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Introduction: a brief summary of the standard model

3

for more details see lectures by Prof. João Varela: I, II, III

https://indico.cern.ch/event/367545/contribution/10/material/slides/1.pdf
https://indico.cern.ch/event/367545/contribution/17/material/slides/2.pdf
https://indico.cern.ch/event/367545/contribution/8/material/slides/1.pdf


Foundations of the standard model

• Interactions reflect symmetries 

• the charges of the elementary 
particles are generators of gauge 
symmetries
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The standard model (SM) condenses two observations regarding fundamental interactions 
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The standard model (SM) condenses two observations regarding fundamental interactions 

PL

• Parity is distinguished in nature 

• left-handed and right-handed 
polarisation are distinct

• with more than one generation of 
particles CP is violated

PR

Foundations of the standard model

• Interactions reflect symmetries 

• the charges of the elementary 
particles are generators of gauge 
symmetries



The SM builds on experimental evidence I
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Gargamelle @ CERN (1970-1976)



Gargamelle @ CERN (1970-1976)
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Experimental 
measurement ▶

The SM builds on experimental evidence I
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Theoretical 
interpretation: the 
neutrino 
scattering has 
been mediated by 
a neutral 
interaction which 
conserves flavor, 
couples 
proportionally to 
the weak neutral 
charge and gets 
masked at low 
Q2 by 
electromagnetic 
interactions

Experimental 
measurement ▶

Gargamelle @ CERN (1970-1976)

The SM builds on experimental evidence I



• Experimental 
measurement: an electron 
is observed along with 
missing transverse 
energy after colliding 
two beams of protons
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The SM builds on experimental evidence II

UA1 @ CERN (1981-1990)

• Theoretical interpretation:  charged currents mix the flavour
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Thus, the SM is a highly predictive theory

Gfitter group • Measured to incredible precision in e+e- colliders

• Largest deviations don’t reach 3σ level

• See Phys.Rept. 403-404 (2004) 189-201 for review

http://project-gfitter.web.cern.ch/project-gfitter/
http://arxiv.org/abs/hep-ph/0404165


• Measured to incredible precision in e+e- colliders

• Largest deviations don’t reach 3σ level

• See Phys.Rept. 403-404 (2004) 189-201 for review

• After LEP: scale of the “missing piece” accurately predicted
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Thus, the SM is a highly predictive theory

Gfitter group

http://arxiv.org/abs/hep-ph/0404165
http://project-gfitter.web.cern.ch/project-gfitter/


Notice this was not the case before LEP experiments
12

Nucl. Phys. B 106 (1976) 292-340

http://cds.cern.ch/record/874049


How do we describe kinematics in the SM?

• Interactions must preserve gauge invariance

• interactions transform the fields, but must leave the hamiltonean invariant
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• Interactions must preserve gauge invariance

• interactions transform the fields, but must leave the hamiltonean invariant

• charges (electric, weak, colour) generate currents, i.e. symmetry transformations
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How do we describe kinematics in the SM?



• Interactions must preserve gauge invariance

• interactions transform the fields, but must leave the hamiltonean invariant

• charges (electric, weak, colour) generate currents, i.e. symmetry transformations

• to preserve gauge invariance the kinetic term must accommodate the currents
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How do we describe kinematics in the SM?



• Interactions must preserve gauge invariance

• interactions transform the fields, but must leave the hamiltonean invariant

• charges (electric, weak, colour) generate currents, i.e. symmetry transformations

• to preserve gauge invariance the kinetic term must accommodate the currents

• and from a theory-point of view gauge invariance ⇒discover interaction fields
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Strong interactions Charged EWK interactions Neutral EWK interactions

How do we describe kinematics in the SM?



• Interactions must preserve gauge invariance

• interactions transform the fields, but must leave the hamiltonean invariant

• charges (electric, weak, colour) generate currents, i.e. symmetry transformations

• to preserve gauge invariance the kinetic term must accommodate the currents

• and from a theory-point of view gauge invariance ⇒discover interaction fields
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strong coupling constant combination of Fermi and fine structure constants

How do we describe kinematics in the SM?



