The Experimental Program at the LHC: Probing the Standard Model

Michele Gallinaro

LIP Lisbon May 16, 2017

✓ Introduction

- The Large Hadron Collider
- ✓ The experiments
- Detector commissioning

 Re-discovering the standard model at the LHC (hadron interactions, minimum bias, jets, W/Z, top)

- Title: "Searches for BSM physics at the LHC"
- Tentative agenda:
- Experimental program at the LHC (today, 3pm)
- SM, and Top quarks as probe to New Physics (Wed. 10:30am, 3pm)
- Higgs boson and beyond (Thu. 10am)
- Searches for New Physics (Thu. 4pm) seminar

Evaluation

Seminar (Friday morning at 10am) Review and present a seminar from one of these topics:

- di-Higgs production, CMS-HIG-17-002: <u>https://cds.cern.ch/record/2256096/files/HIG-17-002-pas.pdf</u>
- inclusive Z measurement, JHEP 01(2011)080: http://arxiv.org/pdf/1012.2466
- charged Higgs, JHEP11(2015)018: <u>https://arxiv.org/pdf/1508.07774.pdf</u>
- Higgs observation, Science 338(2012)1569: <u>http://science.sciencemag.org/content/338/6114/1569.full.pdf</u>

Experimental particle physics

Particle physics is a modern name for century-old effort to understand the basics laws of physics

Edward Witten

Questions:

- What are the elementary constituents of matter?
- What are the forces that determine their behavior

Experimentally

• Get particles to interact and study what happens

Constituents of matter

The Standard Model

Over the last ~100 years: combination of Quantum Field Theory and discover of many particles led to

the Standard Model of particle physics

as a new "periodic table" of fundamental elements

One of the greatest achievements of 20th Century Science

$$L_{H} = \frac{1}{2}(\partial_{\mu}H)^{2} - m_{H}^{2}H^{2} - h\lambda H^{3} - \frac{h}{4}H^{4} + \frac{g^{2}}{4}(W_{\mu}^{+}W^{\mu} + \frac{1}{2\cos^{2}\theta_{W}}Z_{\mu}Z^{\mu})(\lambda^{2} + 2\lambda H + H^{2}) + \sum_{l,q,q'}(\frac{m_{l}}{\lambda}\overline{l}l + \frac{m_{q}}{\lambda}\overline{q}q + \frac{m_{q'}}{\lambda}\overline{q'}q')H$$

$$M_{L} = \frac{1}{2}(\partial_{\mu}H)^{2} - m_{H}^{2}H^{2} - h\lambda H^{3} - \frac{h}{4}H^{4} + \frac{g^{2}}{4}(W_{\mu}^{+}W^{\mu} + \frac{1}{2\cos^{2}\theta_{W}}Z_{\mu}Z^{\mu})(\lambda^{2} + 2\lambda H + H^{2}) + \sum_{l,q,q'}(\frac{m_{l}}{\lambda}\overline{l}l + \frac{m_{q}}{\lambda}\overline{q}q + \frac{m_{q'}}{\lambda}\overline{q'}q')H$$

$$M_{L} = \frac{1}{2}(\partial_{\mu}H)^{2} - m_{H}^{2}H^{2} - h\lambda H^{3} - \frac{h}{4}H^{4} + \frac{g^{2}}{4}(W_{\mu}^{+}W^{\mu} + \frac{1}{2\cos^{2}\theta_{W}}Z_{\mu}Z^{\mu})(\lambda^{2} + 2\lambda H + H^{2}) + \sum_{l,q,q'}(\frac{m_{l}}{\lambda}\overline{l}l + \frac{m_{q}}{\lambda}\overline{q}q + \frac{m_{q'}}{\lambda}\overline{q'}q')H$$

Standard Model interactions

The interaction of gauge bosons with fermions is described by the SM

Quantum Field Theory

A particle-antiparticle pair can pop out of empty space ("vacuum") and vanish back into it $$t^{t}$$

These are virtual particles

Vacuum fluctuations involving top quarks

Other examples

- It has far-reaching consequences
- Structure of the Universe depends on particles that do not exist in the usual sense

