Probing the SM: Top quarks and beyond

Michele Gallinaro LIP Lisbon April 4, 2016

Top quarks as window to New Physics
 Top-Higgs associated production
 Top quark signatures in SUSY
 Higgs and Dark Matter

SM confirmed by the data

Excellent agreement with all experimental results

Top quarks as window to BSM physics

Top quark affects stability of Higgs mass

Contributions grow with Λ :

 $m^2 = m_0^2 + g^2 \Lambda^2$

Cancellation?

Solutions:

- Naturalness: There is no problem
- Weakly-coupled model at TeV scale
 - -New particles to cancel SM divergences
 - -Top partners: new scalar/vectors coupled to top, exotic top decays
- Strongly-coupled model at TeV scale
 - ttbar resonances, bound states, 4-top production, etc.
- New space-time structure
 - Introduce extra space dimensions to lower Planck scale cutoff to ~1TeV
 - KK excitations

The top quark

Role of top quark physics

- Top quark physics after the Higgs discovery
 - Heavy particle, preferential coupling?
 - Special role in EWSB mechanism?
 - Does it play a role in non-SM physics?
 - Are the couplings affected?
 - Main background for many NP searches
- Monitoring of production mechanism
- Is there any sign of NP in top production/decay?

Role of top quark physics

Inclusiv

- Top quark physics after the Higgs discovery
 - Heavy particle, preferential coupling?
 - Special role in EWSB mechanism?
 - Does it play a role in non-SM physics?
 - Are the couplings affected?
 - Main background for many NP searches
- Monitoring of production mechanism
- Is there any sign of NP in top production/decay?

Study characteristics

Top cross section at 7/8 vs 13 TeV

- LHC collisions started at 7/8 TeV
- LHC design is at 14 TeV
- Top cross section drops faster than background processes at lower sqrt{s}
- Top cross section drops by factor of ~5:
 - Cacciari, Frixione, Mangano, Nason, Ridolfi: arXiv: 0804.2800
 - Czakon, Mitov: arXiv:1112.5675
 - top σ (7TeV) = 174 pb
 - top σ (8TeV) = 248 pb
 - top σ(13TeV)= 816 pb
- · Background is more "flat"

Regions hard to explore

Top quark decays

Cross sections

7 TeV

8 TeV

Cross section measurement

Cross sections (cont.)

CMS-TOP-14-016

Collider	$\sigma_{ m tot}~[m pb]$	scales [pb]	pdf [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8%)
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	+6.2(2.5%) -6.4(2.6%)
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	+16.2(1.7%) -17.8(1.9%)

±3-5%

Differential cross sections

EPJC 73(2013) 2339, CMS-TOP-12-027

- Measure differential cross section
 - Test perturbative QCD
 - Test BSM scenarios (Z' decays, etc) with narrow resonance
 - Improve ttbar modeling and reduce uncertainties
- Correct for detector effects and acceptances
- CMS sees softer top p_{T} in data, agreement with ATLAS at high p_{T}
 - Due to momentum reshuffling, P. Nason, indico.cern.ch/event/ 301787
 - FSR shower changes mass of final state partons. Light parton shower can build sizeable mass, and t/tbar do not radiate (reduced momenta to conserve energy)
- NNLO might be able to solve issue
- Short term solution: consider difference as uncertainty

CMS Preliminary, 12.1 fb¹ at $\sqrt{s} = 8$ TeV $\frac{d\sigma}{dm^{t\bar{t}}} [GeV^{-1}]$ e/µ + Jets Combined Data MadGraph 10 MC@NLO POWHEG 10 10⁻⁵ 1600 m^{tt} [GeV] CMS Preliminary, 12.1 fb¹ at vs = 8 TeV $\frac{1}{\sigma} \frac{d\sigma}{dp_T^t} [GeV^{-1}]$ Data e/μ + Jets Combined MadGraph --- MC@NLO POWHEG Approx. NNLO

