New Physics searches at the LHC

Latest results on BSM physics in the Higgs sector and beyond

Michele Gallinaro

LIP Lisbon

Introduction
 Higgs, Dark matter, and Exotica searches
 Looking (backward) forward

2012: A new boson discovery

Standard Model theory of everything?

- Discovery of the Higgs boson marks the triumph of the SM
- However, even with the inclusion of the Higgs boson, SM is an incomplete theory

Tests of the SM

Beyond the Standard Model

The SM answers many of the questions about the structure of matter. But SM is not complete; still many unanswered questions:

- a) Why do we observe matter and almost no antimatter if we believe there is a symmetry between the two in the universe?
- b) What is this "dark matter" that we can't see that has visible gravitational effects in the cosmos?
- c) Are quarks and leptons actually fundamental, or made up of even more fundamental particles?
- d) Why are there three generations of quarks and leptons? What is the explanation for the observed pattern for particle masses?
- e) How does gravity fit into all of this?

Dark matter and energy

- What is that accounts for 96% of the Universe? Nobody knows.
- It is one of the greatest mysteries of Science

M. Gallinaro - "Higgs and New Physics searches at the LHC" - May 18, 2017

What can we look for?

A crowded field. At the LHC we can search for some of these

M. Gallinaro - "Higgs and New Physics searches at the LHC" - May 18, 2017

How?

- Search for new phenomena
- Look for New Physics
- Indirect searches
 - precision measurements, event properties, etc.
- Direct searches
 - resonances, specific final states, model-(in)dependent searches, etc.
- Production and decay rates, event characteristics, advanced tools

LHC performance

Data validated for all detectors is 95% of data recorded: 35.9/fb to analyze (original goal 25/fb)

2016:

- LHC exceeded design goal
 - Peak luminosity: 1.5x10³⁴ cm⁻²sec⁻¹
 - Pileup ~45
 - 2208 colliding bunches
 - LHC high availability: ~50%

CMS record efficiency:

- Excellent detector performance ~92.5%
- Each sub-detector >96%

Top quark cross sections

Top quark pair rate is large ⇒precise measurements and rare processes

- Single and double differential cross sections
- Rare (FCNC) decays
- CP violation
- Width and mass

Pair production is mostly through gluon-gluon, thus providing information on gluon distribution

Top production: ttZ and ttW

CMS-TOP-17-005

ttbar+Higgs

- ttbar produced in association with H
 - -ttbar is a "clean" tag
- direct measurement of Higgs couplings

Higgs couplings to top quarks

• Multi-leptons: SS, 3L and 4L ⇒ categories per charge, flavor

Higgs reloaded

Higgs mass

PRL114(2016)191803, HIG-16-041

Accurately measured $\Rightarrow < 0.2\%$!

Consistency with SM

JHEP 08(2016)45

Higgs and BSM

ATLAS-CONF-2015-044, CMS-HIG-15-002

• Is there BSM physics hidden in the "Higgs sector"?

$$BR) (gg \to H \to \gamma \gamma) = \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma \gamma) \cdot \frac{\kappa_{g}^{2} \cdot 1}{\kappa_{H}^{2}}$$

Experimental approach

 $(\sigma \cdot$

- Measure H(125) properties
- Search for additional Higgs bosons
- Search for BSM in signatures with Higgs bosons
- Search for BSM Higgs decays

<u>Strategy:</u> parametrize deviations wrt SM in production and decay ⇒ loops are sensitive to BSM physics

Couplings: decays

ATLAS-CONF-2015-044, CMS-HIG-15-002, JHEP08(2016)045

BSM physics in the loop

Vector and fermion couplings

BR_{BSM} includes non standard decays, visible or invisible

\Rightarrow Results in agreement with SM (k_V=k_F=1) within 1 σ

H→ZZ resonant search

CMS-HIG-16-033, HIG-16-034

Search for spin-0 resonance with any different width
Interference among X, H, and background

di-Higgs searches

- Destructive interference in SM
- Could be altered in BSM
- If constructive, it could be large enhancement
- In SM, only σ =33fb at 13 TeV
- Study different final states