SM confirmed by data

STANDARD MODEL OF ELEMENTARY PARTICLES

	Measurement	Fit	$\begin{array}{cc} \text{IO}^{\text{meas}}-\text{O}^{\text{fit}}\text{I}/\sigma^{\text{meas}}\\ 0 & 1 & 2 & 3 \end{array}$
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02768	
m _z [GeV]	91.1875 ± 0.0021	91.1874	
Γ _z [GeV]	2.4952 ± 0.0023	2.4959	
σ ⁰ _{had} [nb]	41.540 ± 0.037	41.479	
R _I	20.767 ± 0.025	20.742	
A ^{0,I}	0.01714 ± 0.00095	0.01645	
A _l (P _t)	0.1465 ± 0.0032	0.1481	
R _b	0.21629 ± 0.00066	0.21579	
R _c	0.1721 ± 0.0030	0.1723	
A ^{0,b}	0.0992 ± 0.0016	0.1038	
A ^{0,c}	0.0707 ± 0.0035	0.0742	
A _b	0.923 ± 0.020	0.935	
A _c	0.670 ± 0.027	0.668	
A _l (SLD)	0.1513 ± 0.0021	0.1481	
$\sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.399 ± 0.023	80.379	
Г _w [GeV]	2.085 ± 0.042	2.092	
m _t [GeV]	173.3 ± 1.1	173.4	
July 2010			0 1 2 3

Confirmed at sub 1% level!

What is missing?

- On the way to the modern theory of quarks, leptons, force fields, and their quanta
- The equations only made sense if all the bosons, and all the quarks and leptons, had no mass and moved at the speed of light!

The Higgs

In the simplest model, the interactions are symmetrical and particles do not have mass

Symmetry between electromagnetic and weak interactions is broken:

- Photons are massless
- W,Z have mass ~80-90 GeV

Higgs mechanism:

mass of W and Z results from the interactions with the Higgs field

Added bonus

- Non-zero average value of the Higgs field can also give masses to quarks, electrons, muons, and all point-like particles
- Old theoretical problem affecting quantum theory of weak force:
 Probability of two Ws interacting becomes >1 at high energies (>1TeV)
- This is solved by the Higgs field

Terascale

- The SM would fail at high energy without the Higgs particle or other "New Physics"
- Based on the available data and on general theoretical insight it was expected that New Physics would manifest at an energy of about 1 TeV
- \Rightarrow This is accessible at the LHC for the first time

Beyond the Standard Model

The SM answers many of the questions about the structure of matter. But SM is not complete; still many unanswered questions:

- a) Why do we observe matter and almost no antimatter if we believe there is a symmetry between the two in the universe?
- b) What is this "dark matter" that we can't see that has visible gravitational effects in the cosmos?
- c) Are quarks and leptons actually fundamental, or made up of even more fundamental particles?
- d) Why are there three generations of quarks and leptons? What is the explanation for the observed pattern for particle masses?
- e) How does gravity fit into all of this?

Forces and expansion of the Universe

Dark side of the Universe

- We know that ordinary matter is only ~4% of matter-energy in the Universe
- What is the remaining 96%?

The LHC may help to solve this problem, by discovering dark matter

Higgs and hierarchy problem

In the SM, the Higgs mass is a big problem

- Virtual particles in quantum loops contribute to the Higgs mass
- Contributions grow with Λ (upper scale validity of the SM)
- Λ could be large e.g. the Planck scale (10¹⁹ GeV)
- Miraculous cancellations are needed to keep the Higgs mass <1TeV

This is known as the hierarchy problem

New Physics at the TeV scale?

Many possible theories

There are many models that predict New Physics at the TeV scale, accessible at the LHC

- Supersymmetry (SUSY)
- Extra Dimensions
- Extended Higgs sector, e.g. in SUSY models
- Grand Unified Theories, SU(5), O(10), E6, ...
- Leptoquarks
- New Heavy Gauge bosons
- Compositeness

\Rightarrow And it could be found at the LHC

You were right: There's a needle in this haystack...

