The Top quark

Vichele Gallinaro

IP Lishon

- Introduction
- Discovery of the Top quark
- Øbject reconstruction
- Decay and production
- Cross section measurements

Contents

- Introduction (discovery, object ID)
- Top pair production at the Tevatron
- Top pair production at LHC

will use c=1

today

- Properties: differential cross section
- Mass measurements
- Spin correlation, charge asymmetry
- Single top production
- Flavor Changing Neutral Currents (FCNC)
- Search for top partners and 4th generation quarks
- Search for ttbar resonances

Introduction

- Discovery
- introduction to the top quark

1974

With the discovery of the J/Ψ :

quarks

$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix}$$

leptons

$$\begin{pmatrix} v_e \\ e \end{pmatrix} \begin{pmatrix} v_\mu \\ \mu \end{pmatrix}$$

1975-1977

- Tau (τ) lepton in Mark I data (v_{τ}) from the decay $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} b \\ b \end{pmatrix}$ kinematics)

Discovery of the Y at Fermilab

$$\begin{pmatrix} v_e \\ e \end{pmatrix} \begin{pmatrix} v_\mu \\ \mu \end{pmatrix} \begin{pmatrix} v_\tau \\ au \end{pmatrix}$$

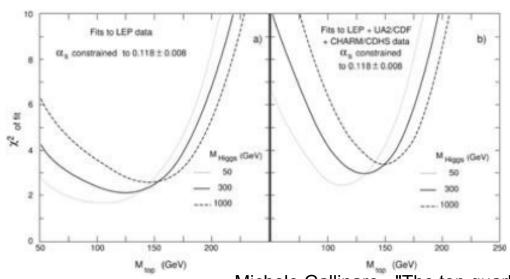
- b: non SM? iso-singlet? SM iso-doublet?
- 1984: DESY measurement of e⁺e⁻→bb FB asymmetry: (22.5 ± 6.5)%
 - cf. 25.2% SM iso-doublet, 0% iso-singlet
- If SM is correct there must be a iso-doublet partner, the top quark
- Mass? b/c/s 4.5/1.5/0.5: Mass=15 GeV?

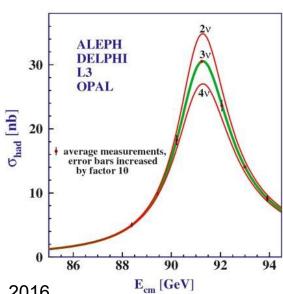
The theory: Why?

- The SM is not a "renormalizable" gauge theory in the absence of the top quark
- Renormalizability is a crucial feature, enabling the SM to be theoretically consistent and be usable as a tool to compute the rate of subnuclear processes between quarks, leptons, and gauge bosons
- Diagrams containing so-called "triangle anomalies" (right), cancel their contributions, thus avoid breaking the renormalizability of the SM, only if the sum of electric charges of all fermions circulating in the triangular loop is zero: $\Sigma Q = -1 + 3 \times [2/3 + (-1/3)] = 0$

lepton electric charge quark (up/down) charge

Searches in e⁺e⁻ collisions

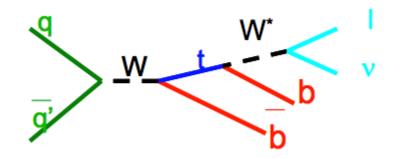

- PETRA could reach ~20 GeV (late '70s)
 - Search for narrow resonance
 - -Look for increase in R=(# of hadron events)/(# of $\mu\mu$ events)
 - Global event characteristics: look for spherical component
 - Negative results. Set limits: M_t>23 GeV
- TRISTAN (~30 GeV) built to study the top quark (early '80s)
 - Similar search technique:
 - $-M_t>30 \text{ GeV}$
- SLC/LEP
 - Look for Z→tt̄
 - $-M_t>45 \text{ GeV}$
- Reached kinematic limit for direct searches at e⁺e⁻ colliders

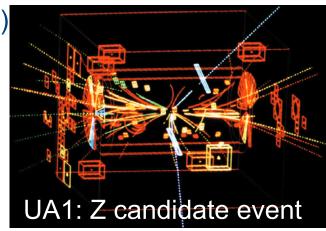

Indirect searches from etectolliders

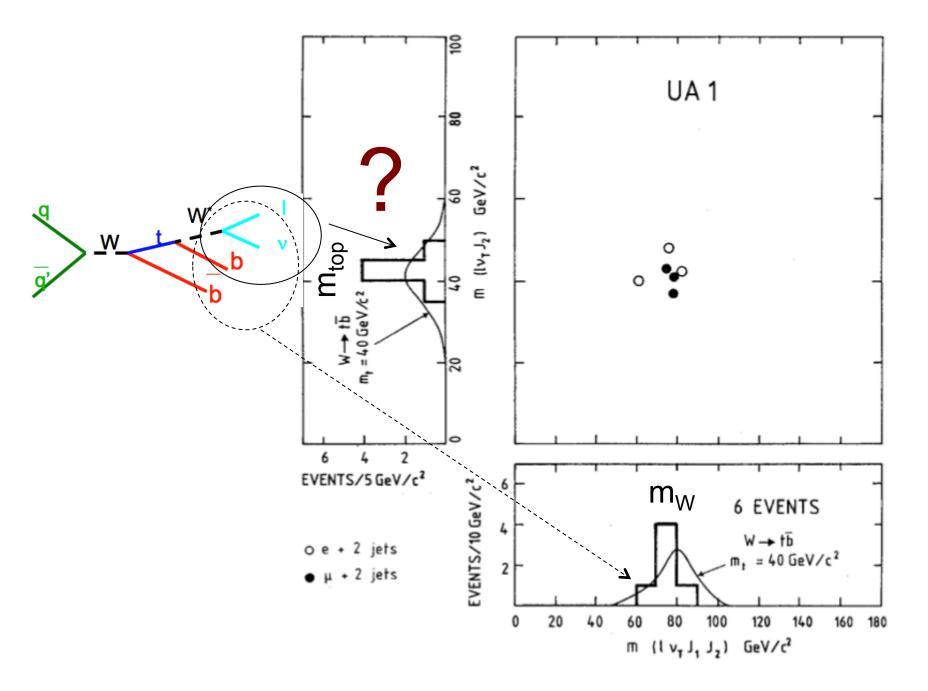
In the SM, various EWK observables depend on the mass of the top quark

- Precision measurements of the EWK parameters, allow to measure virtual corrections with sufficient precision to put constraints on M_{top}
 - Prediction upper limit<200-220 GeV

Michele Gallinaro - "The top quark" - March 21, 2016

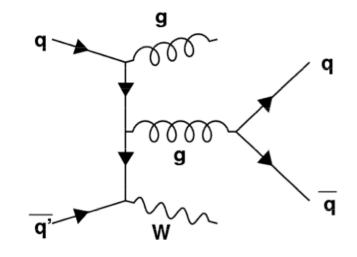

Early searches at hadron colliders


CERN SppS (√s=540 GeV) built to observe W,Z


- Access to much higher energies
- Large backgrounds, low event rates
- Difficult reconstruction: jets

1984: UA1

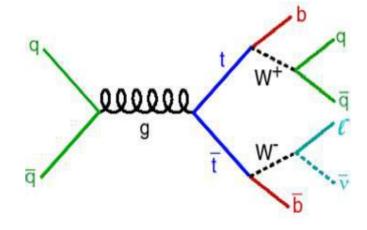
- W→tb→lvbb
- Isolated high-p_⊤ lepton
- 2 or 3 hadronic jets
- Observe 5 events (e+ ≥2 jets), 4 events (μ+ ≥2 jets)
- Expected background: 0.2 events
 - Fake leptons dominate; bbar/ccbar negligible
- Result consistent with M_{top}=40±10 GeV
- Stop before claiming discovery...
 - ⇒W+jet background was underestimated