150

200 250 300 350 400

GeV

Cross section: multi-dimensional fit

CMS-TOP-13-004

Probing the Wtb vertex

PRD 85 (2012) 112007, PLB 739 (2014) 23

Dileptons with taus

- cross section measurement including τs
- Includes only 3rd generation quarks/leptons
- Syst unc: tauld, fakes

Channel	Signature	BR
Dilepton(e/µ)	ee,μμ,eμ + 2 <i>b</i> -jets	4/81
Single lepton	e,μ + jets + 2 <i>b</i> -jets	24/81
All-hadronic	jets + 2 <i>b</i> -jets	36/81
Tau dilepton	e τ, μτ +2 <i>b</i> -jets	4/81
Tau+jets	τ + jets + 2 <i>b</i> -jets	12/81

- If top quark plays special role in EWK symmetry breaking, couplings to W may change
- Charged Higgs may alter coupling to W
- Search for final states with taus: charged Higgs

How does a top quark decay?

- almost always t→Wb (i.e. V_{tb}~1)
- lifetime is short, and it decays before hadronizing
- the W is real:
 - − can decay W→Iv (I=e, μ , τ), BR~1/9 per lepton
 - can decay W→qq, BR~2/3

Measure R in dilepton channel

N.Cim. B125(2010)983, PLB 736(2014)33

- Probe heavy flavor content of ttbar events
- Use ttbar dilepton final state
- Advantages:
 - less background
- Measure:

- Selection:
 - 2 leptons+ ≥2 jets + MET
 - no b-tagging in preselection
- Clean signature
- Goals:
 - measure $\varepsilon(b)$ and R

Signal or background?

• Use tail to model background in signal region

Signal vs. background

N.Cim. B125(2010)983, PLB 736(2014)33

Scale shape to match spectrum observed with M_{li} >180 GeV

Heavy flavor content

N.Cim. B125(2010)983, PLB 736(2014)33

• Fully data-driven measurement

- b-tagging multiplicity parametrized as function of R ϵ_b , ϵ_q , top contribution
- Number of reconstructed t→Wq is estimated from lepton-jet invariant mass

• R=1.01±0.03 (stat. + syst.)

– Lower boundary with confidence interval @95%CL after requiring R≤1 ⇒ R>0.955 @95%CL

Measure R

- Variation of the likelihood used to measure R from data
- Fit different categories

Michele Gallinaro - "The top quark: a tool for discoveries" - April 4, 2016

Summary of R results

Top quark mass: why do we care?

M_w [GeV]

- Top is the only fermion with the mass of the order of EWSB scale
- Discovered Higgs boson fits well with precise determinations of $m_{\rm W}$ and $m_{\rm top}$
 - Highly fine-tuned situation
 - ~1GeV is all it takes to tip the scales
- Run2 will allow for discrimination between SM and MSSM scenario (?)
- The fate of the Universe might depend on Δm_{top} ~1 GeV

M. Gallinaro - "Probing the SM: top quarks and beyond" - Apr. $\overset{\text{Higgs pole mass } M_h \text{ in GeV}}{4, 2016}$

Probing top quark production

Differential measurements

- Testing QCD, measuring properties, searching for new physics, ...
- Function of kinematics, global variables, associated production
- Increased sensitivity: top quark pairs produced at rest

– σ (M_{tt}>1 TeV at 13 TeV) =8 x σ (M_{tt}>1 at 8 TeV)

⇒Unique opportunity to probe boosted production at 13 TeV

Boosted topology

- All-hadronic topology
 - Top p_T boosted, jets are collimated
 - Decay products and FSR collected in a "fat" jet
- Look at jet substructure
- Measure mass (no neutrinos)