• Interactions must preserve gauge invariance

• interactions transform the fields, but must leave the hamiltonean invariant

• charges (electric, weak, colour) generate currents, i.e. symmetry transformations

• to preserve gauge invariance the kinetic term must accommodate the currents

• and from a theory-point of view gauge invariance ⇒discover interaction fields
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Gell-Mann matrices Pauli matrices hypercharge (scalar)

How do we describe kinematics in the SM?



SM: particles are representations of the symmetry group

• e.g. left handed quark: 

• Geometry fully defines kinematics
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Color triplets Weak isospin doublets

hypercharge :  Y= 1/2 x (Q-I/3)
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…but symmetry does not expect  mass 

• Elementary particles have mass and so do the electroweak gauge bosons : W and Z

⇒ electroweak symmetry must be broken at our energy scale
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from C. Rubbia’s Nobel prize lecture

http://www.nobelprize.org/nobel_prizes/physics/laureates/1984/rubbia-lecture.pdf


Pure gauge boson interactions are allowed in the SM…

• Triple and quartic gauge couplings can occur, and preserve gauge invariance

21

field-strength tensors for charged and neutral bosons

etc.



…and depending on the polarization…
22

• Photon-like polarizations are the most common in nature 

• helicity conservation after an annihilation imposes transverse polarisation of vector-like states



…and depending on the polarization…
23

• Only massive vector bosons have 
longitudinal polarisations  

• e.g. W’s produced after a top quark 
decay acquire mostly (~60%) 
longitudinal polarisation

        see lectures by M. Gallinaro  
                          and A. Onofre

• Photon-like polarizations are the most common in nature 

• helicity conservation after an annihilation imposes transverse polarisation of vector-like states



…may have unique behavior: VLVL→VLVL

This particular set of processes breaks unitarity for sufficiently large energy 

• For s1/2≃1 TeV interactions become strong unless underlying mechanism preserves unitarity
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…may have unique behavior: VLVL→VLVL

This particular set of processes breaks unitarity for sufficiently large energy 

• For s1/2≃1 TeV interactions become strong unless underlying mechanism preserves unitarity

• Possibility: an extra interaction with a scalar boson provides necessary cancellations
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Legendre polynomials Amplitude for l-th angular momentum wave 

…may have unique behavior: VLVL→VLVL

This particular set of processes breaks unitarity for sufficiently large energy 

• For s1/2≃1 TeV interactions become strong unless underlying mechanism preserves unitarity

• Possibility: an extra interaction with a scalar boson provides necessary cancellations

• Decomposing the scattering in partial waves (angular momentum decomposition 

• and applying the optical theorem                                      ⇒
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Legendre polynomials Amplitude for l-th angular momentum wave 

…may have unique behavior: VLVL→VLVL

This particular set of processes breaks unitarity for sufficiently large energy 

• For s1/2≃1 TeV interactions become strong unless underlying mechanism preserves unitarity

• Possibility: an extra interaction with a scalar boson provides necessary cancellations

• Decomposing the scattering in partial waves (angular momentum decomposition 

• and applying the optical theorem                                      ⇒

• which bounds the mass of the scalar

27



Possible scenarios for (longitudinal) vector boson scattering

• Depending on the nature of the scalar (or would it be absent)

• the scattering of vector bosons may be resonant, non-resonant, reveal strong behavior at large s1/2

             ⇒ we need to scan a large energy range to test the mechanism which breaks EWK symmetry

28



The missing piece of the standard model
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The Higgs mechanism
• A new SU(2) doublet of spin-0 particles is added to the lagrangian 

• 4 new degrees of freedom: doublet + anti-particles

• write down the interactions

         where V is a phase-symmetric potential
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Higgs field potential

• Given the symmetry of the potential we are allowed 
to parameterise the field in polar form

• If you substitute this into the Lagrangian

   where, by construction, the potential is independent of φ2

31

mass of the field self-interaction of the field
(quartic coupling)

φ2 is masseless
(≣Goldstone boson)



What about other SM fields?