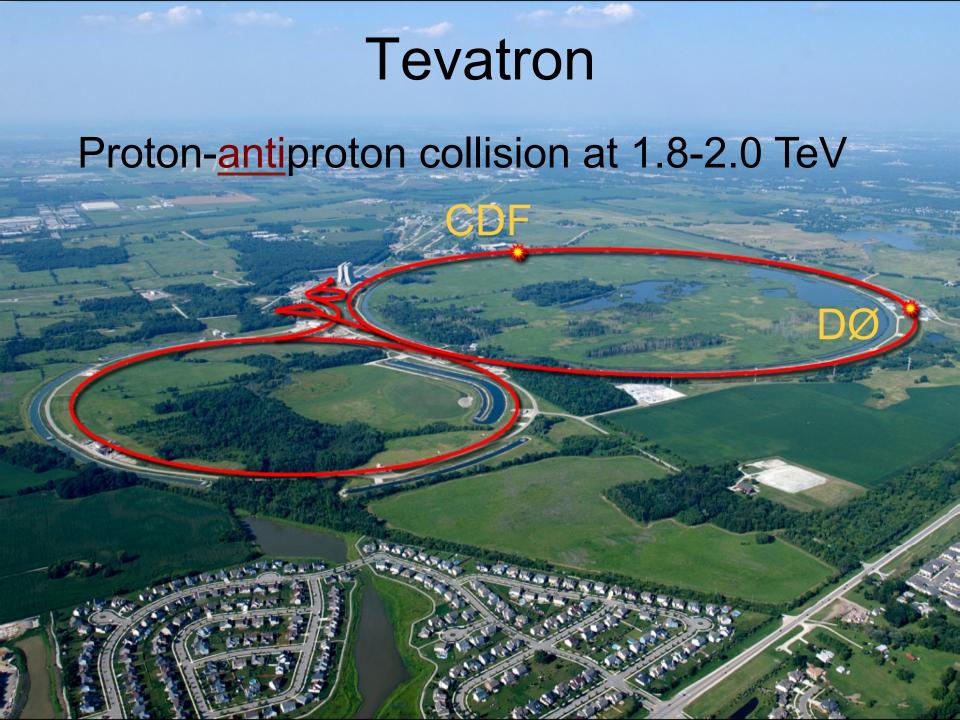


Michele Gallinaro - "The top quark" - March 21, 2016

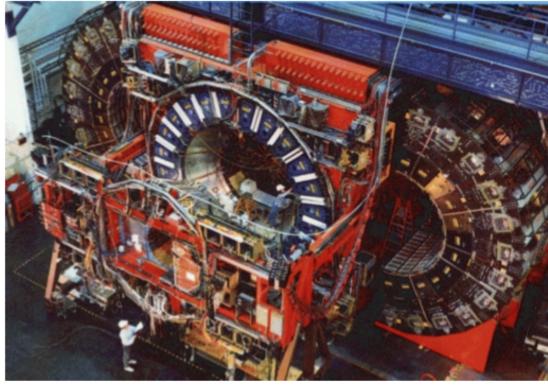
Searches at hadron colliders

- 1988 UA1
- Larger data sample (x6, 600nb⁻¹)
- Improved understanding of the backgrounds
- Fake leptons, W+jets, DY, J/Ψ, bbar/ccbar

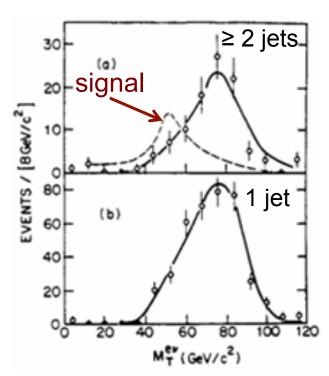

<u>channel</u>	<u>observed</u>	expected background
$\mu + \ge 2$ jets	10 events	11.5 ± 1.5 events
$e + \ge 1$ jets	26 events	$23.4 \pm 2.8 \text{ events}$
	$(+23 \text{ expected if } M_{top} = 40 \text{ GeV})$	


⇒conclude M_{top}>44 GeV

Fermilab joins the hunt


- 1988-89: at CERN, UA2 remains after the upgrades
- √1.8 TeV@FERMILAB vs. √0.63 TeV@CERN
- Much better reach for larger mass (only 75 GeV@UA2)
- At Tevatron, pair production dominates: tt→ Wb Wb

%	ev	μν	τν	qq^-
ev	1.2	2.5	2.5	14.8
μν		1.2	2.5	14.8
τν			1.2	14.8
$q\overline{q}$				44.4



Searches at CDF

eν+ ≥2 jets

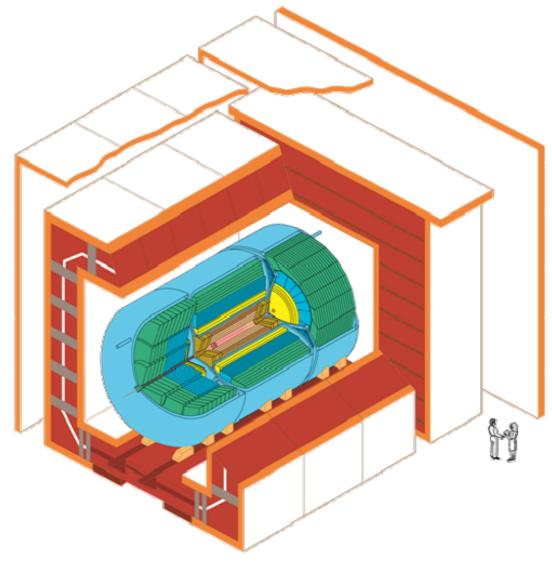
- Dominant background: W+jets
- Discriminant: ev transverse mass
 - Background: W on-shell
 - Signal: W off-shell for M_{top} =40-80 GeV

UA2 uses similar technique: M_{top}>69 GeV

Searches at CDF (cont.)

eμ channel

- Event rate much lower: 2xBR(W→ev)
- Background very small
- No W+jets
- No Drell-Yan
- Dominant background is $Z \rightarrow \tau \tau \rightarrow e \mu X$ (expect 1 event)
- Observe 1 event
- \Rightarrow M_{top}>72 GeV (expect 7 events for M_{top}=70 GeV)


Change of strategy: M_{top}>M_b+M_W

- Top quark decays to on-shell Ws: no $M_T(Iv)$ discriminant
- Main differences:
 - background: W+jets (largely quarks and gluons)
 - signal: W+jets (2 jets are b-jets)
- CDF publication on 88-89 data:
 - Dilepton: include ee, μμ, eμ (require missing ET, Z-veto)
 - Single lepton: require low p_T muon (semi-leptonic b-decays)

$$\Rightarrow$$
 M_{top}>91 GeV

19 countries 83 institutions, 664 physicists

D0 joins the hunt

DØ Detector

Searches at Tevatron: CDF and D0

1992-1995

- Tevatron with higher luminosity
- D0: excellent calorimetry, large solid angle and coverage
- CDF: precision vertex detector, good tracker, magnetic spectrometer

Run 1A:

D0: optimized search for M_{top}=100 GeV

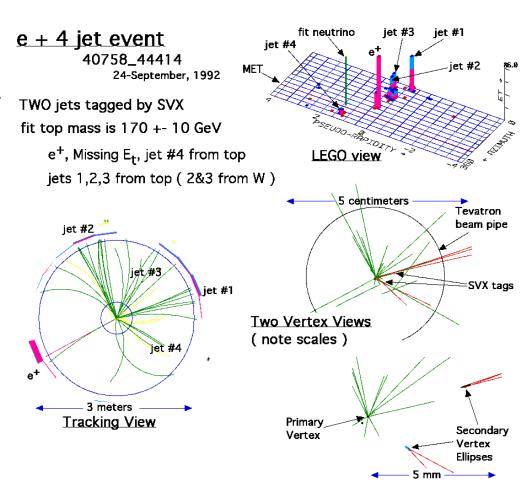
```
-e\mu+≥1jet+MET 1 evt (1.1 bkg)

-ee+≥1jet+MET 1 (0.5)

-e+≥4jets+MET 1 (2.7)

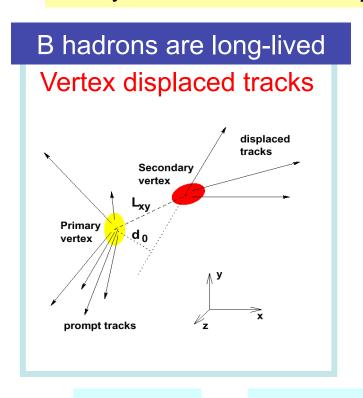
-\mu+≥4jets+MET 0 (1.6)
```

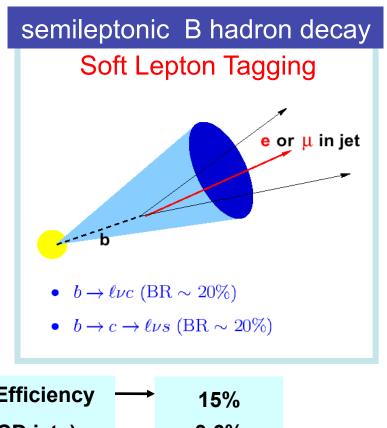
⇒M_{top}>131 GeV@95%CL


Detecting the top quark at CDF

Strategy

- dilepton: +2 jets
- single lepton: b-tagging
 - 1) soft e/μ: semi-leptonic b-decay
 - 2) secondary vertex




New: CDF vertex detector (SVX) (40 μm impact parameter resolution) powerful discriminant against background

Tagging b-jets

- Top events contain B hadrons
- Only 1-2% of dominant W+jets background contains heavy flavor

1993

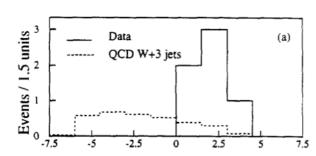
Coll. Meeting, Aug. 1993:

- Status report from each group (dilepton, single lepton)
- Small, not significant excess in all channels

Type	observed	background	
DIL	2 events	0.56 ^{+0.25} _{-0.13}	
SVX	6 tags	2.3 ± 0.3	3 events in
SLT	7 tags	3.1 ± 0.3	common
total	12 events		

- In total, an excess of events
- Background fluctuation probability: 2.8σ
- Skepticism, additional studies, cross-checks
- Additional 8 months before making the results public

Final steps: CDF and D0

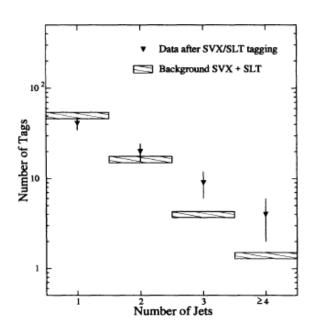

CDF: counting experiment yields 2.8σ

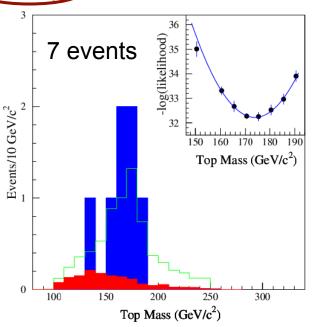
- Few checks: no major discrepancy
- Other checks consistent with presence of signal
- Mass distribution looked good
- There were also other analyses at CDF
 - Difference of jet E_T spectra for signal and bkg
 - Separate two component for signal and bkg
 - -CDF chose not to use those for first publication