resonant production

Searches for HH production

CMS-EXO-15-008, CMS-HIG-16-012, CMS-HIG-17-002

- Searches in: bbbb, bbWW, bb $\tau\tau$, bb $\gamma\gamma$, $\gamma\gamma$ WW
- Resonant and non-resonant production
 - Double Higgs production to determine λ_{hhh}
 - Check couplings: $\kappa_{\lambda} = \lambda_{hh} / \lambda_{hhh}^{SM}$; $\kappa_t = y_t / y_t^{SM}$
 - BSM could enhance non-resonant hh production
 - $H {\rightarrow} h_{125} h_{125} {\rightarrow} b b \tau \tau$
- h₁₂₅ decay products nearly collinear
 boosted "single" merged jet (→bb)
- use $\tau_e \tau_h$, $\tau_\mu \tau_h$, and $\tau_h \tau_h$ final states – sidebands/inverted isolation to estimate bkg
- set limits as function of mass

Rare decays

CMS-HIG-17-001

- Search for LFV decays of Higgs boson to $e\tau$ and $\mu\tau$
- Previous 2.4 σ hint in Run1 data not confirmed

⇒Stringent limits well below 1%

Searching for DM

Searching for DM

DM at the LHC

CMS/ATLAS experiments not designed for DM searches

Dark Matter

How do we find DM?

- Need to understand how it interacts with Universe
- Traditionally through a mediator
- Yields at least two new particles

How do we find it: @LHC

Produced it through a mediator

DM searches at LHC

How do we find DM at the LHC?DM production gives MET signature

DM searches: backgrounds (cont.)

How to discriminate signal against the background?Can fit the shape and look for signal

M. Gallinaro - "Higgs and New Physics searches at the LHC" - May 18, 2017

Build a V-tagger

Two jets are more collimated at high pT

At low pT jets are "resolved"

-Focus on reconstructing di-jets with mass near W mass

• At high pT get one "fat" jet

-Focus on identifying one jet with mass near W mass

Use additional variables to improve discrimination

DM+jet/V

CMS-EXO-16-048

31

DM+Higgs

arXiv:1703.05236

- DM search with $H(\rightarrow bb,\gamma\gamma)$
- Model dependent search
- Z' 2HDModel

No significant excess
Set limits for coupling g=0.8

Experimental results

- Limits for given couplings between SM and DM interaction
- Competitive limits at low masses wrt other experiments

Experimental results (cont.)

Search for heavy resonances

Data recorded: Thu Aug 26 06:11:00 2010 EDT

Run/Event: 143960 / 15130265

Lumi section: 14

- Heavy BSM resonances (>1TeV) may decay into SM bosons (W,Z, H)
- Several final states
- Experimental challenges
 - -SM bosons decay mostly to quarks
 - Due to large Lorentz boost, decay products merge into single jet
 - -Clustered within a large-cone jet (R=0.8)
- Look into jet substructure
 - Jet "grooming": get rid of soft jet components from UE/pileup, keep constituents from hard scatter
 - Apply filters (mass drop, pruning, trimming)

Jet grooming

arXiv:0802.2470

- Mass drop/filtering
- Identify approx. symmetric sub-jets (with smaller mass than sum)

W, Z, H reconstruction

CMS-B2G-17-002

Grooming and jet mass

– Pruning

– soft drop (stable w/pileup, and good jet mass resolution ~10%)

- Vector boson tagging (V→qq)
 - n-subjettiness τ_{21} : how consistent with 2 sub-jets
 - Categorization according to purity: high (<0.35) and high (>0.35)

W, Z, H reconstruction (cont.) CMS-B2G-17-002

- Higgs boson tagging ($H \rightarrow bbar$)
 - Double b-tagging
 - Exploit b-tagging to identify two b-quarks in same jet
 - -Soft-lepton information
 - -Combines tracking and vertexing in MVA

$X \rightarrow VV \rightarrow qqqq$

CMS-B2G-17-001

- All hadronic resonance search with single (qV) or double (VV) V-tag
 - At least 2 back-to-back jets p_T>200GeV
 - Categorization (jet mass, τ_{21})
- Background estimation: "bump hunt" fit data with power law

$X \rightarrow WV \rightarrow \ell v q q$

CMS-B2G-16-020

- Search for a resonance decaying to WV in leptonic channel
- Categorization in τ_{21} and W/Z mass
- Sideband+transfer function for bkg
 estimate