SUSY

A new fundamental symmetry was proposed in the attempt to unify gravity with other fundamental forces

- Every fermion should have a massive "shadow" boson
- Every boson should have a massive "shadow" fermion
 ⇒This relationship between fermions and bosons is called supersymmetry (SUSY)

No supersymmetric particle has yet been found, but LHC experiments could detect SUSY particles

SUSY

Double the table with a new type of matter?

Heavy versions of every quark and lepton Supersymmetry is broken

Could DM be SUSY particles?

• For every "normal" force quanta (boson), there are SUSY partners

photon W, Z bosons gluon Higgs boson photino Wino, Zino gluino higgsino

These "...inos" are prime suspects to be the galactic dark matter
Relics from the Big Bang!

Unification?

M. Gallinaro - "The experimental program at the LHC" - Bari Univ. - May 16, 2017

SUSY and the Higgs mass

Extra Dimensions

- Space-time could have more than 3 space dimensions. Extra dimensions could be very small and undetected until now
- How can there be extra, smaller dimensions?

- Acrobat can move forward/backward along the rope: 1-dim
- Flea can move forward/backward and sideways: 2-dim
 - One of these dimensions is a small closed loop

Timeline of the Universe

Big Bang

13.7 billion years

Today

LHC recreates the conditions one billionth of a second after Big Bang

Cosmological Inflation

- In the very early Universe, space undergoes a dramatic exponential expansion
- Explains why Universe has uniform temperature (~3K) and flat space-time geometry

The inflation theory was developed independently in the late 70's by Alan Guth, Alexey Starobinsky, and others

Higgs-like field and inflation

- While the energy density of the Higgs field is positive, the Universe expands at accelerated rate (inflation)
- Inflation stops when the Higgs field decays to the real vacuum
- The energy released by the Higgs field is converted to matter particles

At the origin of the Universe, the energy density of a Higgs-like field is positive

The Large Hadron Collider

Accelerators and experiments

Accelerator and experiment layout

Proton collisions at the LHC

Accelerator challenges

Relative to the Tevatron (Fermilab, USA)

- Energy (14 TeV) x 7
- Luminosity (10³⁴ cm⁻²s⁻¹) x30
- Superconducting dipoles 8.3 T
- Operating temperature 1.9K (-271 C)
- More than 2000 dipoles
- 100 tons of liquid Helium
- Stored energy per beam: 350 MJoule
- Energy of a train of 400 tons at 150 Km/h
- LHC power consumption 120 MW

Superconducting magnetic dipole

In the tunnel

In the tunnel

400 MHz RF system cryo-modules each with four cavities in the LHC straight section IP4

It is empty!

• Air pressure inside the two 27Km-long vacuum pipes (10⁻¹³ atm) is lower than on the Moon

It is cold!

• 27 Km of magnets are kept at 1.9K, colder than outer space, using over 100 tons of liquid Helium

It is hot!

 In a tiny volume, temperatures one billion times hotter than the center of the Sun

...under difficult conditions

The Experiments

General purpose experiments

- Advanced detectors with many layers, each designed to perform a specific task
- Together, these layers allow to identify and precisely measure the properties of all stable particles produced in collisions

- Photons, electrons, muons, quarks (i.e. jets of particles), neutrinos (i.e. missing energy), etc.
- Design guided by physics

ATLAS and CMS

ATLAS

Particle detection

What can we detect?

• Directly observable particles must:

- Undergo strong or EM interactions
- -Be sufficiently long-lived to pass the detectors

• We can directly observe:

- -Electrons, muons, photons
- -Neutral or charged hadrons
- -Pions, protons, kaons, neutrons,...
- analyses treat jets from quark hadronization collectively as single objects
- Use displaced secondary vertices to identify jets originating from b-quarks
- We can indirectly observe long lived weakly interacting particles (e.g. neutrinos) through missing transverse energy

What can we detect? (cont.)

- Short-lived particles decay to long-lived ones
- We can only 'see' the end products of the reaction, but not the reaction itself
- In order to reconstruct the production/decay mechanism and the properties of the involved particles, we want the maximum information

Particle properties

Which properties do we want to measure?