• The new field is a doublet in SU(2)  

• Therefore it interacts with the electroweak bosons

• In the lagrangian 

• but I imagine you have had too much formulae at this point, so let’s do it differently…

32



The Higgs mechanism
33

?
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The Higgs mechanism
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The Higgs mechanism
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The Higgs mechanism
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The Higgs mechanism
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The Higgs mechanism



• Both the W and the Z boson acquire mass 

• the W± interact with the φ±, the Z0 interacts with the φ0

• by these means the W± and the Z0 become massive and acquire 3 polarisation states

electroweak symmetry has been spontaneously broken 

• Note: the photon (and the gluons) do not mix with any of these states: they are massless

• As a consequence: the W and Z masses are related amongst themselves

The Higgs mechanism: EWK symmetry breaking
39



EWK symmetry breaking
40



Original idea behind the Higgs mechanism (slide from F. Englert)
41

▶characterizes a 
continuous SSB

▶ measures the 
rigidity of the vacuum

F. Englert and R. Brout PRL 13-[9] (1964) 321
P.W. Higgs PL 12 (1964) 132 and PRL 13-[16] (1964) 508
G.S. Guralnik, C.R. Hagen and T.W.B. Kibble PRL 13-[20] (1964) 585

The proponents



Giving mass to fermions

• Yukawa-type of couplings are gauge invariant

• can add arbitrary mass terms to the lagrangian giving mass to the fermions

• result in 3x3 matrices, non-diagonal, complex, with free constants

• Notice however that the mass eigenstates are not necessarily the flavour eigenstates

• this leads to mixing in EWK interactions

42



The Higgs mass

• It is not predicted in the SM 

• but it can be related directly or via loops to the 
mass of known particles and other observables

• before the top quark was found→

• including the top, precision measurements yield

          (see PDG,  GFitter)
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http://pdg.lbl.gov/2014/reviews/rpp2014-rev-standard-model.pdf
http://project-gfitter.web.cern.ch/project-gfitter/Standard_Model/


A note on the Higgs self-coupling
Drives the stability of the Higgs potential 

• Knowing the Higgs mass, and the vacuum expectation value we know it - see slides 29,30
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• We can measure it from rare 
processes where h →hh 

• Alternatively test if the SM consistent at higher scales 

   → depending on the top mass the universe might be unstable

        see JHEP 1208 (2012) 098

http://inspirehep.net/record/1116539


Hunting the Higgs boson in particle colliders
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It has been searched for at LEP....
46

ALEPH

OPAL

DELPHI

L3

Electron-positron collider up to s1/2= 209 GeV
Integrated luminosity: ~700 pb-1

Shutdown: September 2000



Higgs production at LEP
47



At LEP: look for 3rd generation decays
48



LEP H → bb candidate
49

Displaced decay from 
a B hadron candidate 

(τ~1.6 ps)



Summary of all Higgs 
candidates found at LEP

• Invariant mass of all candidates

• In total 17 candidates selected

• 15.8 background events expected

• Expectation for mH=115 GeV

• 8.4 events

• Corresponding excess was not observed 

• Final verdict from LEP

mH>114.4 GeV @ 95% CL

50



...and searched for at the Tevatron...
51

Proton-anti-proton collider at s1/2=1.96 TeV
First superconducting accelerator
Shutdown: 30 September 2011
Almost 10 fb-1 of data for analysis



Higgs production in hadron colliders
52

← Only 
available at 
hadron colliders

←
(fermion annihilation and 
vector boson scattering)



Higgs production in hadron colliders
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← Only 
available at 
hadron colliders

←
(fermion annihilation and 
vector boson scattering)



Look for all possible decays I
• If light, the Higgs resonance is very narrow - O(100) MeV

• Decays to WW and ZZ pairs dominate over most of the mass range 

• rise with energy due to coupling through longitudinal components (see slide 28)
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• Window of maximum opportunity (most democratic all available channels) at ~125 GeV 