D0: added more data and re-optimized for heavy top (single and dilepton)

- Observed 7 events (expect 4-6 from bkg)
- No independent evidence

First evidence (1994)


VOLUME 73, NUMBER 2


PHYSICAL REVIEW LETTERS

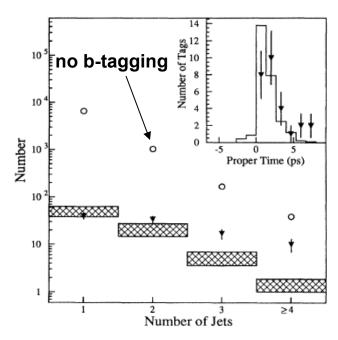
11 JULY 1994

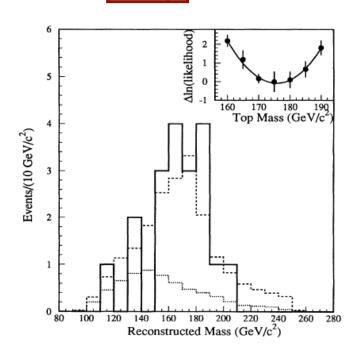
Evidence for Top Quark Production in $\bar{p}p$ Collisions at $\sqrt{s}=1.8~{\rm TeV}$

We summarize a search for the top quark with the Collider Detector at Fermilab (CDF) in a sample of $\bar{p}p$ collisions at $\sqrt{s} = 1.8$ TeV with an integrated luminosity of 19.3 pb⁻¹. We find 12 events consistent with either two W bosons, or a W boson and at least one b jet. The probability that the measured yield is consistent with the background is 0.26%. Though the statistics are too limited to establish firmly the existence of the top quark, a natural interpretation of the excess is that it is due to $t\bar{t}$ production. Under this assumption, constrained fits to individual events yield a top quark mass of $174 \pm 10 \frac{1}{12}$ GeV/ c^2 . The $t\bar{t}$ production cross section is measured to be $13.9 \pm \frac{1}{12}$ pb.

Michele Gallinaro - "The top quark" - March 21, 2016

First measurements


VOLUME 74, NUMBER 14


PHYSICAL REVIEW LETTERS

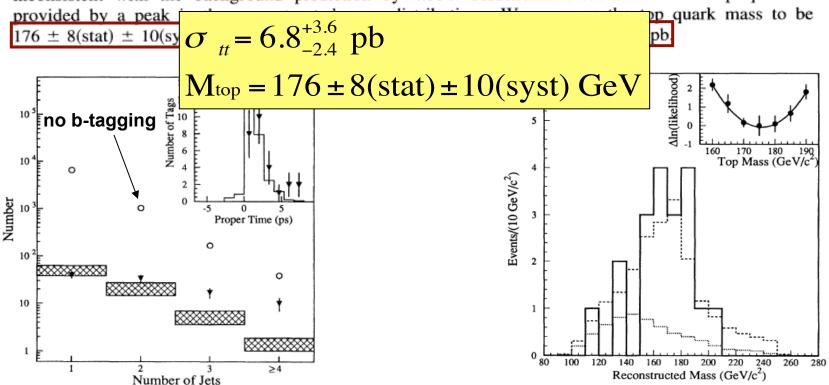
3 APRIL 1995

Observation of Top Quark Production in $\overline{p}p$ Collisions with the Collider Detector at Fermilab

We establish the existence of the top quark using a 67 pb⁻¹ data sample of $\overline{p}p$ collisions at $\sqrt{s} = 1.8$ TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those we previously published, we observe a signal consistent with $t\bar{t}$ decay to $WWb\bar{b}$, but inconsistent with the background prediction by 4.8σ . Additional evidence for the top quark is provided by a peak in the reconstructed mass distribution. We measure the top quark mass to be $176 \pm 8(\text{stat}) \pm 10(\text{syst}) \text{ GeV}/c^2$, and the $t\bar{t}$ production cross section to be $6.8^{+3.6}_{-2.4}$ pb

Michele Gallinaro - "The top quark" - March 21, 2016

First measurements


VOLUME 74, NUMBER 14

PHYSICAL REVIEW LETTERS

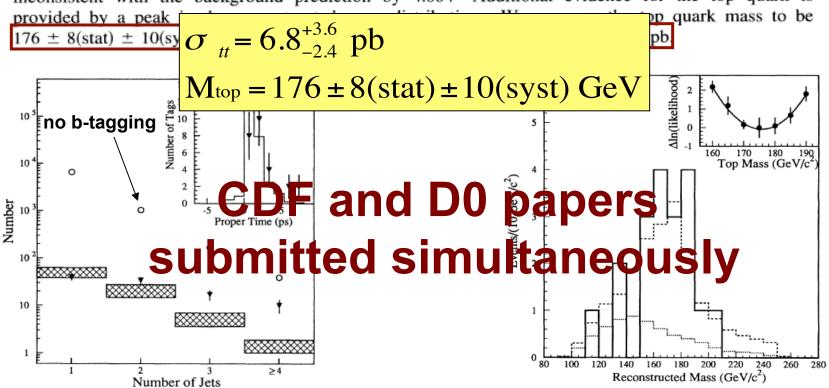
3 APRIL 1995

Observation of Top Quark Production in $\overline{p}p$ Collisions with the Collider Detector at Fermilab

We establish the existence of the top quark using a 67 pb⁻¹ data sample of $\overline{p}p$ collisions at $\sqrt{s} = 1.8$ TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those we previously published, we observe a signal consistent with $t\bar{t}$ decay to $WWb\bar{b}$, but inconsistent with the background prediction by 4.8σ . Additional evidence for the top quark is

Michele Gallinaro - "The top quark" - March 21, 2016

First measurements


VOLUME 74, NUMBER 14

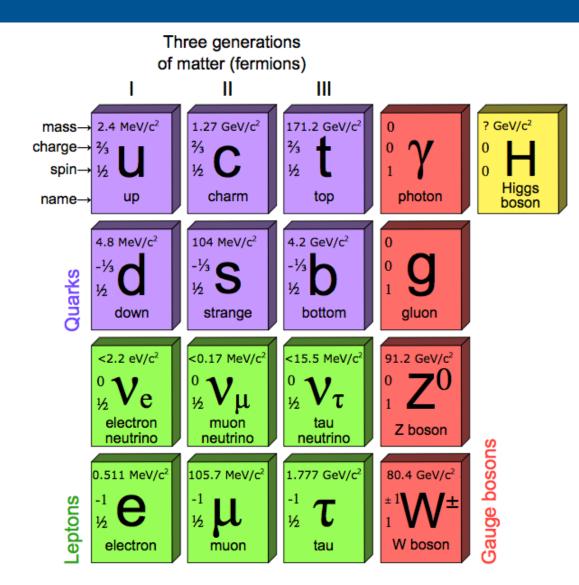
PHYSICAL REVIEW LETTERS

3 APRIL 1995

Observation of Top Quark Production in $\overline{p}p$ Collisions with the Collider Detector at Fermilab

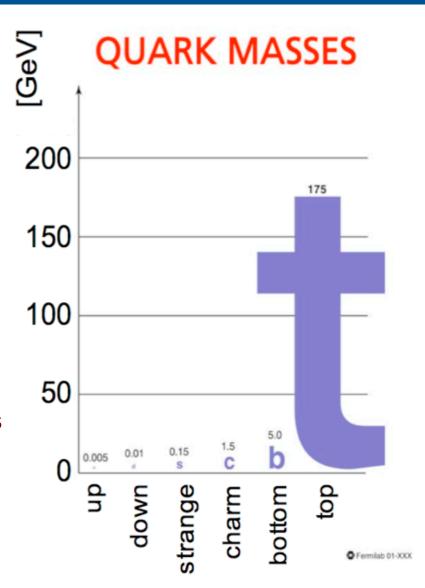
We establish the existence of the top quark using a 67 pb⁻¹ data sample of $\overline{p}p$ collisions at $\sqrt{s} = 1.8$ TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those we previously published, we observe a signal consistent with $t\bar{t}$ decay to $WWb\bar{b}$, but inconsistent with the background prediction by 4.8σ . Additional evidence for the top quark is

Michele Gallinaro - "The top quark" - March 21, 2016

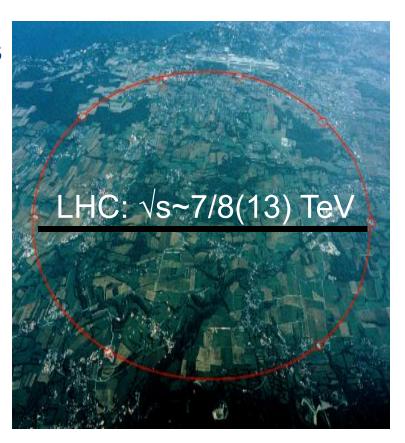

Collider energies for top searches

A summary of colliders in search for the top quark

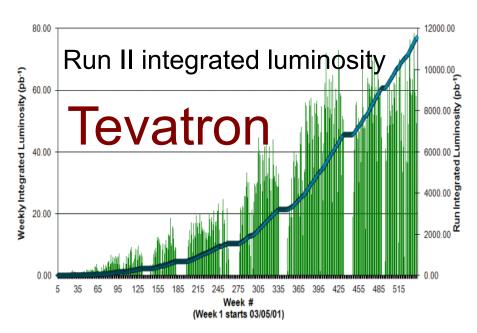
Year	Collider	Particles	References	Limit on m_t
1979-84	Petra (Desy)	e^+e^-	[45]-[58]	$> 23.3 \text{ GeV/c}^2$
1987-90	TRISTAN (KEK)	e^+e^-	[59]-[63]	$> 30.2 \text{GeV/c}^2$
1989-90	SLC (SLAC), LEP (CERN)	e^+e^-	[64]-[67]	$> 45.8 \text{GeV/c}^2$
1984	SppS (Cern)	$p\bar{p}$	[70]	$> 45.0 \text{ GeV/c}^2$
1990	SppS (Cern)	$p\widetilde{p}$	[71, 72]	$> 69 \text{ GeV/c}^2$
1991	TEVATRON (FNAL)	$par{p}$	[73]-[75]	> 77 GeV/c ²
1992	TEVATRON (FNAL)	$par{p}$	[76, 77]	$> 91 \text{ GeV/c}^2$
1994	TEVATRON (FNAL)	$p\tilde{p}$	[79, 80]	> 131 GeV/c ²
1995	TEVATRON (FNAL)	$p\bar{p}$	[37]	$= 174 \pm 10^{+13}_{-12} \text{ GeV/c}^2$
	And the second of the second o	10-7E/11/	[38]	$=199^{+19}_{-21}\pm 22~\mathrm{GeV/c^2}$