M. Gallinaro - "Probing the SM: top quarks and beyond" - Apr. 4,52016

 $= 82.5 \pm 0.3 \text{ GeV/c}^2$ Data tī W+Jets Non-W MJ Data fit - - MC fit 20 40 60 80 100 120 140 160 180 m(W-jet) (GeV/c²) CMS, L = 5 fb⁻¹ at $\sqrt{s} = 7$ TeV Data tī W+Jets 🔜 Non-W M. 200 100 300 400 500 m(W+b) (GeV/c²) CMS, L = 5 fb⁻¹, √s = 7 TeV Events / 100 GeV/c² 0 0 Observed Non-top multije simulation tat.

sys. bkgd uncert. Z'(1 TeV/c²) σ = 1.0 pb $Z'(1.5 \text{ TeV/c}^2) \sigma = 0.18 \text{ pb}$ $Z'(2 \text{ TeV/c}^2) \sigma = 0.06 \text{ pb}$ --- Z'(3 TeV/c²) σ = 0.03 pb 10 (Data-Pred)/Pred z 2500

2000

3000

3500

 $m_{uv}^{DATA} = 83.0 \pm 0.7 \text{ GeV/c}^2$

4000 4500 5000 (CoV/c²) 26 tt mass (GeV/c²)

ttbar+jet cross section

arXiv:1411.5621

- Study ttbar with associated jet production
 - Dilepton events (≥4 jets, at least 2 b-jets)
 - Order jets by b-tag discriminator value
 - Ratio of number of events obtained from data by fitting the b-tagging discriminator distributions
 - Cross section measured in the visible (full) phase space (p_T>20,40 GeV)

$$\sigma_{ ext{t\bar{t}b}ar{b}}/\sigma_{ ext{t\bar{t}jj}}=0.022\pm0.003\, ext{(stat)}\pm0.005\, ext{(syst)}$$

- Measured value higher but compatible (1.6σ) with NLO calculation
- Dominant systematics (ttbar modeling and JES) cancel in the ratio
 - Remaining uncertainties from b-(mis)tag rate

ttbar+heavy flavour

- Study rate of ttbb: $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj)$
- Anomalous tt+jets could signal BSM final states
- First direct measurement of typical bkg to top-Higgs coupling

- Irreducible non-resonant bkg from ttbb

• Improved theoretical understanding of ttH(bb) crucial to ttH and NP searches

ttbar+Higgs

ttbar produced in association with H

-ttbar is a "clean" tag

direct measurement of Higgs couplings

ttbar+Higgs (cont.)

CMS

¥

 $\sqrt{s} = 8$ TeV, 19.3-19.7 fb⁻¹

tt H, H \rightarrow bb, $\tau\tau$, $\gamma\gamma$, WW, ZZ

arXiv:1408.1682

- Search for associated SM Higgs production: ttH
 - Both "dilepton" and "I+jets" channels
- Study bb, tt, gg, WW, ZZ final states
- Simultaneous fit for S and B fractions

ttH, H→bb

JHEP 09(2014)087, EPJC 75(2015)251

- Study ttH(\rightarrow bb) final state
- Select SL and DL events
- Categorize N_{iets}, N_{lep}, N_{btags}
- Assign events a b-tag likelihood
- low- and high-purity categories
 - Signal: ttH
 - Background: tt+bb
- ttH and tH allows direct access to Yukawa coupling

ttV (V=γ,Z,W)

CMS-TOP-13-011, EPJC 74(2014)3060

Scalar top quark

- SUSY is one plausible extension of the SM
- due to the heavy top quark, mass splitting between \tilde{t}_1 and \tilde{t}_2 can be large, such that the lighter stop \tilde{t}_1 can be even lighter than the top quark
- Decays dictated by mass spectrum of other SUSY particles