• couplings to gluons and photons available through top and W loops

55
Look for all possible decays II



Most sensitive channels at the Tevatron

• At low mass use h→bb final states 

• associated production with W or Z

• challenging: b-tagging, jet resolution

• backgrounds: top, W/Z+heavy flavour di-bosons

56

• At high mass use H→WW final states 

• benefit from high gluon-gluon cross section

• challenging: lepton acceptance, missing energy

• backgrounds: top, di-bosons



The H → WW → 2l2ν channel
• Decay products from resonance 

• 2ν leave one degree of freedom

• can’t reconstruct full mass lineshape

• use transverse mass (jacobian peak)

57



The H → WW → 2l2ν channel
• Decay products from resonance 

• 2ν leave one degree of freedom

• can’t reconstruct full mass lineshape

• use transverse mass (jacobian peak)

• Helicity conservation after H decay 

• ν helicity is pre-determined (massless)

• dilepton recoils against 2ν preferentially
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Discriminating signal above the background

• Often, a single variable does not often enough discriminating power 

• the solution is to combine several variables : cut sequentially? build a discriminator?

• most of the work is to find the most performant solution

• A distribution in a given observable xobs may be written as

• Can combine different PDFs to discriminate S from B 

• assign event-per-event weight based on the ratio

• this is known as the likelihood ratio method

• one amongst multivariate classifiers - see TMVA
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normalization 
factor

Differential 
cross section

Detector 
resolution

Efficiency x
acceptance

This refers to a 
process: signal or 

background Experimental inputTheory input

http://tmva.sourceforge.net/
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…

look for the 
signal here

control the 
backgrounds 

here

The H → WW → 2l2ν discriminator



More complex multivariate analyses
• Generalise the multivariate analysis concept! 

• address specific experimental effects: improve resolution, energy scale, identification criteria

• reject specific backgrounds

• keep everything in the analysis: if there is any problem it will appear in the control region

61



Limits, measurements and related
• How much “space” is statistically allowed for the signal?  

• free parameter is usually the signal strength μ=σobs/σtheory

• compare the data with the expectations using a maximum likelihood

• Nuisance parameters quantify uncertainties in the rates and can be profiled away

• use the profile likelihood ratio as the test statistics

62

Signal expected background 
expected

PDF for nuisance parameters 
affecting rates or shapes

Combined fit with μ and θ

Best fit at fixed signal strength



The CLS method for limit setting
63

• Use pseudo-experiments and obtain the distribution of the test statistics 

• background-only case μ=0           signal+background case μ=1

• the best values for the nuisances fit to data in each case must be used coherently

• What is the probability that each case exceeds the observed value?



The CLS method for limit setting
• Use pseudo-experiments and obtain the distribution of the test statistics 

• background-only case μ=0           signal+background case μ=1

• the best values for the nuisances fit to data in each case must be used coherently

• What is the probability that each case exceeds the observed value?
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The value of μ for which CLS=5% defines the 
upper endpoint (upper limit on μ at 95%)

All values of μ for which CLS<5% can be 
excluded at 95% CL



The CLS method for limit setting
• Use pseudo-experiments and obtain the distribution of the test statistics 

• background-only case μ=0           signal+background case μ=1

• the best values for the nuisances fit to data in each case must be used coherently

• What is the probability that each case exceeds the observed value?
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Combination 
points to s.th. 

Incompatible with 
background only 
hypothesis at the 

3σ-level



Quantifying the excess observed at the Tevatron

• Scan the mass looking for 
compatibility of the 
different channels

• At 125 GeV

μ=1.4±0.7  

• Consistent between 
different channels and 
with the indirect limits 
from precision 
measurements
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When to claim discovery
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Tevatron reached the evidence threshold 
68



...and finally, it was found at the LHC.
69

Proton-proton collider at s1/2=7, 8 TeV
First collision: 23 November 2009
Almost 25 fb-1 of data for analysis in Run I

Run II starting April 2015 at s1/2=13 TeV
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In HEP, we do one kind of measurement
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In HEP, we do one kind of measurement

we 
count!
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As a layman I would say: 

“I think we have it”.

Would you agree?”

 Rolf Heuer, CERN DG, 4th July 2012



All the details about counting LHC results and their interpretation in the next sessions
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