SUperSYmmetry

Pedrame Bargassa



LIP 8/06/2016

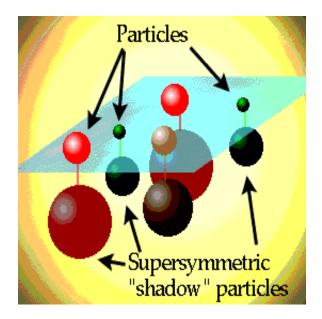
Outline

- SUperSYmmetry: Brief introduction & Motivations
- Reminder of Standard Model (SM) Lagrangian
- SUSY phenomenology: Deeper look
 - "Constructing" the SUSY Lagrangian
 - > Different sectors of MSSM:
 - Squark & Slepton
 - > Chargino
 - Neutralino
 - > Higgs

Advised readings:

- "SUSY & Such" S. Dawson, arxiv:hep-ph/9612229v2
- "A supersymmetry primer" S. P. Martin, arxiv:hep-ph/9709356

Brief introduction & Motivations



Supersymmetry: Introduction words

"Generalize" the spin of known fields

SUperSYmmetry :

spin particle $\frac{1}{2} \leftrightarrow$ spin partner 0 spin particle 1 \leftrightarrow spin partner $\frac{1}{2}$

		-		-			
Names		spin 0 \sim	spin $1/2$		Names	spin $1/2$	spin 1
squarks, quarks	Q	$(\widetilde{u}_L \widetilde{d}_L)$	$\begin{pmatrix} u_L & d_L \end{pmatrix}$				
$(\times 3 \text{ families})$	\overline{u}	\widetilde{u}_R^*	u_R^\dagger		gluino, gluon	\widetilde{g}	g
	\overline{d}	\widetilde{d}_R^*	d_R^\dagger		winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	$W^{\pm} W^0$
sleptons, leptons	L	$(\widetilde{ u} \ \widetilde{e}_L)$	$(u \ e_L)$			~ -	
$(\times 3 \text{ families})$	\overline{e}	\widetilde{e}_R^*	e_R^\dagger		bino, B boson	\widetilde{B}^{0}	B^0
Higgs, higgsinos	H_u	$(H_u^+ \ H_u^0)$	$(\widetilde{H}^+_u \ \widetilde{H}^0_u)$				
	H_d	$(H^0_d \ H^d)$	$(\widetilde{H}^0_d \ \widetilde{H}^d)$				

Observed SUSY particles with same mass than Standard-Model partners? No !

SUSY : A broken symmetry ! Physical sParticles: Mixture of super-partners

- Charginos (χ^{\pm}) / Neutralinos (χ^{0}) : Bino/Wino \leftrightarrow Higgs (charged/neutral)
- Squarks, Sleptons : Mixture of $f_{I} \leftrightarrow f_{R}$ ≻

Pedrame Bargassa – LIP Lisbon

Supersymmetry: The natural cure of Hierarchy problem

- Admitting existence of a Higgs Boson
 - $m_{\rm H} = 125 \text{ GeV/c}^2$
- Consider Higgs mass correction from fermionic loop:

 $\Lambda_{_{\rm UV}}$: Energy-scale at which new physics alters the Standard-Model (momentum cut-off regulating the loop-integral)

If $\Lambda_{UV} \sim M_P \rightarrow \Delta m_H^2 \sim O(10^{30})$ larger than $m_H^2 !!!$

And all Standard-Model masses indirectly sensitive to $\Lambda_{_{\rm UV}}$!!!

$$\Delta m_{H}^{2} = \frac{\lambda_{f}^{2}}{16\pi^{2}} \cdot \left[-2\Lambda_{UV}^{2} + ...\right] \xrightarrow{\text{f}} \left[-2\Lambda_{UV}^{2} + ...\right] \xrightarrow{\text{f}} \left[-2\Lambda_{UV}^{2} + ...\right] \xrightarrow{\text{f}} \left[-2\Lambda_{UV}^{2} + ...\right]$$

 $\Delta m^2_{\ H}$ quadratic divergence cancelled : Hierarchy problem naturally solved !