• Heavy stop: $\tilde{\iota} \to \iota \sim 0$

M. Gallinaro - "Probing the SM: top quarks and beyond" - Apr. 4, 2016

i.e. similar

Top and SUSY

EPJC 74 (2014) 3109, TOP-13-004

 If SUSY exists and is responsible for solution of hierarchy problem, naturalness arguments suggest that SUSY partners of top quark (*stop*) may have mass close to m_{top} to cancel top quark loop contributions to Higgs mass

$$egin{aligned} & ilde{t} o t ilde{\chi}_1^0 o bW ilde{\chi}_1^0 \ ilde{t} o b ilde{\chi}_1^+ o bW ilde{\chi}_1^0 \ ilde{t} ilde{t} ilde{t} ilde{t} ilde{t} \ egin{aligned} & ilde{t} o bW ilde{\chi}_1^0 \ ilde{t} ilde{t} ilde{t} ilde{t} \ egin{aligned} & ilde{t} o bW ilde{\chi}_1^0 \ ilde{t} ilde{t} \ egin{aligned} & ilde{t} o bW ilde{\chi}_1^0 \ ilde{t} \ egin{aligned} & ilde{t} o bW ilde{\chi}_1^0 \ ilde{t} \ egin{aligned} & ilde{t} o bW ilde{\chi}_1^0 \ ilde{t} \ egin{aligned} & ilde{t} o bW ilde{\chi}_1^0 \ ilde{t} \ egin{aligned} & ilde{t} o bW ilde{\chi}_1^0 \ ilde{t} \ egin{aligned} & ilde{t} o bW ilde{\chi}_1^0 \ ilde{t} \ egin{aligned} & ilde{t} o bW ilde{\chi}_1^0 \ ilde{t} \ egin{aligned} & ilde{t} o bW ilde{\chi}_1^0 \ ilde{t} \ egin{aligned} & ilde{t} o bW ilde{\chi}_1^0 \ ilde{t} \ egin{aligned} & ilde{t} o bW ilde{\chi}_1^0 \ ilde{t} \ egin{aligned} & ilde{t} o bW ilde{\chi}_1^0 \ ilde{t} \ egin{aligned} & ilde{t} o bW ilde{\chi}_1^0 \ ilde{t} \ egin{aligned} & ilde{t} o bW ilde{t} \ eg$$

- Small predicted xsection
 - for 175GeV: 40pb@8TeV
- Stop pair production: $t\bar{t}\tilde{\chi}_1^0\tilde{\chi}_1^0$ -similar to ttbar lepton+jet and dilepton ch. -Additional MET from neutralinos
- increase in ttbar cross section

Multi-top production

JHEP 11(2014)154, JHEP 01(2014)163

- Production of 4 tops is an attractive scenario in a number of new physics models
- The SM cross section is ~1fb
- Use lepton+jets final state
- Combination of kinematical variables and multivariate techniques
- Data are consistent with bkg expectations
- Set upper limit cross section 32fb @95%CL
- Search for same-sign dileptons
- Several models considered
- Consider multiple search regions defined by MET, hadronic energy, number of (b-) jets, and p_T of the leptons in the events

Dark Matter+ Higgs

arXiv:1510.06218, arXiv:1506.01081

- Search for DM + $h(\rightarrow bb)$
- Model-independent search
- Signature: h(→bb/γγ)+MET
- Simplified model with Z' or pseudo-scalar Higgs A(→χχ)
- Signal events at large MET

DM particle (χ): can be scalar or fermion Pseudo-scalar Higgs A

Cross sections at the LHC

M. Gallinaro - "Probing the SM: top quarks and beyond" - Apr. 4, 2016

Prospects at 13 TeV

CMS Experiment at the LHC, CERN Data recorded: 2015-Aug-22 02:13:48.861952 GMT Run / Event / LS: 254833 / 1268846022 / 846

M=2.9 TeV

Summary

- Top quarks are valuable probes of SM
- Excellent consistency but SM is incomplete
 - -Extensions foresee existence of additional bosons
 - -Searches for BSM bosons ongoing
- Dominant background for New Physics searches
- Due to large mass, top quarks couple to heavy objects
- Deviations from SM may indicate New Physics
- More data will enhance the sensitivity
 - -Higgs, multi-top, boosted objects, SUSY, Dark matter, etc.