Top quark and its relevance

- Basics
- How to detect the top quark
- Tevatron vs LHC


About the top quark

- The heaviest known elementary particle
- Large mass, coupling to the Higgs ~1
 ⇒no hadronization
- Several open questions
 - Is top mass generated by the Higgs mechanism?
 - Special role in EWSB mechanism?
 - Does it play a role in non-SM physics?
 - Are the couplings affected?
- Main background for many New Physics searches
- Top quark measurements may provide insight into physics beyond SM

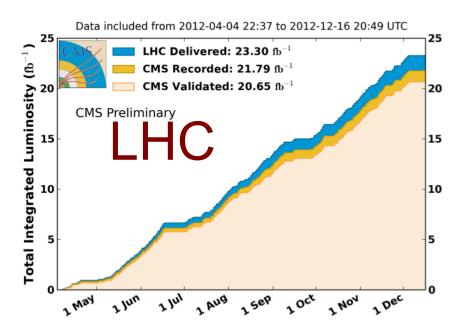

The Large Hadron Collider

- Built to explore new energy frontiers
- First colliding beams in 2009
- started with "low" luminosity in 2010
- ~5 fb⁻¹@7TeV delivered in 2011
- ~20 fb⁻¹@8TeV in 2012
- ~2 fb⁻¹@13TeV in 2015
- re-establish SM measurements
- access to new physics processes

⇒ Top quarks give access to SM and BSM (?)

Tevatron vs LHC

Energy: 1.96 TeV


Int. Luminosity: 12 fb⁻¹

Age: ~25 years

Events/exp (5.4 fb⁻¹)

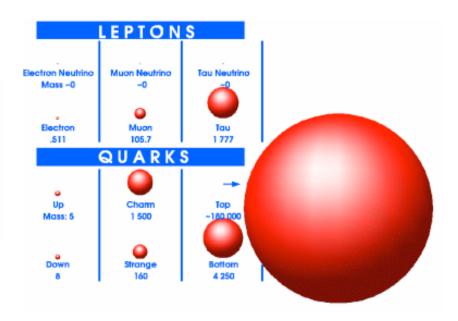
350 ее еµµµ

3500 lepton + jets

Energy: 7/8/(13) TeV

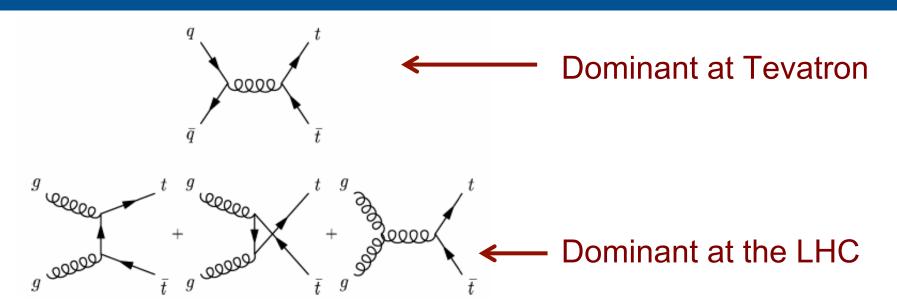
Int. Luminosity: 5/20/(2) fb⁻¹

Age: ~7 years


Events/exp (1 fb⁻¹)

2500 ее еµµµ

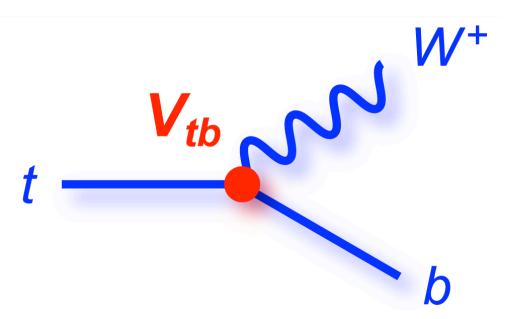
15000 lepton + jets


What is the Top quark?

Quarks:
$$\begin{pmatrix} u \\ d \end{pmatrix}$$
 $\begin{pmatrix} c \\ s \end{pmatrix}$ $\begin{pmatrix} t \\ b \end{pmatrix}$
Leptons: $\begin{pmatrix} \nu_e \\ e \end{pmatrix}$ $\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}$ $\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}$

- It is the heaviest fundamental particle
 - $-M_{top} = 174.3 \pm 0.6 \text{ GeV}$ (arXiv:1407.2682)
- Weak isospin partner of the b-quark
- Completes the SM of quarks and leptons

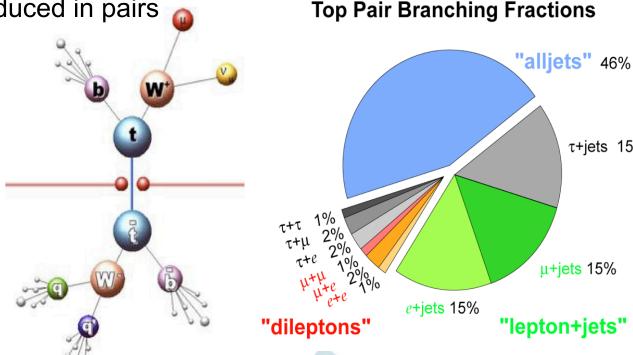
How is the top quark produced?


Predicted cross sections:

Collider	$\sigma_{ m tot}$ [pb]	scales [pb]	PDF [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8%)
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	+6.2(2.5%) -6.4(2.6%)
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	+16.2(1.7%) -17.8(1.9%)

	LHC	Tevatron
gg	~85%	~10%
qq	~15%	~90%

Czakon et al. PRL 110, 252004 (2013)

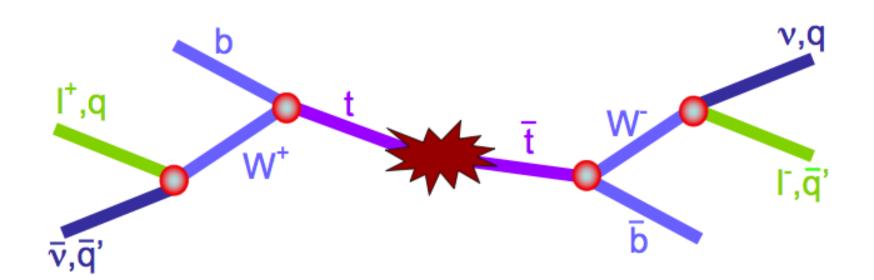

How does a top quark decay?

- almost always t→Wb (i.e. V_{tb}~1)
- lifetime is short, and it decays before hadronizing
- the W is real:
 - can decay W→Iv (I=e,μ,τ), BR~1/9 per lepton
 - can decay W→qq, BR~2/3

Top quark: Final states

Top quarks (mostly) produced in pairs

Displaced tracks


- Dilepton (ee, μμ, eμ):
 - BR~5%, 2 leptons+2 b-jets+2 neutring
- Lepton (e or μ) + jets
 - BR~30%, one lepton+4jets (2 from b)neutrino
- All hadronic
 - BR~44%, 6 jets (2 from b), no neutring

b-jets always present b-jet reconstruction plays important role

Prompt tracks

τ+jets 15%

Interesting physics with Top quark

PRODUCTION

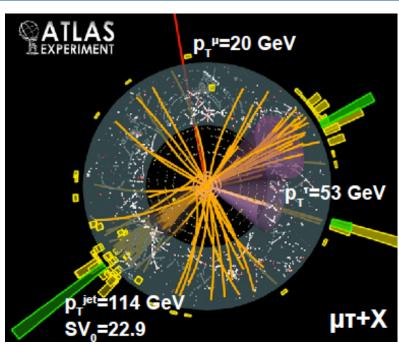
Cross section
Resonances X→tt
Fourth generation t'
Spin-correlations
New physics (SUSY)
Flavour physics (FCNC)

...