Supersymmetry & Coupling constants

In Gauge theories : Predict coupling constants at a scale Q once we measured them at another:

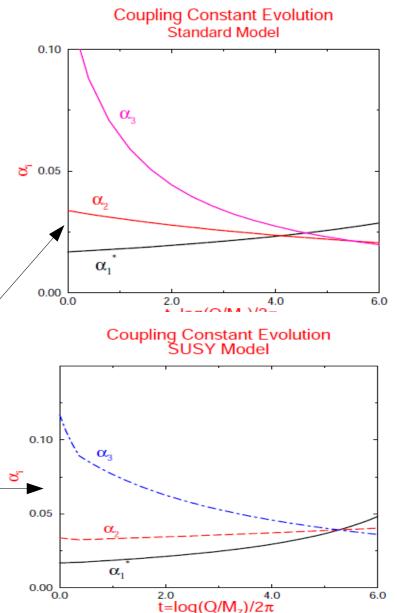
 $1/\alpha_{i}(Q) = 1/\alpha_{i}(M_{z}) + (b_{i}/2) \log[M_{z}/Q]$

 $b_{_{\rm i}}\!\!\!:$ Function of $N_{_{\rm g}}(=3)$ and $N_{_{\rm H}}(Number \mbox{ of Higgs doublets})$

In Standard-Model : $N_H = 1$ -> b_i 's such that ...

In SUSY: $N_{H}=2$ + New particles contributing to a different evolution of coupling constants -> b_{i} 's such that !

SUSY can naturally be incorporated into Grand Unified Theories



Supersymmetry & Dark Matter

Most general SUSY lagrangian allows interactions leading to Baryon- & Lepton-number violation !

Now if sParticles were to exist at TeV scale:

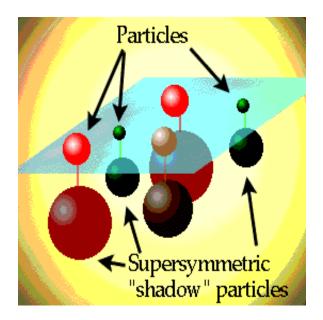
Such interactions seriously restricted by experimental observation !

In SUSY: N_{BL} conservation *can* be "protected" by new symmetry R_{p} :

- Eigenvalue: (-1)^{3(B-L)+s}
 - +1 / -1 for SM / SUSY particles
- If R_P conserved: Lightest Supersymmetric Particle (LSP) is stable In most SUSY scenarios, LSP is either:
 - > The lightest neutralino $\widetilde{\chi}^0$ (mixture of neutral Higgsinos / Bino / Wino)
 - Scalar neutrinos
- …In all cases a weakly interacting neutral particle

SUSY *can* have a natural candidate for the observed Cold Dark Matter

Revisiting SM Lagrangian



SM Lagrangian

Let's put the QCD part aside & have a look at the EW part only

$$L_{EW} = L_{free+interaction} + L_{gauge} + L_{higgs} + L_{yukawa}$$

SM Lagrangian: Free & Interaction parts

$$\mathbf{L}_{\text{free+interaction}} = \Sigma_{f} \mathbf{i} [\bar{\psi}_{f}^{L} \gamma^{\mu} \mathbf{D}_{\mu}^{L} \psi_{f}^{L} + \bar{\psi}_{f}^{R} \gamma^{\mu} \mathbf{D}_{\mu}^{R} \psi_{f}^{R}]$$

→ $\psi_{f}^{L,R}$: Left and Right fermion, CC, Dirac spinors

 $\label{eq:constraint} \begin{array}{l} \rightarrow \mbox{ Gauge-invariant derivatives:} \\ D^{\rm L}_{\ \mu} = \delta_{\mu} - i \mbox{ g } (\tau_{a}/2) \ W^{a}_{\ \mu} - i \mbox{ g' } (Y_{L}/2) \ B_{\mu} \\ D^{\rm R}_{\ \mu} = \delta_{\mu} & - i \mbox{ g' } (Y_{R}/2) \ B_{\mu} \end{array} \end{array}$

→ g, g': Weak-isospin & -hypercharge couplings → $W^{a}_{\mu'}$, B_{μ} : Weak-isospin & -hypercharge fields → τ_{a} , $Y_{L,R}$: Weak-isospin & -hypercharge quantum numbers, matrices