- Energy (calorimeter)
- Momentum (tracking)
- Charge (tracking)
 - -Direction, bending in magnetic field
- Life-time (tracking)
- Mass:

$$E^{2} = m^{2} \cdot c^{4} + \vec{p}^{2}c^{2} \Longrightarrow m = \frac{\sqrt{E^{2} - \vec{p}^{2}c^{2}}}{c^{2}}$$

$$F = q \cdot v \cdot B = m \cdot \frac{v^2}{R}$$

$$\Rightarrow q \cdot B \cdot R = m \cdot v = \left| \vec{p} \right|$$

Passage of particles

- "Onion"-like structure
- Each layer measures E and/or p of particles
- Redundancy of measurements

Fixed target vs Collider

$$\sqrt{s} = E_{\rm cm} = \left[m_1^2 + m_2^2 + 2E_1m_2\right]^{\frac{1}{2}}$$

 $E_{\rm cm} = 2E$

Detector layers

- Inner tracking
 - Measure charged particle (momentum)
- Magnetic field:
 - Measure momentum
- Calorimeters
 - Measure energy of all particles
- Outer tracking
 - Measure muons

From Picture to Reconstruction

Detector R&D, construction:1993-2008

Vears

Superconductor solenoid at 3.8 Tesla

- It weighs 12,000 tons
- •100,000 times stronger the the Earth's
- •Cooled to -268.5C (as in outer space)
- •Stores energy to melt 18 tons of gold

ATLAS Toroidal System

Silicon Tracker

214m² silicon sensors 11.4 million silicon strips 65.9 million silicon pixels

ECAL Electromagnetic Calorimeter

Design Goal: Measure the energies of photons from a decay of the Higgs boson to precision of $\leq 0.5\%$

Parameter	Barrel	Endcaps
# of crystals	61200	14648
Volume	8.14m ³	2.7 m ³
Xtal mass (t)	67.4	22.0

HCAL Hadronic Calorimeter

- Detection of hadrons:
 - -Protons, neutrons, pions, etc.
- CMS HCAL (barrel, endcap, forward)
- Plastic scintillator and brass
- Quartz fibers and steel

Muon detectors

- Drift tubes (DT)
- Cathode Strip Chambers (CSC)
- Resistive Plate Chambers (RPC)

Trigger and electronics

- Electronics systems in the Service Cavern
- About 150 racks occupy two floors
- Most electronics is custom-built

LHC accelerator/detectors

CMS: Surface site in 2000

STUD 12

A.

2004: CMS detector cavern

CMS: Surface hall in 2006

2007: lowering the detectors

Special an operation in 2007

The CMS was lowered to the collision hall in Feb. 2007started the travel at 6 am....

ECAL detector
Sept. 2008: Ready for beams

Cables, pipes, optical fibers

November 2007

CMS detector closed

CMS detector installed in the experimental hall September 2008

CMS Experiment at the LHC, CERN

Data recorded: 2010-Jul-09 02:25:58.839811 GMT(04:25:58 CEST) Run / Event: 139779 / 4994190

First collisions at 7 Tel A big step up in energy

(c) CERN 2009. All rights reserved.

Trigger

Trigger system decide if the event is interesting to be recorded

Two-step process:

- Level 1: dedicated hardware processors
- High level: computer farm

Trigger computer farm

High radiation levels

How did we prepare for discoveries?

Simulation of proton-proton collision making two dark matter particles

M. Gallinaro - "The experimental program at the LHC" - Bari Univ. - May 16, 2017

From partons to jets

From partons to color neutral hadrons:

Fragmentation:

Parton splitting into other partons [QCD: re-summation of leading-logs] ["Parton shower"]

Hadronization:

Parton shower forms hadrons [non-perturbative, only models]

Decay of unstable hadrons [perturbative QCD, electroweak theory]

Detector simulation

GEANT Geometry And Tracking

Detailed description of detector geometry [sensitive & insensitive volumes]

Tracking of all particles through detector material ...