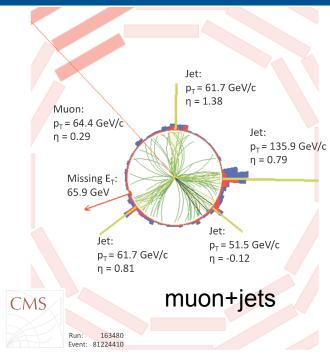
PROPERTIES

Mass
Kinematics
Charge
Lifetime and width
W helicity
Spin

DECAY

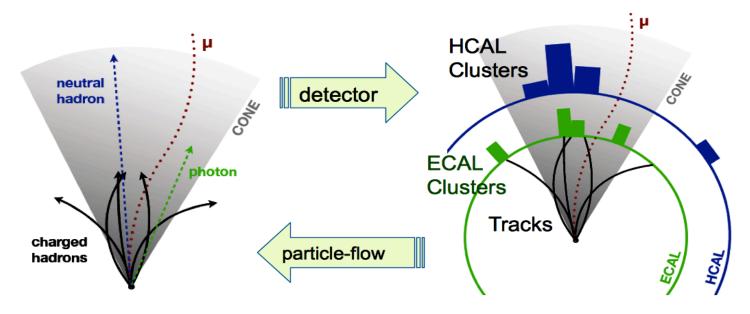

Branching ratios
Charged Higgs (non-SM)
Anomalous couplings
Rare decays
CKM matrix elements
Calibration sample @LHC

...


Particle identification

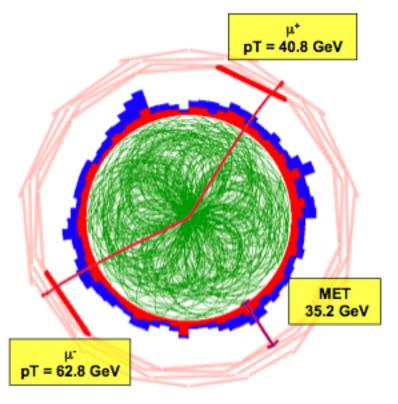
Object identification and reconstruction

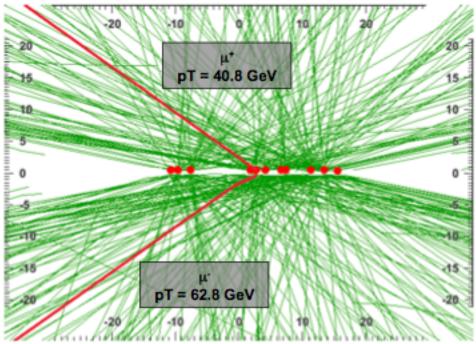
Selection of top quark events

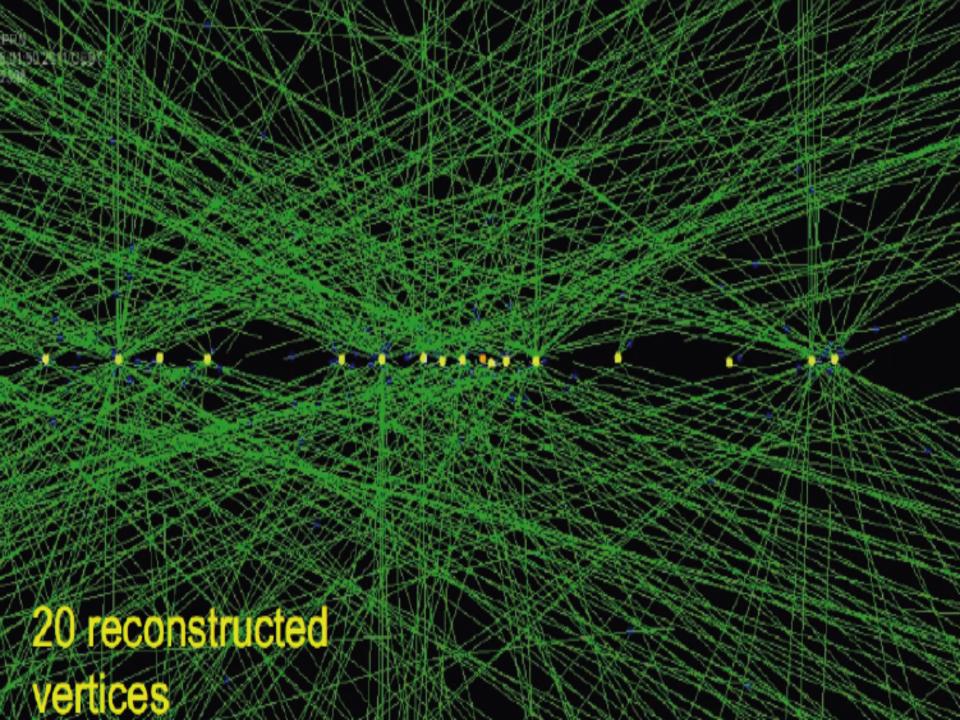

- Trigger:
 - single or double (isolated) lepton
- Leptons:
 - $-e/\mu$, p_T>20/30 GeV, $|\eta|$ <2.5
 - Identification/reconstruction
 - Tracker/calorimeter isolation

- Jets:
 - at least 2 jets, p_T >30 GeV, $|\eta|$ <2.5
 - anti-kT algorithm, with cone 0.4-0.5
 - b-tagging is optional
- Missing transverse energy:
 - Typically require 30-40 GeV

Particle Flow event reconstruction

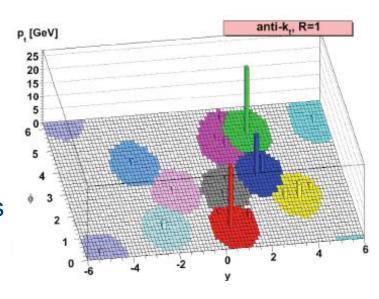

- Particle Flow (PF) combines information from all subdetectors to reconstruct particles produced in the collision
 - charged hadrons, neutral hadrons, photons, muons, electrons
 - use complementary info. from separate detectors to improve performance
 - tracks to improve calorimeter measurements
- From list of particles, can construct higher-level objects
 - Jets, b-jets, taus, isolated leptons and photons, MET, etc.




Challenge: Pile-up

 $Z \rightarrow \mu \mu$ Expected MET = 0

10 in-time + 10 out – of – time pileup

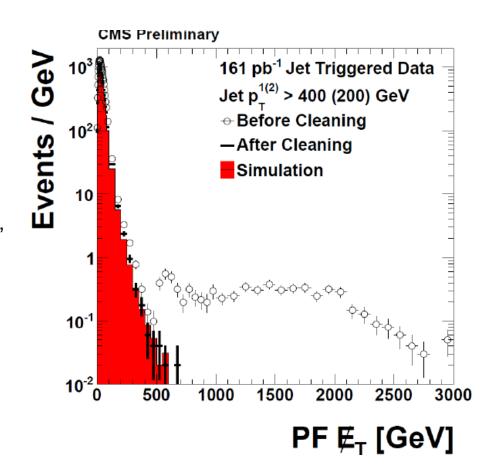


Jet reconstruction

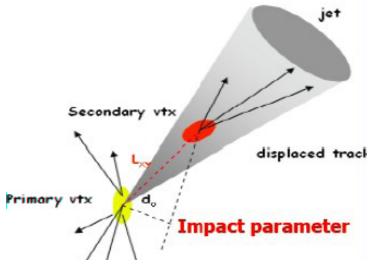
- A "jet" is a cluster of energy deposited in a "small" η-φ region of the detector
 - It is not a unique object, it is defined by the jet algorithm (different choices yield different jets)
- The jet algorithm uses detector reconstructed objects (clusters, tracks, combined objects)
- It is "safe" to higher order effects when it does not change jet quantities
- Efficient and pure: jets correspond to partons

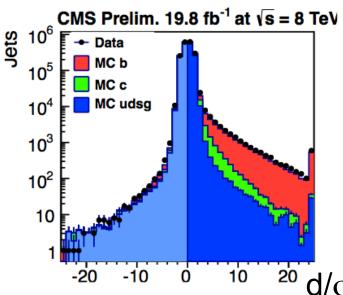
Missing transverse momentum

- Neutrinos (and "dark matter") escape the detector without detection
 - Also longitudinal momentum and energy of other final state particles escape undetected (along the beam-pipe)
 - Momentum is not measured along the z-direction
 - Missing momentum along z is unknown
- The momentum of the neutrinos can be reconstructed in the transverse plane
- Momentum which is missing to balance the total momentum to zero


transverse energy vector

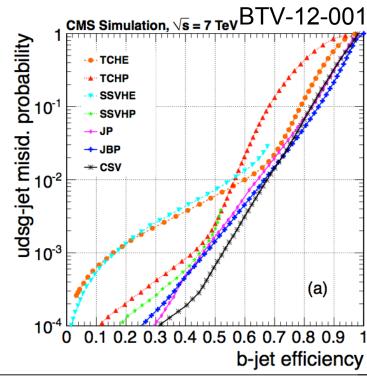
$$extbf{\emph{E}}_{T}^{ ext{miss}} = -\sum_{i} extbf{\emph{p}}_{T}(i)$$

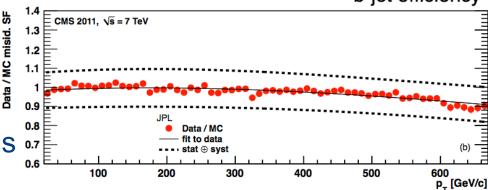

where the sum runs over the transverse momenta of all visible final state particles.