Pedrame Bargassa – LIP Lisbon

SM Lagrangian: The gauge part

$$L_{gauge} = -(1/4) W^{a}_{\mu\nu} W^{a\mu\nu} - (1/4) B_{\mu\nu} B^{\mu\nu}$$

→ Gauge-invariant Weak-isospin & -hypercharge fields:

$$W^{a}_{\mu\nu} = \delta_{\mu}W^{a}_{\nu} - \delta_{\nu}W^{a}_{\nu} + g \epsilon_{abc} W^{b}_{\mu}W^{c}_{\nu}$$
$$B_{\mu\nu} = \delta_{\mu}B_{\nu} - \delta_{\nu}B_{\nu}$$

 2^{nd} term of $W^{a}_{\mu\nu}$: Self-interacting character of Weakisospin interaction \rightarrow *This is the term allowing triboson couplings in SM* A similar term exists in QCD sector of SM: QCD is also non-abelian \rightarrow Allows self-coupling **SM Lagrangian:** The Higgs part

$$\mathbf{L}_{\mathbf{higgs}} = (\mathbf{D}_{\mu} \phi)^{+} (\mathbf{D}^{\mu} \phi) - \mathbf{V}(\phi)$$

→ V(ϕ): Pure Higgs interaction: Mass: $m_{_{\rm H}} = \sqrt{-2\mu^2} = \sqrt{2\lambda v^2}$ Coupling: Calculate :-D

→ 1st term: Higgs↔Boson interaction: Gives Boson masses Gives Higgs↔Boson couplings

The lagrangian has to be SU(2)xU(1) invariant

 \rightarrow 4 scalar <u>real</u> fields: $\phi = (\phi^+, \phi^0)$

$$\phi^{+} = (1/\sqrt{2})(\phi_{1} + i\phi_{2})$$

$$\phi^{0} = (1/\sqrt{2})(\phi_{3} + i\phi_{4})$$

Pedrame Bargassa – LIP Lisbon

SM Lagrangian: Yukawa

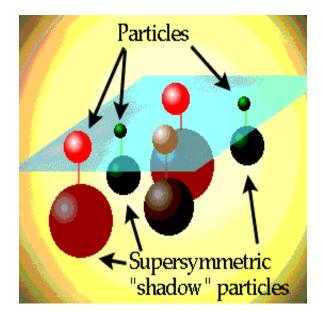
$$L_{yukawa} = -G_{d} (\overline{u}, \overline{d})_{L} (\phi^{+}, \phi^{0}) d_{R} - G_{u} (\overline{u}, \overline{d})_{L} (-\overline{\phi}^{0}, \phi^{-}) u_{R} + hermitian-conjugate$$

(u,d): Up & Down doublets of <u>quarks or leptons</u>

Once Higgs sector is EW-broken: $\phi = (1/\sqrt{2})(0,v+H) \rightarrow \text{"Confers" mass to fermions:}$ $L_{yukawa} = -m_d \overline{d}_L d_R (1+H/v) - m_u \overline{u}_L u_R (1+H/v)$ because: $m_f = G_f v/\sqrt{2}$

For neutrinos: $m = G_v v / \sqrt{2} \sim 0 :-D$

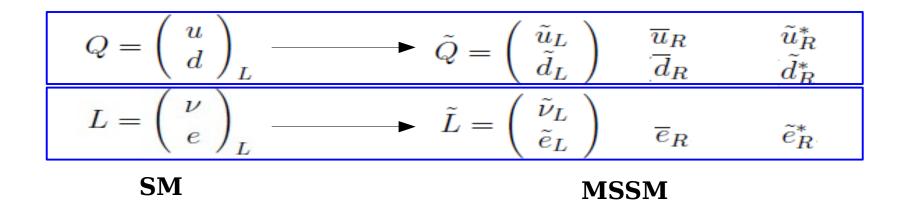
"Constructing" the SUSY Lagrangian



MSSM: Writing the Lagrangian

Recipe to build the particle content and Lagrangian:

- > Each SM fermion f has 2 chiral superpartners: $f_{L} \& f_{R}$
- SM fermions and SUSY sfermions are regrouped in superfields



- Gauge superfields: "Simply" containing the SM gauge fields and their SUSY partners
- > Gauge superfields: Respecting the SU(3) x SU_L(2) x U(1)

Superfields of Gauge & Matter, by definition, respect the gauge symmetries extended from the SM