- Similar sensitivity to Z(U)V(qq) search
- Excluded up to 2 TeV

X→VH→ℓvqq

PLB 768(2017)137

- Search for a resonance decaying to VH in leptonic channels
 - $-Z \rightarrow vv$: transverse mass m_T(VH)
 - $-W \rightarrow \ell_V$: top control region
 - $-Z \rightarrow \ell$: high-efficiency dilepton ID
 - -H(bb) b-tagging

Heavy vector triplet (Z', W')

Search for multilepton final states

CMS-EXO-17-006

- Type-III extension to SM
- Search for 3 or more lepton final states
- Pair production of W/Z/H $\rightarrow \Sigma\Sigma$
- Scalar sum of lepton $p_T (L_T)$
- Bin and count (L_T +MET)

 Σ^0

 Σ^+

 W^+

Resonances

•Di-muon events: a re-discovery of the SM

Dilepton resonances

CMS-EXO-16-031

• Search for dilepton (ee, $\mu\mu$) resonance

Resonance searches: Summary

Looking forward: PPS

CERN-LHC-2014-021

- The Precision Proton Spectrometer is a joint CMS and TOTEM project that aims at measuring the surviving scattered protons on both sides of CMS in standard running conditions
- Tracking and timing detectors inside the beam pipe at ~210m from IP5
- Project approved in Dec. 2014 by LHCC
- Data taking started in 2016 (full scope from 2017)

TECHNICAL DESIGN REPORT FOR CMS-TOTEM PRECISION PROTON SPECTROMETER

M. Gallinaro - "Higgs and New Physics searches at the LHC" - May 18, 2017

ERN-LHC-2014-02

PPS: Physics motivations

Central Exclusive Production

- photon-photon collisions
- gluon-gluon fusion in color singlet, $J^{PC}=0^+$
- High- p_T system in central detector, together with very forward protons in PPS
 - momentum balance between central system and forward protons, provides strong kinematical constraints
 - Mass of central system measured by momentum loss of the two leading protons
- Gauge boson production by photon-photon fusion and anomalous couplings (γγWW, γγZZ, and γγγγ)
- Search for new BSM resonances
- Study of QCD in a new domain

CERNCOU

Theory in motion

gender at CF

LHC tunnel @ PPS location

214m

CT-PPS tracking

beam

215m

CT-PPS timina

PPS detectors

Tracking detectors

- -Goal: measure proton momentum
- -Technology: silicon 3D pixels (6 planes per pot)

Timing detectors

- -Goal: identify primary vertex, reject "pileup"
- $-\sigma_{time}$ ~10ps ⇒ σ_{z} ~2mm
- -Technology: silicon/diamond

"3D" pixel sensors with columnar electrodes

Timing detectors

- Use timing to reject pileup background
- Two scenarios studied:
 - -10ps and 30ps time resolution
- Baseline: solid state detectors
- Detector options investigated:
 - -Diamond sensors
 - -Fast silicon sensors (UFSD, HFS)
- Status:
 - Diamond and LGAD detectors installed

WW production

JHEP 08(2016)119

- Study of process: pp→pWWp
 - Clean process: W in central detector and "nothing" else, intact protons can be detected far away from IP
 - Exclusive production of W pairs via photon exchange: QED process, cross section well known
- Backgrounds:
 - -inclusive WW, $\tau\tau$, exclusive two-photon $\gamma\gamma \rightarrow II$, etc.
- Events:
 - -WW pair in central detector, leading protons in PPS
- SM observation of WW events
- Anomalous coupling study
 - -AQGCs predicted in BSM theories
 - -parameters: a_0^W/Λ^2 , a_c^W/Λ^2
- Deviations from SM can be large

M. Gallinaro - "Higgs and New Physics searches at the LHC" - May 18, 2017

AQGC expected limits

BSM searches: resonances, etc.

CMS-EXO-15-004, CERN-LHC-2014-021

Increased reach at 13 TeV

M. Gallinaro - "Higgs and New Physics searches at the LHC" - May 18, 2017

Current status: LHC schedule

- Current status and plans
- CMS detector is closed
- Solenoid is cold and operating at 3.8T
- Running regularly on cosmics with magnet off
- All detectors included: reading out (including pixels)
- Ready for collisions

2015									I	2016									I	2017										2018																			
J	F	Μ	A	Μ	IJ	J	Α	S	0	N	I D		ונ	F	М	A	М	J	J	A	١	50	D) .	ו נ	F	М	Α	М	נ	J	Α	S	ol	N) :	IF	1	м/	4	М	J	J	Α	s	0	Ν	D
																									E	YI	ET	rs																					