→ Detector response

Developed at CERN since 1974 (FORTRAN) [Today: Geant4; programmed in C⁺⁺]

Monte Carlo simulation

Simulation

- Numerical process generation based on random numbers
- Very powerful in particle physics
- Event generation
 - Pythia, Herwig, Isajet, Sherpa ...
 - Hard partonic subprocess + fragmentation, hadronization, decay
- Detector simulation
 - Geant ...
 - Interaction, response of all particles produced ...

simulate physics process (quantum mechanics: probabilities!)

Detector Simulation simulate interaction with detector material

Digitization translate interactions with detector into realistic signals

Reconstruction/Analysis as for real data

Detector commissioning

LHC Page 1: stable beams

Experiment's control rooms

Cessy: Master Control Room

Fermilab: Remote Operations Center

Meyrin: CMS Data Quality Monitoring Center

Any Internet access

CMS Experiment

2009: first collisions at LHC

Tracking

- Variables relevant for b-tagging
- Lifetime: $\tau_b \sim 1-2$ psec
- Reduction of backgrounds
- Secondary vertex tagging

Photons and electrons

Jets and missing transverse energy

Particle Flow event reconstruction

- Particle Flow (PF) combines information from all subdetectors to reconstruct particles produced in the collision
 - charged hadrons, neutral hadrons, photons, muons, electrons
 - use complementary info. from separate detectors to improve performance
 - tracks to improve calorimeter measurements
- From list of particles, can construct higher-level objects

-Jets, b-jets, taus, isolated leptons and photons, MET, etc.

Rediscovery of resonances

Re-discovery of the SM at the LHC

The standard model at the LHC

- Hadron interactions
- Monte Carlo generators
- Luminosity and cross section measurements
- Minimum bias events
- Jet physics
- W and Z physics

Hadron interactions: pp scattering

Proton-proton scattering at LHC

- Hard interaction: qq, gg, qg fusion
- Initial and final state radiation (ISR,FSR)
- Secondary interaction ["underlying event"]

Cross section measurement

Luminosity determination

 Particle counting (i.e. Cherenkov counters): needs calibration to absolute luminosity

Goal: accuracy of 2-3%

Cross section and Luminosity

$$\Phi_a = \frac{N_a}{A} = n_a v_a$$

Φ_a: flux
 n_a: density of particle beam
 v_a: velocity of beam particles

$$\dot{N} = \Phi_a \cdot N_b \cdot \sigma_b$$

- N : reaction rate
- N_b: target particles within beam area
- σ_a: effective area of single scattering center

$$L = \Phi_a \cdot N_b$$

L : luminosity

$$N \equiv L \cdot \sigma$$
$$N = \sigma \cdot \int L \, dt \qquad \sigma = N/L$$

•

integrated luminosity

Collider experiment:

$$\Phi_{a} = \frac{\dot{N}_{a}}{A} = \frac{N_{a} \cdot n \cdot v/U}{A} = \frac{N_{a} \cdot n \cdot f}{A}$$

$$L = f \frac{nN_{a}N_{b}}{A} = f \frac{nN_{a}N_{b}}{4\pi\sigma_{x}\sigma_{y}}$$

$$\text{LHC:}$$

$$N_{x} \sim 10^{11} \text{ N}_{a} \sim .0005 \text{ mm}^{2} \text{ n} \sim 2800 \text{ f} \sim .11 \text{ kHz}$$