Superfield	SU(3)	$SU(2)_L$	$U(1)_Y$	Particle Content
\hat{Q}	3	2	$\frac{1}{6}$	$(u_L, d_L), (\tilde{u}_L, \tilde{d}_L)$
\hat{U}^c	3	1	$-\frac{2}{3}$	$\overline{u}_R, \widetilde{u}_R^*$
\hat{D}^c	3	1	$\frac{1}{3}$	$\overline{d}_R, ilde{d}_R^*$
\hat{L}	1	2	$-\frac{1}{2}$	$(\nu_L, e_L), (\tilde{\nu}_L, \tilde{e}_L)$
\hat{E}^{c}	1	1	1	$\overline{e}_R, \widetilde{e}_R^*$
\hat{H}_1	1	2	$-\frac{1}{2}$	(H_1, \tilde{h}_1)
\hat{H}_2	1	2	$\frac{1}{2}$	$(H_2, ilde{h}_2)$

Superfield	SU(3)	$SU(2)_L$	$U(1)_Y$	Particle Content
\hat{G}^a	8	1	0	$g, ilde{g}$
\hat{W}^i	1	3	0	$W_i, \ ilde{\omega}_i$
\hat{B}	1	1	0	$B, ilde{b}$

The interaction part:

$$\mathcal{L}_{int} = -\sqrt{2} \sum_{i,A} g_A \left[S_i^* T^A \overline{\psi}_{iI} \lambda_A + \text{h.c.} \right] - \frac{1}{2} \sum_A \left(\sum_i g_A S_i^* T^A S_i \right)^2$$

- Interaction-specific quantum number
- S_i: Scalar fields: Squarks & Sleptons
- ψ_i : Higgsinos
- > λ_{A} : Gauge <u>fermions</u>

The gauge invariant derivative part: As same as introduced in SM, but generalized to superfields

The kinetic part:

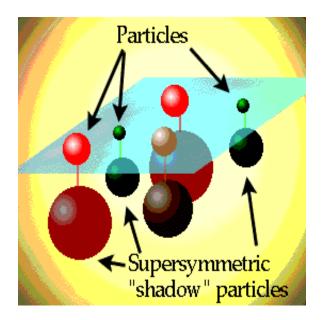
$$\mathcal{L}_{KE} = \sum_{i} \left\{ (D_{\mu} \overline{S_{i}^{*}}) (D^{\mu} \overline{S_{i}}) + i \overline{\psi}_{i} D \psi_{i} \right\} \\ + \sum_{A} \left\{ -\frac{1}{4} F_{\mu\nu}^{A} F^{\mu\nu A} + \frac{i}{2} \overline{\lambda}_{A} D \lambda_{A} \right\}$$

Pedrame Bargassa – LIP Lisbon

MSSM: SM ↔ MSSM correspondance

Fermion	Scalar	Gauge field
$\frac{\mathbf{SM}}{\mathrm{i}\mathrm{f}}\gamma^{\mu}\mathrm{D}_{\mu}\mathrm{f} +$	$(D_{\mu} \phi)^{+}(D^{\mu} \phi)$ SM: Higgs	- (1/4) F _{μν} F ^{μν}
<u>MSSM</u> (includes	what is above)	
$i \overline{\psi} \gamma^{\mu} D_{\mu} \psi +$ MSSM: Higgsinos	$(D_{\mu} S_{i})^{+}(D^{\mu} S_{i}) -$ Squarks & Sleptons	(1/4) $F_{\mu\nu}F^{\mu\nu}$ This is the same as above
+(i/2) $\overline{\lambda}_{A} \gamma^{\mu} D_{\mu} \lambda_{A}$ Gauge fermions		

SUSY: Let's minimally break it: Broken & effective MSSM



SUSY breaking

How is it broken ? We don't know... did not discover it (yet)...

How we *think* it's broken: Models/Implications by/for the

theorists/experimentalists

MSSM

mSUGRA Spontaneous Super-Gravity breaking: More constrained \rightarrow 5 parameters @ breaking scale -> RGEs \rightarrow Our mass spectrum

- m₀: Scalar mass
- m_{1/2}: Fermion mass
- μ : Higgs parameter ($\mu H_1 H_2$)
- A: Tri-linear squark/slepton mixing term

$$tan\beta = /$$

Parametrizing our ignorance of SUSY breaking, i.e. no hypothesis: Un-constrained \rightarrow 124 parameters

- > $tan\beta / \mu / M_A$ (pseudoscalar Higgs boson mass)
- M_{L1,2,3}: Controls slepton masses
- M_{Q1,2,3}: Controls squark masses
 - M_{1.2}: Controls neutralino/chargino sectors