Cross section in the R measurement

N.Cim. B125(2010)983, PLB 736(2014)33

- Measure R:
- Dilepton final state

$$\mathbf{R} = \frac{BR(t \rightarrow Wb)}{BR(t \rightarrow Wq)} \approx |\mathsf{V}_{\mathsf{tb}}|^2$$

$$\sigma(t\bar{t}) = 238 \pm 1 \text{ (stat.)} \pm 15 \text{ (syst.) pb } \pm 6\%$$

Measure R by comparing number of ttbar events with 0, 1 and 2 b-tags

$$|V_{\rm tb}| > 0.975$$
 at 95% CL

Precise mass measurement

arXiv:1509.04044

• Combinatorics

- Identify top quark decay products
- Ambiguity
- ISR/FSR introduces further complexity for selection
- (~70% of the events have both b-jets reconstructed and selected)

Missing transverse energy

- Constrains the contribution from undetected particles
- In the dilepton channel: 2 neutrinos $\Rightarrow \quad \vec{E}_T^{miss} = \vec{p}_T^{\nu} + \vec{p}_T^{\rho}$
- Jet energy scale
 - $\ensuremath{\mathsf{m}_{\mathsf{top}}}$ reconstruction requires measuring the parton energy
 - parton \rightarrow jet affected by resolution and absolute energy scale
- Pile-up
 - Jet energy scale, MET measurement, extra jets/leptons
 - N_{pileup}≈ 6 (21) for most of data collected in 2011 (2012)

Case study: the dilepton channel

Top mass: Event selection

- Select events
- Reconstruct mass

Process	Pre-selection	KINb	=1 b-tag	\geq 2 b-tags
Di-bosons	73 ± 14	55 ± 10	18 ± 4	4 ± 1
Single top	247 ± 92	182 ± 68	88 ± 33	76 ± 29
W+jets	22 ± 10	16 ± 8	8 ± 6	-
$Z/\gamma^* \to \ell\ell$	1091 ± 97	756 ± 71	238 ± 29	47 ± 11
other tī	32 ± 4	28 ± 3	11 ± 2	14 ± 2
tī dileptons	5057 ± 463	4209 ± 385	1379 ± 127	2623 ± 240
total expected	6522 ± 482	5246 ± 398	1742 ± 134	2765 ± 242
data	6358	5047	1692	2620

Top mass: Signal and background

- Signal component in the mass spectrum modelled: simulation
- Fit: Landau+Gaussian
- Categories: =1 and ≥2 b-tags

- Background component in the mass spectrum modelled with data +simulation
- Fit: Landau

Top mass: Reconstructed mass

- Top quark mass is reconstructed in different categories
- Signal and background shapes

Top mass: Correct for the bias

CMS simulation Check and correct for the bias in the measurement Fitted m_{top} [GeV/c²] Bias Generated m_{top} [GeV/c²]

Do not forget the systematics

	Source	$\Delta m_{\rm t} ({\rm GeV})$
	Jet energy scale	+0.90 -0.97
 Jet energy scale (JES) is the largest unc. 	b-jet energy scale	-0.66
 JES is varied up and down and difference in m_{top} is accounted for as systematics 	Jet energy resolution	± 0.14
	Lepton energy scale	± 0.14
- Flavor (b) specific uncertainty added in quadrature	Unclustered $E_{\rm T}^{\rm miss}$	±0.12
• Other systematics.	b-tagging efficiency	± 0.05
signal	Mistag rate	± 0.08
 MC: compare Alpgen and Powheg with Madgraph 	Fit calibration	± 0.40
– Vary factorization/matching scale, ISR/FSR	Background normalization	± 0.05
	Matching scale	±0.19
	Renormalisation and factorisation scale	±0.55
	Pileup	±0.11
	PDFs	±0.09
	Underlying event	±0.26
	Colour reconnection	±0.13
	Monte Carlo generator	±0.04
	Total	±1.48

Top mass: Final fit

EPJC C72 (2012) 2202

CMS mass combination

CMS-TOP-14-015