Shutdown/Technical stop Protons physics Commissioning Ions

- Peak luminosity limit ~1.7x10³⁴cm⁻²s⁻¹
- ~40-50/fb/year in 2017/18,
- >100/fb in Run2

Phase 1 Pixel detector

Pixel upgrade: Installed for 2017 Run

- Baseline L=2x10³⁴ cm⁻²sec⁻¹ (50 PU) with small efficiency loss
- More robust tracking: to 4 layers (can compensate losses in strips)
- Better readout (up to 2.5x10³⁴cm⁻²s⁻¹) with no inefficiency
- Radiation hard to 500fb⁻¹
- Less material in front of outer tracker
- Inner layer closer to beam ⇒better vertex resolution

Other CMS upgrades for 2017

- Implement multi-anode on PMTs for Forward Hadron (HF) Calorimeter to reject spurious MET
- GEM-based muon detector slice in Endcap (first use of this technology for HL-LHC)
- Precision Proton Spectrometer new timing detectors

HL-LHC upgrades

Luminosity of ~3000 fb⁻¹ expected for HL-LHC

- Tracking information in "L1 track-trigger"
 - –Tracker designed to enable finding all tracks w/p_T>2GeV in <4 μs
- Tracker is all silicon but with much higher granularity, up to $|\eta|=4$ –>2billion pixels and strips

High Granularity Endcap Calorimeters

- -Sampling of EM showers: every $\sim 1\lambda$ (28 samples) w/pixels, and every $\sim 0.35\lambda$ (24 samples) with pixels+scintillator to map 3D shower development
- -~6M channels in all
- Precision timing to add a 4th dimension to object reconstruction

Future: HL-LHC upgrades

Trigger/HLT/DAQ

- Track information in hardware event selection
- 750 kHz hardware event selection_
- 7.5 kHz events registered

Barrel EM calorimeter

- New electronics
- Low operating temperature ≃ -10°

Muon systems

- New DT & CSC electronics
- New chambers 1.6 < η < 2.4
- Muon tagging 2.4 < η < 3

New Endcap Calorimeters

- Rad. Tolerant
- 5D measurement

New Tracker

- Rad. Tolerant light
- High Definition measurement
- 40 MHz selective readout for hardware trigger
- Extended Pixel coverage to η ≈ 3.8

Beam radiation and luminosity Common systems and infrastructure

Precision Timing Layer

Summary

- LHC performing very well
 - High-availability of "stable beams"
- Excellent detector performance
 - Pixel detector and HF electronics being commissioned
 - Detector ready for data
- Excellent physics results
 - ~40fb⁻¹ of data collected in 2016
 - >600 publications so far
- Installation of new detectors in 2017
- Upgrade program for HL-LHC underway
- Plenty of data expected in 2017-2018!

M. Gallinaro - "Higgs and New Physics searches at the LHC" - May 18, 2017

Diboson resonances

Efficiency

0.9

0.6

0.5 0.4

0.3

CMS

Simulation - spin 2

Merged selection

Resolved selection

CMS-HIG-16-034, B2G-16-022

- Search for resonance: $X \rightarrow ZZ \rightarrow \ell \ell qq'$
- Use tools to identify jet substructure
 - N-subjettiness τ_{21} : $\tau_N \sim 1/d_0 \Sigma pT$
 - Kinematic and flavor information to improve S-B separation
- Discriminant Z+JJ (using MELA)
- Upper limits on resonant spin-0/spin-2 hypotheses
- Cross section limits ~3-100fb

Jet grooming (cont.)

arXiv:0912.1342, arXiv:0912.0033

- "Trimming"
- Uses kT algorithm to make subjets (subjets with p_T^i/p_T <cut removed)

"Pruning"

Recombine jet constituents, while veto wide-angle/softer constituents

LHC roadmap: according to MTP 2016-2020 V1

LS2 starting in 2019 LS3 LHC: starting in 2024 Injectors: in 2025 => 24 months + 3 months BC => 30 months + 3 months BC => 13 months + 3 months BC

Search for HH production (cont.)

CMS-HIG-17-002

- Resonant production tested up to 900 GeV
- Non resonant search excludes 28 times the SM

Boosted objects

CMS-B2G-17-003