This is the most general Lagrangian we can write, hence the large number of unknowns: Only the spin hypothesis has been made Pedrame Bargassa – LIP Lisbon

MSSM: Effective Lagrangian

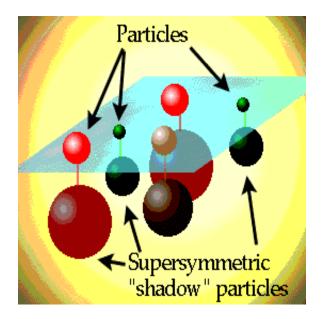
- We don't know <u>how</u> SUSY is broken, but can write the most general broken effective Lagrangian
- Soft: The breaking of the symmetry is taken care of by introducing "soft" mass terms for scalars & gauginos: Soft because no reintroduction of quadratic divergence
- ▶ Maximal dimension of soft operators: $\leq 3 \rightarrow$ Mass terms, Bilinear & Trilinear terms

$$\begin{split} -\mathcal{L}_{soft} &= \boxed{m_{1}^{2} \mid H_{1} \mid^{2} + m_{2}^{2} \mid H_{2} \mid^{2}}_{H_{2} \mid^{2}} - \boxed{B\mu\epsilon_{ij}(H_{1}^{i}H_{2}^{j} + \text{h.c.})}_{H_{2}^{0}} + \underbrace{\tilde{M}_{Q}^{2}(\tilde{u}_{L}^{*}\tilde{u}_{L} + \tilde{d}_{L}^{*}\tilde{d}_{L})}_{H_{2}^{0}\tilde{u}_{R}^{*}\tilde{u}_{R} + \widetilde{M}_{d}^{2}\tilde{d}_{R}^{*}\tilde{d}_{R} + \widetilde{M}_{L}^{2}(\tilde{e}_{L}^{*}\tilde{e}_{L} + \tilde{\nu}_{L}^{*}\tilde{\nu}_{L})}_{H_{2}^{0}\tilde{u}_{R}^{*}\tilde{e}_{R}^{*}\tilde{e}_{R}} \\ &+ \frac{1}{2} \underbrace{M_{3}\overline{\tilde{g}}\tilde{g} + M_{2}\overline{\tilde{\omega}_{i}}\tilde{\omega}_{i} + M_{1}\overline{\tilde{b}}}_{H_{2}^{0}} + \frac{g}{\sqrt{2}M_{W}}\epsilon_{ij}}_{H_{2}^{0}\tilde{u}_{R}^{*}} + \frac{M_{d}}{\cos\beta}A_{d}H_{1}^{i}\tilde{Q}^{j}\tilde{d}_{R}^{*}}_{H_{1}^{0}\tilde{\omega}_{R}^{*}} \\ &+ \frac{M_{u}}{\sin\beta}A_{u}H_{2}^{j}\tilde{Q}^{i}\tilde{u}_{R}^{*} + \frac{M_{e}}{\cos\beta}A_{e}H_{1}^{i}\tilde{L}^{j}\tilde{e}_{R}^{*} + \text{h.c.}} \end{aligned}$$

Trilinear terms: As you might guess, that's where the real fun is :-D

Specificity of SUSY: Writing the most general Lagrangian, generalizing the spins of fields, SUCH that quadratic divergences are always shut down

Squark & Slepton sector



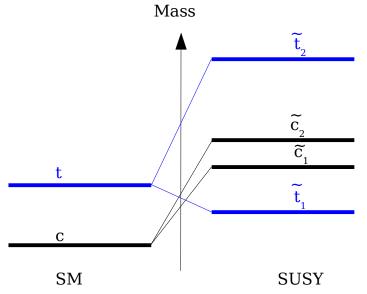
MSSM: Squark & Slepton sector

Physical states are 2 scalar mass-eigenstates: Mixtures of left- & -right chiral superpartners (scalars) of SM quark and leptons

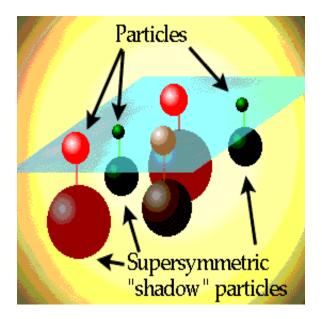
Let's pick-up example of the top sector: If $[f_L - f_R]$ chiral basis:

$$M_{\tilde{t}}^{2} = \begin{pmatrix} \tilde{M}_{Q}^{2} + M_{T}^{2} + M_{Z}^{2}(\frac{1}{2} - \frac{2}{3}\sin^{2}\theta_{W})\cos 2\beta & M_{T}(A_{T} + \mu\cot\beta) \\ M_{T}(A_{T} + \mu\cot\beta) & \tilde{M}_{U}^{2} + M_{T}^{2} + \frac{2}{3}M_{Z}^{2}\sin^{2}\theta_{W}\cos 2\beta \end{pmatrix}$$

- \succ \widetilde{M}_{Q} : Left squark mass
- \rightarrow $\widetilde{\mathrm{M}}_{_{\mathrm{U}}}$: Right squark mass
- A_T: Trilinear coupling specific to the top sector
- $M_Q = M_T$: Mass of the SM particle
- µ: Higgs (bilinear) mixing parameter
- β: Higgs vev-specific parameter (see in a couple of slides): Plays a role in the mixing



Chargino sector



MSSM: Chargino sector

Physical states are 2 fermionic mass-eigenstates: Mixtures of charged winos and charged higgsinos, which are SUSY eigenstates

In the charged [wino – higgsino] basis:

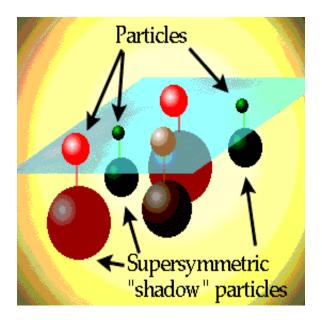
$$M_{\tilde{\chi}^{\pm}} = \begin{pmatrix} M_2 & \sqrt{2}M_W \sin\beta \\ \sqrt{2}M_W \cos\beta & -\mu \end{pmatrix}$$

- \rightarrow M₂: Mass of the wino
- μ: Higgs (bilinear) mixing parameter
 - > The more $M_2 \gg 1$: The more the charginos are wino-like

Comments:

- > The more μ > 1: The more the charginos are higgsino-like
- β: Not playing a role in mixing

Neutralino sector



MSSM: Neutralino sector

Physical states are 4 fermionic mass-eigenstates: Mixtures of neutral winos w^0 , bino b, and 2 neutral higgsinos, which are SUSY eigenstates

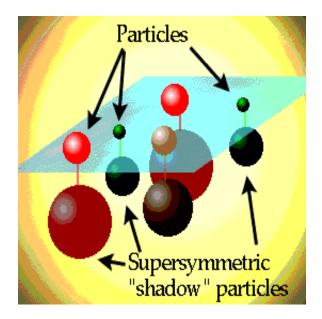
In the neutral $[b - w^0 - h^0_1 - h^0_2]$ basis:

$$M_{\tilde{\chi}_{i}^{0}} = \begin{pmatrix} M_{1} & 0 & -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\sin\beta\sin\theta_{W} \\ 0 & M_{2} & M_{Z}\cos\beta\cos\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} \\ -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\cos\beta\sin\theta_{W} & 0 & \mu \\ M_{Z}\sin\beta\sin\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} & \mu & 0 \end{pmatrix}$$

- \blacktriangleright M₁: Mass of the bino
- M₂: Mass of the wino
- μ: Higgs (bilinear) mixing parameter

<u>Exercise</u>: Qualitatively gauge the influence of each parameters in the mass-matrix above on the "type" of neutralinos

Higgs sector: Keeping the most refined for last



MSSM: Higgs sector

<u>2</u> Higgs complex doublets:

$$V_{H} = \left(|\mu|^{2} + m_{1}^{2} \right) |H_{1}|^{2} + \left(|\mu|^{2} + m_{2}^{2} \right) |H_{2}|^{2} - \mu B \epsilon_{ij} \left(H_{1}^{i} H_{2}^{j} + \text{h.c.} \right) + \frac{g^{2} + g^{\prime 2}}{8} \left(|H_{1}|^{2} - |H_{2}|^{2} \right)^{2} + \frac{1}{2} g^{2} |H_{1}^{*} H_{2}|^{2} .$$

8 degrees of freedom – 3 (massive gauge bosons) = 5 physical Higgs fields: **h / H / H[±] / A** (CP-odd)