Challenge: MET

- Performance of the MET measurement depends on the measurement of ALL particles in the event
- Measurement is affected by:
 - Noise, mis-calibration, various calorimeter problems (dead channels, etc)
 - Modeling of QCD background events, pile-up, multiple interactions, ...
 - Muon momentum measurement (muons inside jets)
 - Cosmic background events
 - Beam halo (i.e. collisions upstream of detector, parallel to beam)
- MET significance

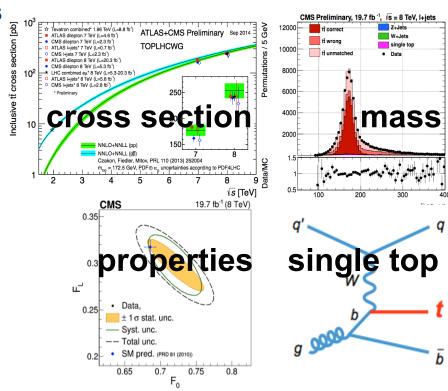
Challenge: b-tagging




- •Lifetime: τ_b~1-2 psec
- Reduction of background obtained by identifying jets from b-quarks
- Two methods:
 - Secondary vertex tagging
 - Semileptonic decays of b-hadrons in jets ($b \rightarrow \ell \nu_{\ell} X$)

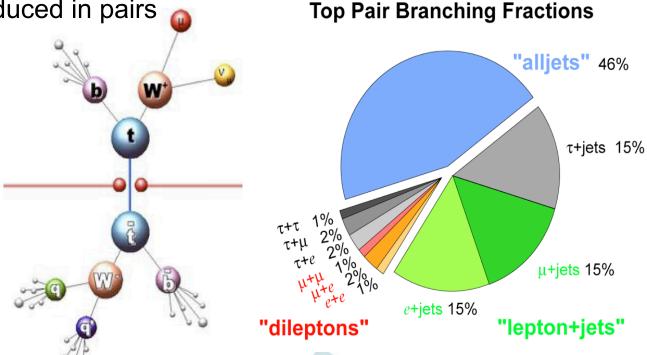
b-tag: fake rates and efficiencies

- b-tag optimization: trade-off between fake rate and efficiency
- studied the performance of several different tagging working points
 - Example: Track counting algorithms
 N_{tracks}=2,3 have ``working points'' with fake rates approx. 10%, 1%, 0.1%
- Uncertainty on data/MC scale factor, depending on algorithms:
 - − ~10-15% for mistags
 - − ~5% for efficiencies
- Impact on top: amount and uncertainty of light flavor background for all tagged analysis



Interesting physics with top quarks

- Cross section
- Mass
- Kinematical properties
 - Is there a X→ttbar?
 - -W polarization
 - Spin correlations
- Rare decays
- Single top
- Top quark is unusually heavy: maybe is it different?


Role of top quark physics

- Top quark physics after the Higgs discovery
 - Special role in EWSB mechanism?
 - Does it play a role in non-SM physics?
 - Are the couplings affected?
 - Main background for many NP searches
- Monitoring of production mechanism
- Interpretation of m_{top}: top, W,
 Higgs masses
- Are properties consistent with our understanding of EWSB?
- Is there any sign of NP in top production/decay?

Top quark decays

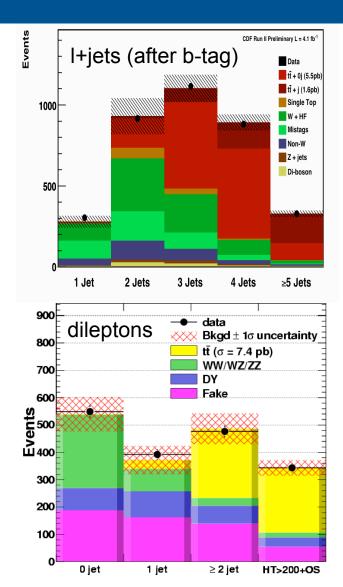
Top quarks (mostly) produced in pairs

Secondary vertex

Displaced tracks

- Dilepton (ee, μμ, eμ):
 - BR~5%, 2 leptons+2 b-jets+2 neutrinc
- Lepton (e or μ) + jets
 - BR~30%, one lepton+4jets (2 from b)neutrino
- All hadronic
 - BR~44%, 6 jets (2 from b), no neutring

b-jets always present b-jet reconstruction plays important role

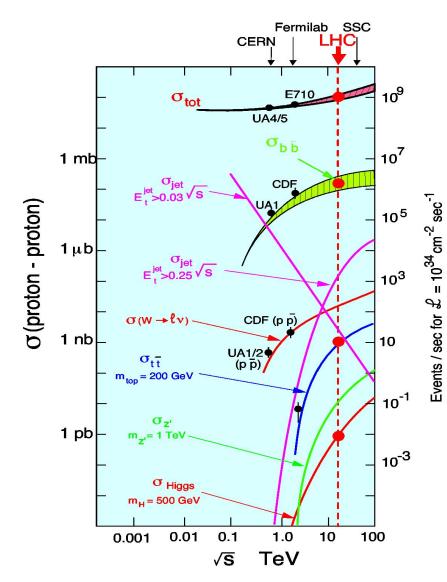

Prompt tracks

Measurements

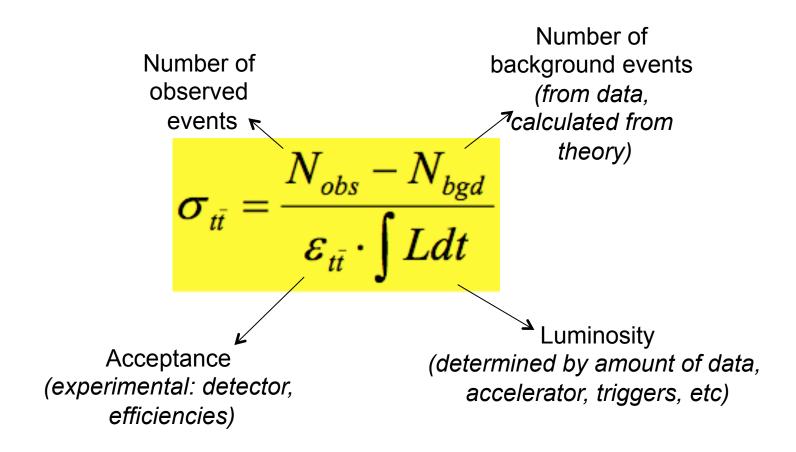
Measurement of the cross section

Top quark events

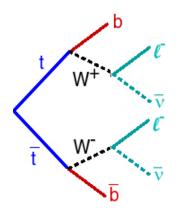
- LHC@13TeV cross section ~100 times larger than Tevatron
- goal of the LHC is searching for New Physics
- select ttbar events at LHC:
 - understand/calibrate detector
 - Measure SM quantities
- event selection includes SM control events
- ttbar final state is complex (i.e. not a mass peak)
- Top quarks and new physics:
 - ttbar sample may contain new physics
 - look at jet multiplicity bins (since ttbar is background e.g. for SUSY), or other variables


Theory cross sections: TeV vs LHC

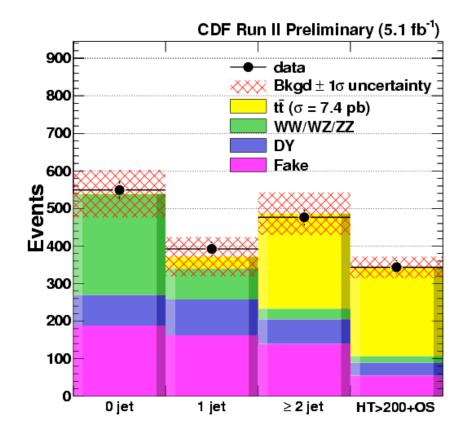
Collider	$\sigma_{ m tot}$ [pb]	scales [pb]	PDF [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8%)
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	+6.2(2.5%) -6.4(2.6%)
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	+16.2(1.7%) -17.8(1.9%)


Including NNLO+NNLL approximations PRL 110, 252004 (2013) (M. Czakon et al.)

Top cross section at 7/8 vs 13 TeV

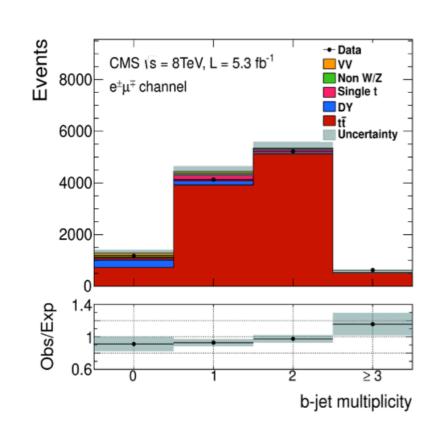

- LHC collisions started at 7/8 TeV
- LHC design is at 14 TeV
- Top cross section drops faster than background processes at lower sqrt{s}
- Top cross section drops by factor of ~5:
 - Cacciari, Frixione, Mangano, Nason, Ridolfi: arXiv:0804.2800
 - Czakon, Mitov: arXiv:1112.5675
 - $\text{top } \sigma(7\text{TeV}) = 174 \text{ pb}$
 - $top \sigma(8TeV) = 248 pb$
 - $top \sigma(13TeV) = 816 pb$
- Background is more "flat"

Cross section measurement


Dilepton channel

Branching Ratio (BR) ~5% background: small

≻two leptons + ≥2 jets + ⊭_T

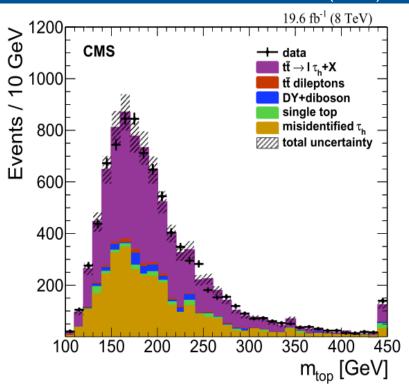

>more kinematical variables

Dilepton channel

- Branching ratio (BR) ~5%
- Background: small
- Clean final state
 - two leptons + ≥2 jets + MET
 - kinematic variables
- Signal visible w/without b-tagging
- Measure cross section:
 - -ee, $\mu\mu$, $e\mu$ final states
 - -btag (CSV): eff 85%, misID 10%
 - Cut and count
- Main systematics: JES, lepton ID, (pileup, b-tag, signal modeling)

$$\sigma_{\mathrm{t\bar{t}}} = 239 \pm 2 \, \mathrm{(stat.)} \pm 11 \, \mathrm{(syst.)} \pm 6 \, \mathrm{(lum.)} \, \mathrm{pb}$$
 $\pm 5\%$