$$L \sim 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$$

$$N_{a} \approx .number \text{ of particles per bunch (beam A)} \text{ N}_{b} \approx .number \text{ of particles per bunch (beam A)} \text{ N}_{b} \approx .number \text{ of particles per bunch (beam A)} \text{ N}_{b} \approx .number \text{ of particles per bunch (beam A)} \text{ N}_{b} \approx .number \text{ of particles per bunch (beam A)} \text{ N}_{b} \approx .number \text{ of particles per bunch (beam A)} \text{ N}_{b} \approx .number \text{ of particles per bunch (beam A)} \text{ N}_{b} \approx .number \text{ of particles per bunch (beam A)} \text{ N}_{b} \approx .number \text{ of particles per bunch (beam A)} \text{ N}_{b} \approx .number \text{ of particles per bunch (beam A)} \text{ N}_{b} \approx .number \text{ of particles per bunch (beam A)} \text{ N}_{b} \approx .number \text{ of particles per bunch (beam A)} \text{ N}_{b} \approx .number \text{ of particles per bunch (beam A)} \text{ N}_{b} \approx .number \text{ of particles per bunch (beam B)} \text{ U} \approx .velocity \text{ of beam particles} \text{ f} \approx .number \text{ of bunches per beam} \text{ v} \approx .velocity \text{ of beam particles} \text{ f} \approx .number \text{ of beam particles} \text{ f} \text{ f} \approx .number \text{ of beam particles} \text{ f} \text{$$

Van-der-Meer separation scan

Minimum bias events

- Particle density in minimum bias events
- Soft QCD (p_T threshold on tracks: 50 MeV)

Tuning of MC generators needed

Charged particle p_T spectrum

M. Gallinaro - "The experimental program at the LHC" - Bari Univ. - May 16, 2017

Jet production at LHC

Jet production at LHC (cont.)

Ψ(r)

R

- Processes creating jets are complicated
 - Parton fragmentation, with electromagnetic or hadronic showering in the detector
- Jet reconstruction is difficult
- Jet energy scale and reconstruction is large source of uncertainty

out of cone

particle

underlying

even

lorimeter

e

oarticle

Jet energy calibration

Inclusive jet distribution

arXiv:1106.0208, arXiv:1410.6765

Cross section is huge (~Tevatron x 100)

Very good agreement with NLO QCD over nine orders of magnitude

 P_{T} extending from 20 to 2000 GeV

Main uncertainty:

• Jet Energy Scale (3-4%)

Inclusive cross section: 3-to-2 jet ratio

arXiv:1304.7498

M. Gallinaro - "The experimental program at the LHC" - Bari Univ. - May 16, 2017
Dijet mass

- Very early search for numerous BSM resonance searches:
- string resonance, excited quarks, axi-gluons, colorons, E6 diquarks, W' and Z', RS gravitons, DM

W and Z bosons

- Leptonic decays (e/μ): very clean, small branching fractions
- Hadronic decays: two-jet final state, large QCD background

- Isolated high-p_T leptons: starting point of many analyses
 - Good rejection of QCD backgrounds
 - Jets reconstructed as "leptons": fakes
 - "Tracking" vs "calorimeter" isolation

M. Gallinaro - "The experimental program at the LHC" - Bari Univ. - May 16, 2017

W and Z bosons (cont.)

M. Gallinaro - "The experimental program at the LHC" - Bari Univ. - May 16, 2017

Di-muon mass spectrum

arXiv:1206.4071

W/Z production

arXiv:1402.0923, arXiv:1510.07488

- Select isolated electrons and muons
- W: investigate transverse mass m_T
- Z: dilepton invariant mass

M. Gallinaro - "The experimental program at the LHC" - Bari Univ. - May 16, 2017

W/Z production (cont.)

arXiv:1402.0923, arXiv:1510.07488

- Select isolated electrons and muons, and taus
- W: investigate transverse mass m_T
- Z: dilepton invariant mass

W/Z cross section vs \sqrt{s}

arXiv:1012.2466, CMS-SMP-15-004

M. Gallinaro - "The experimental program at the LHC" - Bari Univ. - May 16, 2017

W/Z+jets

arXiv:1406.7533, arXiv:1408.3104

Diboson cross section measurements

M. Gallinaro - "The experimental program at the LHC" - Bari Univ. - May 16, 2017

Top quark physics

M. Gallinaro - "The experimental program at the LHC" - Bari Univ. - May 16, 2017

118

...and more physics results

SM measurements

CMS Preliminary

Probing the SM in many ways

121

- LHC experimental physics program is well under-way
 Experiments taking data with good efficiency
 Running well, with plenty of data still to come
 Rediscover the SM to calibrate/understand detector performance
 Probe the SM to test hints of New Physics
- Experimental challenges ahead