3 parameters to describe the M<u>SSM Higgs sector:</u>

Once $v_{1,2}$ are fixed such that:

$$M_W^2 = \frac{g^2}{2}(v_1^2 + v_2^2)$$

This whole sector is described by (only) 2 other parameters: $\rightarrow \tan\beta$ $\rightarrow M_A$: $M_A^2 = \frac{2 \mid \mu B \mid}{\sin 2\beta}$

MSSM: Higgs sector

Let's look at couplings:

 $Z^{\mu}Z^{\nu}h: \qquad \frac{igM_Z}{\cos\theta_W}\sin^2 Z^{\mu}Z^{\nu}H: \qquad \frac{igM_Z}{\cos\theta_W}\cos^2 Q^{\mu}W^{\nu}L$

 $W^{\mu}W^{\nu}h$:

$$\frac{igM_Z}{\cos \theta_W} \sin(\beta - \alpha) g^{\mu\nu}$$
$$\frac{igM_Z}{\cos \theta_W} \cos(\beta - \alpha) g^{\mu\nu}$$
$$\frac{igM_W}{igM_W} \sin(\beta - \alpha) g^{\mu\nu}$$
SM couplings

$$\tan 2\alpha = \frac{(M_A^2 + M_Z^2) \sin 2\beta}{(M_A^2 - M_Z^2) \cos 2\beta + \epsilon_h / \sin^2 \beta}$$
$$\sin(\beta - \alpha) \quad \to 1 \text{ for } M_A \to \infty$$
$$\cos(\beta - \alpha) \quad \to 0 \quad .$$

Similar for coupling to $\gamma\,\&$ fermions

<u>Exercise</u>: Demonstrate the 2 relations above

It is possible that:

1/ Light h "SM like":

- \rightarrow Mass: Rather low
- \rightarrow Br(h -> $\gamma\gamma$) ~ Like in SM

2/ {H, H[±], <u>A</u>} much heavier & degenerate

- \rightarrow Couplings of lightest Higgs to fermions/ $\gamma/W/Z$ \sim Like in SM
- \rightarrow Couplings of "additional" Higgs to fermions/ $\gamma/W/Z \sim 0$

This is called the **decoupled regime**:

1/ The lightest Higgs field is a) rather light b) behaves *a la* SM 2/ The "new" physical Higgs fields are (much ?) higher in mass, with \sim 0 couplings to known fields

MSSM: Higgs sector

Equation governing lightest Higgs mass:

$$M_{h,H}^{2} = \frac{1}{2} \left\{ M_{A}^{2} + M_{Z}^{2} + \frac{\epsilon_{h}}{\sin^{2}\beta} \pm \left[\left(M_{A}^{2} - M_{Z}^{2} \right) \cos 2\beta + \frac{\epsilon_{h}}{\sin^{2}\beta} \right)^{2} + \left(M_{A}^{2} + M_{Z}^{2} \right)^{2} \sin^{2} 2\beta \right]^{1/2} \right\}$$

with: $\epsilon_{h} \equiv \frac{3G_{F}}{\sqrt{2}\pi^{2}} M_{T}^{4} \log \left(\frac{\tilde{m}^{2}}{M_{T}^{2}} \right)$ Contribution of 1-loop correction only !
Squark masses: Higgs mass
particularly sensitive to $\sim t_{1,2}$ system
Upper bound:
 $M_{h}^{2} < M_{Z}^{2} \cos^{2} 2\beta + \epsilon_{h}$
 $M_{h} \text{ in SUSY Model} M_{S}=1 \text{ TeV } A = \mu = 0$
 $\int_{0}^{140.0} \int_{0}^{140.0} \int_{0}^{140.0}$

EXERCISES

1/ Install the SuSpect software on your computer: This one of the only SUSY spectrum calculators with parametrized MSSM (pMSSM) parameters as input: You don't have 124, but 27 parameters to play with ;-)

2/ Just play with different parameters and follow evolution of the generated masses

2i) What are the most sensitive parameters for different types of particles ?

2ii) Once you get an idea for 2i): For a set of frozen parameters, produce plots showing evolution of the physical masses, say , as function of pMSSM parameters

- For 2i) & 2ii), let's pick-up:
 - \rightarrow The lightest neutralino
 - \rightarrow The chargino
 - \rightarrow The lightest stop and stau
 - \rightarrow The lighest Higgs

3/ Once your fingers are well warmed-up with pMSSM, produce the points on the following page :-D $\,$

Stop decays: Different diagrams for different domains