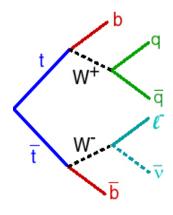
Tau_h+lepton final state


PLB 739(2014)23

- one isolated lepton (e/ μ)
- at least two jets (one b-tagged)
- OS tau (hadronic decay),
- -MET

• Determine τ fakes from data

- Expected to be dominated by quark/gluon jets
- Estimate from multi-jet/W+jets: use data

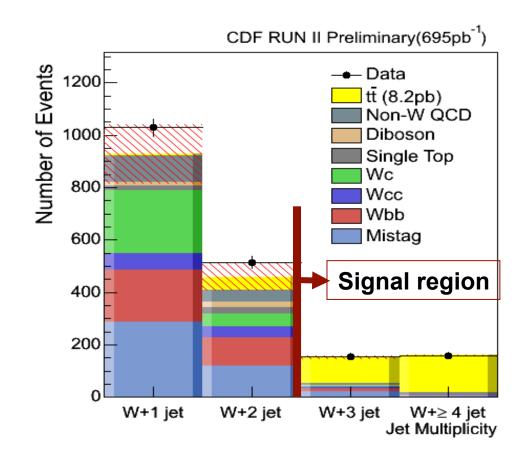

dominant syst.: τ fakes, b-tag

Good agreement between measurement and

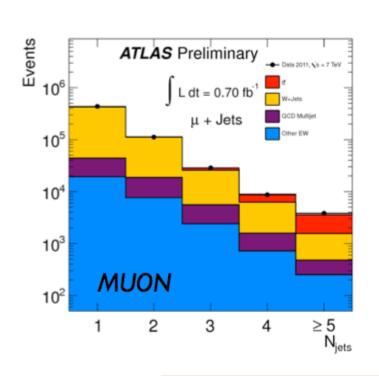
$$\sigma_{tt}(e\tau_h) = 255 \pm 4 \text{ (stat)} \pm 24 \text{ (syst)} \pm 7 \text{ (lumi) pb;}$$

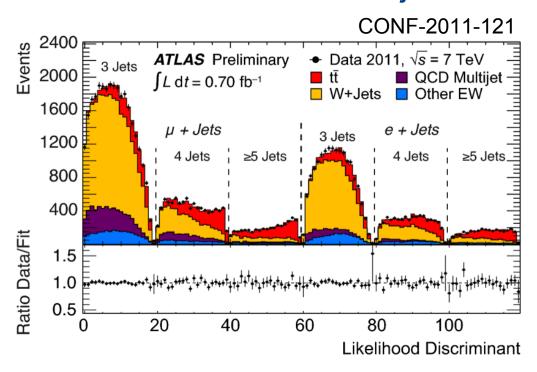
$$\sigma_{tt}(\mu\tau_h) = 258 \pm 4 \text{ (stat)} \pm 24 \text{ (syst)} \pm 7 \text{ (lumi) pb}$$

±10%

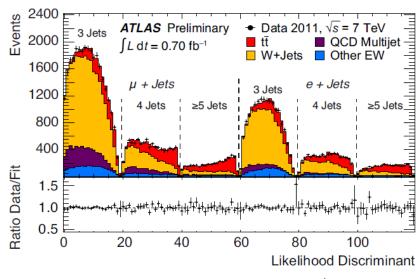

Lepton + jets

BR ~30% background: moderate


≻one lepton + ≥3 jets + ⊭_T


➤ may require b-tag

Single lepton channel


- Include both muon and electron channels (untagged)
- Use kinematical differences between ttbar and W+jets

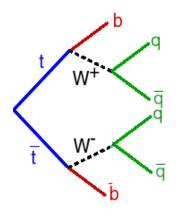
 $\sigma_{t\bar{t}} = 179.0 \pm 3.9 \text{ (stat)} \pm 9.0 \text{ (syst)} \pm 6.6 \text{ (lumi) pb}$

Single lepton channel

Main backgrounds:

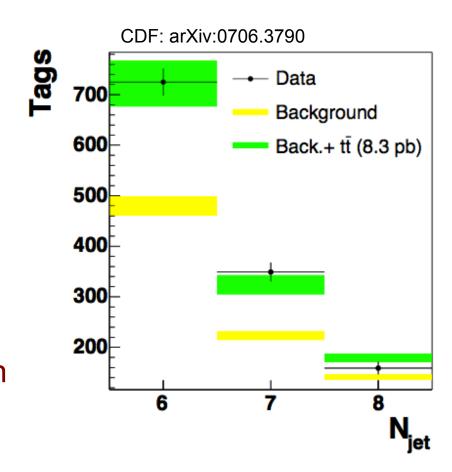
- Hadronic multijet: rejected by m_T,MET, controlled from sidebands
- W+jets (heavy flavor)

Use kinematics to select ttbar


- Mass of sec. vertex
- topology

Categorize events and extract σ_{tt} from fit

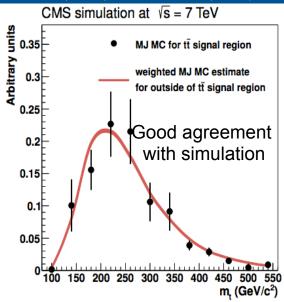
```
179.0\pm3.9 \, ({\rm stat})\pm9.0 \, ({\rm syst})\pm6.6 \, ({\rm lumi}) \, {\rm pb} 158.1\pm2.1 \, ({\rm stat.})\pm10.2 \, ({\rm syst.})\pm3.5 \, ({\rm lum.}) \, {\rm pb} CMS arXiv:1212.6682
```

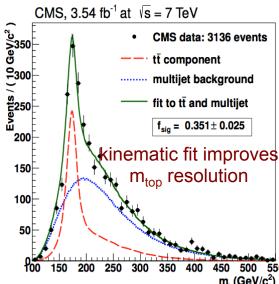

ATLAS

All hadronic

BR ~44% background: large

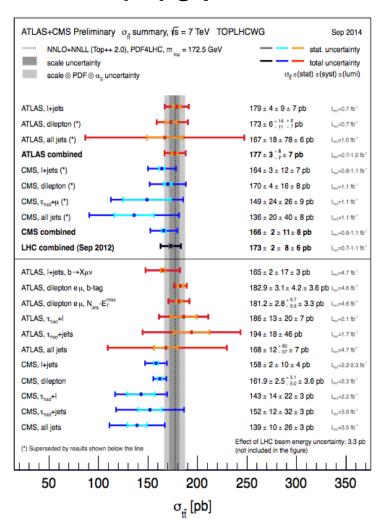
- >≥6 jets + kinematical selection
- >optimize S/√B
- >require b-tag

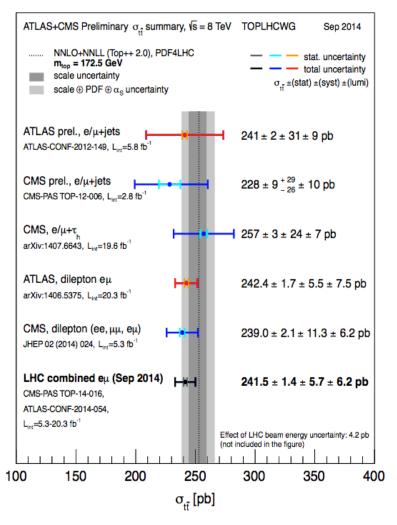

All-hadronic: cross section


JHEP 05(2013)065. EPJC 74(2014)2758

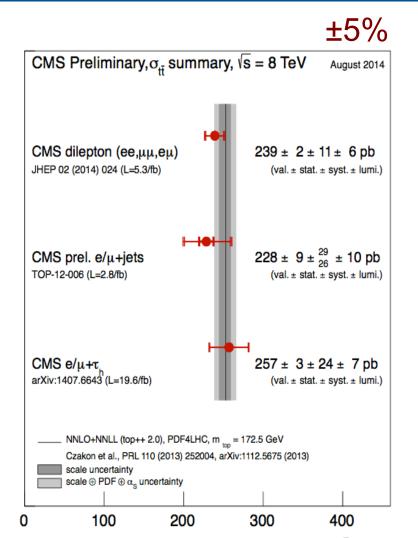
- Fully hadronic final state (BR~46%)
- Six jets and no leptons in the final state
- Reconstruct ttbar system and fit with least χ^2 method
 - reconstruct both W bosons
 - m_{top1}=m_{top2} are free parameters
 - b-jets are taken as b-quark candidates
 - take permutation with smallest χ^2
- Multijet QCD is main background (from data)
 - Use same selection without b-tag req.
 - Re-weigh mass spectrum from anti-tagged sample
- Templates are inputs for likelihood fit for cross section measurement
 - Signal and background templates
 - Signal fraction is a free parameter

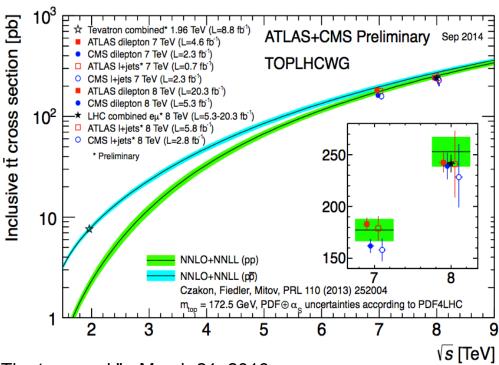
$$\sigma_{
m t\bar{t}}=139\pm10\,{
m (stat.)}\pm26\,{
m (syst.)}\pm3\,{
m (lum.)}\,{
m pb}$$


Dominant syst.: JES, b-tag

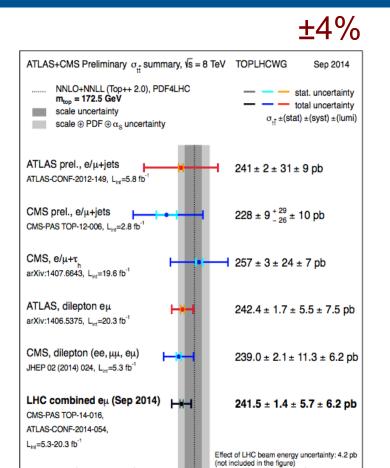


LHC cross section measurements


7 TeV


8 TeV

Cross sections


- Cross section measurements provide test of pQCD predictions
- Standard "candle":
 - ttbar is a dominant background for NP searches
- Comparison in different channels may provide constraints on BSM

 $\sigma(t\bar{t})$ (pb)

Cross sections (cont.)

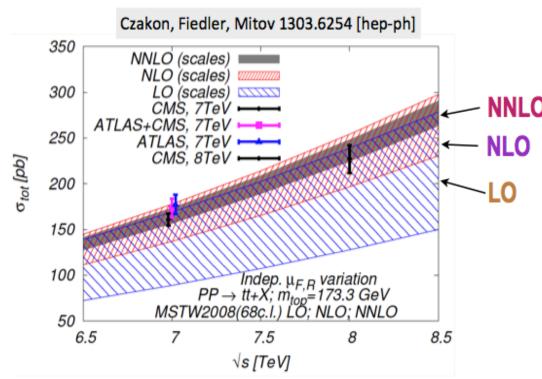
CMS-TOP-14-016

⇒meas. challenging the theory

250

σ_{...} [pb]

300

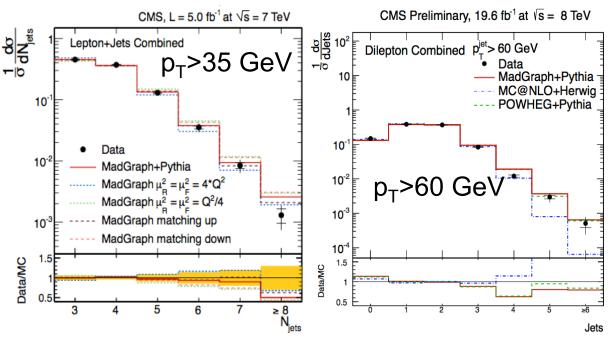

350

400

200

100

150



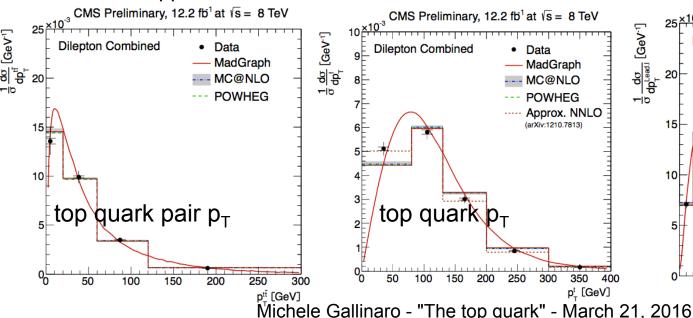
Collider	$\sigma_{ m tot} \; [m pb]$	scales [pb]	pdf [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8%)
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	+6.2(2.5%) -6.4(2.6%)
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	$+16.2(1.7\%) \\ -17.8(1.9\%)$

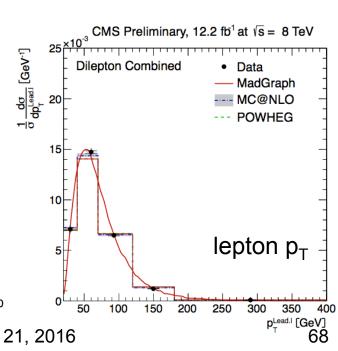
Differential cross sections

CMS-TOP-12-041, arXiv:1404.3171

- Measurements performed in fiducial volume to minimize model dependency
- Improve ttbar modeling and reduce uncertainties
- Sensitive to BSM effects
- Correct for detector effects ("unfolding" to particle level) and acceptances
- $\frac{1}{\sigma_{t\bar{t}}} \frac{d\sigma_{t\bar{t}}}{dX}$
- Good agreement in dilepton and lepton+jet channels, at different energies
- Large uncertainties at high jet multiplicities dominated by JES and MC modeling

Michele Gallinaro - "The top quark" - March 21, 2016

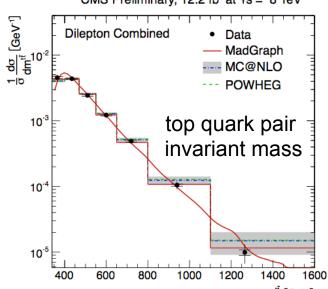

Differential cross section

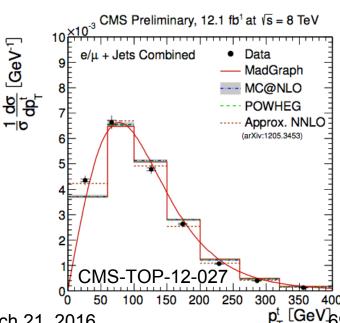

CMS-TOP-12-028

- Measure differential cross section
 - Test perturbative QCD
 - Test BSM scenarios (Z' decays, etc) with narrow resonance
- Reconstruct event kinematic properties

- $rac{1}{\sigma_{tar{t}}}rac{d\sigma_{tar{t}}}{d{
 m X}}$
- Cross sections measured as a function of p_T , η , invariant mass of the final state leptons, the top quarks, and the ttbar system
- Good agreement found in dilepton and lepton+jet channels

NNLO approx better describes data

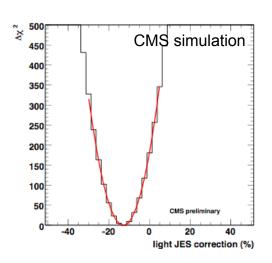


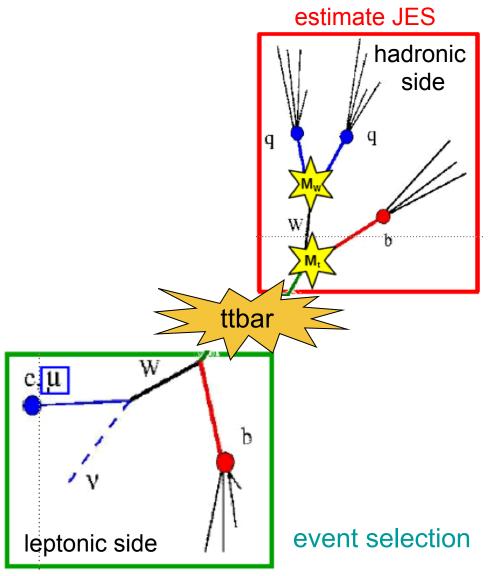


Differential cross section

CMS-TOP-12-028

- Measure differential cross section
 - Test perturbative QCD
 - Test BSM scenarios (Z' decays, etc) with narrow resonance
- Reconstruct event kinematic properties
- Cross sections measured as a function of p_T , η , invariant mass of the final state leptons, the top quarks, and the ttbar system
- Good agreement found in dilepton and lepton+jet channels
 - NNLO approx better describes data
 CMS Preliminary, 12.2 fb¹ at √s = 8 TeV




Michele Gallinaro - "The top quark" - March 21, 2016

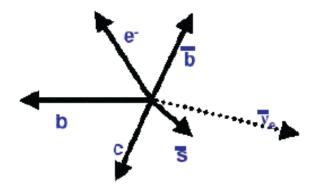
end

Jet energy correction from Top

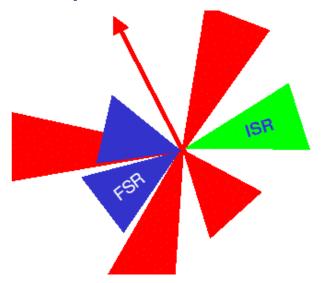
- Use semi-leptonic events
 -1 isol μ (p_T>30 GeV)+≥4 jets (40 GeV)
- Estimate jet energy corrections by applying event-by-event kinematical fit to W and Top masses
- Likelihood is used to assign jets
- Kinematical fit returns $P(\chi^2)$
- Find best JES by minimizing χ^2

Measuring the top mass

Challenging:


> Lepton+jets

- undetected neutrino
 - P_x and P_v from E_T conservation
 - 2 solutions for P_z from M_W=M_{Iv}
- leading 4-jet combinatorics
 - 12 possible jet-parton assignments
 - 6 with 1 b-tag
 - 2 with 2 b-tags
- ISR + FSR


> Dileptons

- (less statistics)
- two undetected neutrinos
- less combinatorics: 2 jets

LO final state:

experiment sees:

